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Fracture network permeability is investigated numerically by using a three-dimensional model of plane
polygons uniformly distributed in space with sizes following a power-law distribution. Each network is trian-
gulated via an advancing front technique, and the flow equations are solved in order to obtain detailed pressure
and velocity fields. The macroscopic permeability is determined on a scale which significantly exceeds the size
of the largest fractures. The influence of the parameters of the fracture size distribution—the power-law
exponent and the minimal fracture radius—on the macroscopic permeability is analyzed. Eventually, a general
expression is proposed, which is the product of a dimensional measure of the network density, weighted by the
individual fracture conductivities, and of a fairly universal function of a dimensionless network density, which
accounts for the influences of the fracture shapes and of the parameters of their size distribution. Two analytical
formulas are proposed which successfully fit the numerical data over a wide range of network densities.
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I. INTRODUCTION

Fractures and fracture networks determine the permeabil-
ity of many natural rocks, and their behavior has drawn at-
tention in various fields; different aspects of this problem are
discussed by, e.g., Sahimi[1], Adler and Thovert[2], and the
National Research Council[3].

In our previous contributions, the geometrical properties
[4], the absolute permeability of fracture networks[5] and of
fractured porous media[6], as well as their relative perme-
abilities [7] have been determined for monodisperse frac-
tures. It has been shown that the excluded volume introduced
by Balberget al. [8] plays a crucial role; a dimensionless
fracture densityr8 was defined and the previous properties
depend only onr8 whatever the shape of the fractures.

However, it has been known for a long time that real
fracture networks are polydisperse[9–13]. Therefore, the
main objective of this paper is to extend the results of Kou-
dina et al. [5] to three-dimensional fracture networks with a
power-law size distribution.

To the best of our knowledge(see the recent review of
Berkowitz [14]), there is no such previous study on three-
dimensional permeability.

Renshaw[15] discussed the applicability of different ef-
fective medium models to the prediction of the macroscopic
permeability of fractured networks. He demonstrated that
these models fail for the range of fracture spatial densities
observed on superficial exposures of joint networks. He stud-
ied numerically the permeability of two-dimensional power-
law networks of orthogonal fractures and used a fracture
density parameter based on the second moment of the length
distribution; he proposed a normalized permeability in order
to gather all the numerical results.

A numerical study of the flow in two-dimensional fracture
networks has been performed by Odling[16]. Special atten-
tion was paid to the influence of the correlation between
fracture lengths and conductivities on the macroscopic per-
meability; she found that correlated fracture apertures and
lengths induce global permeabilities an order of magnitude

greater than when aperture and lengths are uncorrelated or
when apertures are identical.

De Dreuzyet al. [17] (and the references therein) also
considered two-dimensional networks with various proper-
ties of the individual fractures.

In the present study, the fracture network permeability is
considered numerically by using a three-dimensional model
of plane polygons uniformly distributed in space with sizes
following a power-law distribution. The domain size is sup-
posed to significantly exceed the size of the largest fractures
in the networks. The presentation is organized as follows. In
Sec. II, the geometrical model of polydisperse fracture net-
works is described together with the flow equations; the nu-
merical approach is briefly discussed. Each network is trian-
gulated via an advancing front technique; the flow equations
are discretized on this mesh and solved in order to obtain the
pressure and velocity fields. The macroscopic flow is related
by an effective permeability to the pressure gradient imposed
on the system; this permeability is averaged over a number
of independent statistical realizations of fracture networks
with the same properties. Percolation properties of polydis-
perse fracture networks are presented in Sec. III. In Sec. IV,
the influence of the parameters of the fracture size
distribution—the power-law exponenta and the minimal
fracture radius—on the macroscopic permeability is ana-
lyzed for fractures with identical conductivities. The results
are systematically presented in terms of the ratio of the net-
work permeability to the fracture surface density and of the
third moment of the fracture size distribution. For variable
fracture conductivities, which are addressed in Sec. V, two
models are considered—polydisperse networks with fracture
conductivities scaling with the fracture size, and monodis-
perse systems with conductivities distributed according to a
power law. Some concluding remarks in Sec. VI complete
this paper.

