Nonlinear waveform and delay time analysis of triplicated core phases - Archive ouverte HAL Access content directly
Journal Articles Journal of Geophysical Research : Solid Earth Year : 2004

Nonlinear waveform and delay time analysis of triplicated core phases

(1) , (2) ,
1
2
R. Garcia
M. Weber
  • Function : Author

Abstract

We introduce a new method to measure differential travel times and attenuation of seismic body waves. The problem is formulated as a nonlinear inverse problem, which is solved by simulated annealing. Using this technique, we have analyzed triplicated PKP waves recorded by the temporary Eifel array in central Europe. These examples demonstrate the potential of the technique, which is able to determine differential travel times and waveforms of the core phases, even when they interfere on the seismograms or when additional depth phases are present. The PKP differential travel times reveal the presence of large-amplitude and small-scale heterogeneities along the PKP(AB) ray paths and favor a local radial inner core model with ∼0.9% velocity perturbation in its top 150 km and small velocity perturbations below. The quality factor in the top 300 km of this inner core region is estimated from PKP differential attenuation. Its preferred value is 330 with a lower bound of 75.
Fichier principal
Vignette du fichier
Journal of Geophysical Research Solid Earth - 2004 - Garcia - Nonlinear waveform and delay time analysis of triplicated.pdf (3.58 Mo) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03600293 , version 1 (07-03-2022)

Licence

Copyright

Identifiers

Cite

R. Garcia, S. Chevrot, M. Weber. Nonlinear waveform and delay time analysis of triplicated core phases. Journal of Geophysical Research : Solid Earth, 2004, 109, pp. 200-212. ⟨10.1029/2003JB002429⟩. ⟨insu-03600293⟩
15 View
8 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More