The main findings can be summarized by the general ex-
pression Eq.(37) for the macroscopic permeability, together
with the models Eqs.(38) and(42) for the universal function
of the dimensionless network density defined in Eq.(6c).
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II. GENERAL

Consider three-dimensional networks made of fractures
that are disks or regular polygons circumscribed by disks of
radius R. According to various observations of fractured
rocks ([2] and the references herein), many real probability
densities of fracture sizes follow a power law such as

nsRd = aR−a s1d

wherensRddR is the number of fractures with radius in the
rangefR,R+dRg, a is a coefficient, anda a scaling expo-
nent. In practice,R varies in a large interval of values which
can span five orders of magnitude, but it is limited by the
sizeRM of the largest fractures in the system and by the size
Rm of the microcracks. Moreover, the normalization condi-
tion implies thata satisfies

a =
a − 1

Rm
1−a − RM

1−a . s2d

According to a recent synthesis of the real distribution of
fracture trace lengths in a plane intersecting a three-
dimensional fracture network, the corresponding exponent
a2D varies between 0.8 and 3.5 with a maximum occurrence
around 2.0[18]. Piggott[19] argued via an analytical devel-
opment that the exponentsa2D and a are related bya=a2D
+1; a similar observation in numerical simulations has been
presented by Berkowitz and Adler[20]. Thus, it is reasonable
to expect thata varies between 1.8 and 4.5 with a maximum
likelihood around 3.0.

The volumetric densityFsRd is defined as the number of
fractures of sizeR in a unit volume

FsRd = rnsRd s3d

where the total fracture number per unit volume isr. A more
intrinsic measure of the density can be devised by combining
r with the excluded volumeVex introduced by Balberget al.
[8]; Vex is defined as the surrounding volume into which the
center of another object may not enter if overlap is to be
avoided. For anisotropic objects such as polygons,Vex de-
pends on their mutual orientation, and it has to be averaged
over all possible orientations. For a wide class of objects
including randomly oriented disks or convex polygons, an
exact expression forVex was given by Husebyet al. [4]:

Vex= ApPp/2 s4d

where Ap and Pp are the polygon area and perimeter. For
disks with radiusR, Eq. (4) givesVex=p2R3 [21].

For monodisperse fracture networks, the dimensionless
density r8=rVex, which is the number of fractures per ex-
cluded volumeVex, has been shown to characterize well the
network connectivity of fractures of various shapes; a unique
percolation threshold was obtained asrc8=2.26±0.04[4].

It should be noted thatr8 is a direct measure of the net-
work connectivity, since it is exactly equal to the mean num-
ber of intersections of a fracture with others in the network.
For the networks under consideration here, which are made

up of fractures with identical shapes but different sizes, it is
convenient to express the excluded volumeVex in Eq. (4) as
the product

Vex= vexR
3, s5d

wherevex is a dimensionless shape factor, equal, for instance,
to p2 for disks, 9Î3/2 for hexagons, and 4Î2 for squares. It
was the introduction of this shape factor in the densityr8 that
allowed unification of the description of the percolation and
transport properties of monodisperse networks of fractures
with various shapes. Therefore, this feature is kept in the
definitions of the three dimensionless densities that are used
in the following:

r08 = rvexRM
3 , s6ad

r218 = rvexkR2lkRl, s6bd

r38 = rvexkR3l, s6cd

where the bracketsk l denote statistical moments ofR
weighted bynsRd. The subscripts are reminders of the statis-
tical moments involved in each definition. The first one,r08,
is the simplest definition, based on the single length scale
RM, but it cannot be expected to capture the scaling character
of the network. The second one is the generalization ofr8 for
monodisperse networks, since it can be shown that it is still
equal to the mean number of intersections per fracture[2]. It
is therefore a suitable candidate, but it turns out that this
measure of the local connectivity does not control the global
network percolation and that the last oner38 is much more
successful in this respect, as was established earlier[21–23].

The generation and analysis of the percolation properties
of fracture networks are similar to those presented by
Husebyet al. [4]. The fractures are embedded in the unit
cubic cell of sizeL; Nfr =rL3 is the number of fractures in the
unit cell. The centers of the fractures are uniformly distrib-
uted in space, and their normal vectors are uniformly distrib-
uted on the unit sphere.

In this study, only large unit cellsLù4RM are considered.
This means thatL is a natural homogenization scale over
which the macroscopic permeability of a fracture network
can be defined. Any scaling behavior of hydraulic properties
of fracture systems which can arise whenL varies in the
rangeL!4RM is beyond the scope of the current analysis.

Two types of fracture systems were used in the calcula-
tions depending on the boundary conditions. First, nonperi-
odic networks were tested, so that percolation requires that a
connected cluster joins opposite faces of the unit cell along,
say, thex direction; in this case, fracture centers were gen-
erated within the unit cell as well as outside it, provided that
the corresponding fractures intersect at least one of the six
faces of the cell. Second, spatially periodic networks were
generated; all fracture centers lie in the interior of the unit
cell t0; then, percolation is ensured if a connected cluster
contains two homologous fractures, i.e., two fractures with
the same coordinates, modulo the periodL along the corre-
sponding direction.
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The three length scales define the two dimensionless ra-
tios

Rm

RM
,

L

RM
, s7d

which together witha determine the connectivity and perco-
lation properties of the fracture networks. In order to elimi-
nate the influence of the lower cutoffRm, Rm/RM is kept as
small as possible.

At a local scale characterized by a typical apertureb, the
flow of a Newtonian fluid within a fracture is governed by
the Stokes equation. Ifb is assumed to be much smaller than
the typical lateral extent 2R of the fracture, flow at a scale
that is intermediate betweenb and 2R is governed by the
Darcy equation

q = −
1

m
s=p s8d

where q is the locally averaged flow rate per unit width
fL2T−1g, m the fluid viscosity,=p the pressure gradient, and
s fL3g the fracture conductivity coefficient. The mass con-
servation equation becomes

=s ·q = 0 s9d

where =s is the two-dimensional gradient operator in the
mean fracture plane.

Two types of boundary conditions can be applied to this
network. For periodic systems of fractures, a macroscopic

pressure gradient=p% is applied upon the unbounded medium
made of the periodic juxtaposition of identical unit cellst0
along the three directions of space. The fluid flow is de-
scribed by Eqs.(8) and(9), together with periodic conditions

for the local velocityv, q, and=p; =p% can be expressed as

=p% =
1

t0
E

]t0

pds. s10d

The seepage velocityv̄ can be evaluated as

v̄ =
1

t0
E

tf

vdt =
1

t0
E

Sf

qdS, s11d

wheret f is the interstitial volume of the fractures andSf their
projection on their mean planes. The flux is related to the
pressure gradient by Darcy’s law[2]

v̄ = −
1

m
K ·¹% p. s12d

K is the permeability tensorfL2g, to be determined from Eqs.
(11) and(12) once the problem of Eqs.(8) and(9) has been
solved. Since all the networks considered here are isotropic,
K is a spherical tensor when averaged over many realiza-
tions,

K = KI. s13d

Such periodic conditions have been applied in a few
cases, but, unless otherwise stated, most calculations in the
following have been conducted for nonperiodic systems of
fractures; prescribed pressures were then applied over some
inlet and outlet planesPi andPo,

p = − s¹% pdaL alongPia,

p = 0 alongPoa, a = x,y,z. s14d

A no-flux condition is applied over the other panes bounding
the unit cell. The flow calculations are successively per-
formed along the three different directions, and the macro-
scopic permeability of the network is derived from Eqs.(11)
and (12). In this case,K is not a tensor, but for isotropic
networks its statistical average is still expected to be spheri-
cal.

In this paper,s is taken to be constant over each fracture.
Because of the classical Poiseuille law, the typical conduc-
tivity s0 of a fracture is expected to be of the order of

s0 =
b3

12
. s15d

This value, together withRM and a reference pressurep0, are
used to recast the equations in a dimensionless form. The
dimensionless parameters(with primes) are defined by

p = p0p8, ¹ =
1

RM
¹8, v =

s0p0

mRM
2 v8,

q =
s0p0

mRM
q8, s = s0s8, K =

s0

RM
K 8, s16d

Rm = RMRM8 , L = RML8, R= RMR8.

Other choices are of course possible for the units, but since
Eqs. (8) and (9) are linear, the results would not be essen-
tially different. For instance, the velocity unit could be
s0p0/mRMb, which yields a dimensionless interstitial veloc-
ity of order 1, whereas the definition in Eq.(16) yields a
seepage velocityv̄8 of order 1.

All the following developments use this dimensionless
formulation; our results will be presented in terms of the
dimensionless scalar permeabilityK8.

A numerical method applied to solve the flow problem
was described by Koudinaet al. [5]. First, the fracture net-
work is discretized; an unstructured triangulation of the frac-
tures is obtained by using an advancing front technique.
Since the triangular mesh is made to coincide with the frac-
ture intersection lines, which are randomly located, it gener-
ally contains triangles of various sizes and shapes. The mesh
is characterized by the prescribed maximum edge lengthdM,
which is set equal toRM /4 in most cases. Hence, an hexago-
nal fracture withR=RM contains at least 61 nodes and 96
equilateral triangles, in the unlikely case when it intercepts
no other fracture, and more typically about 100 nodes and
140 scalene triangles when the mesh is constrained by inter-
section lines. Small fractures withR of the order ofdM or
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smaller contain at least four triangles. Let us give an example
of the mesh sizes used in this study; a network witha=2.5,
Rm8 =0.1, L8=4, and r38=12 contains approximately 4000
fractures with 100 000 triangles and 50 000 nodes.

The pressurep is determined at each point of the triangu-
lar mesh. The unknown pressures are determined by solving
the linear algebraic equations derived by the finite volume
technique.

For each set of model parameters, the flow simulations
have been performed onNr =25 realizations of fracture net-
works. Unless otherwise stated, the macroscopic permeabili-
ties given in the following are always averages over theseNr
realizations and over the three directionsx, y, andz. Nonper-
colating networks with zero macroscopic permeability are
also taken into account in the statistical averaging.

III. PERCOLATION PROPERTIES
OF FRACTURE NETWORKS

These properties were derived by using the same ap-
proach as Husebyet al. [4]. For given values ofr08, L8, anda,
the probabilityPsL8 ,a,r08d of having a percolating cluster
which spans the cell in thex direction is derived fromNr
realizations of the system; then, the valuer0c8 sL8d for which
P=0.5 is estimated. In all tests, the valueNr =500 is used.

In the limit of small RM /L and at fixedRm, the fracture
networks are expected to follow the standard percolation
theory with the percolation thresholdr0c8 s`d [24]:

r0c8 sL8d − r0c8 s`d ~ S 1

L8
D1/n

, s17d

where n is the critical exponent. In our estimations of
r0c8 sL8d, the data forPsL8 ,a,r08d were fitted with a two-
parameter error function of the form

PsL8,a,r08d =
1

Î2p
E

−`

r08 1

DL
expF− fj − r0c8 sL8dg2

2sDLd2 Gdj,

s18d

whereDL is the width of the transition region ofPsL8 ,a,r08d.
In practice, the percolation probabilityPsL8 ,a,r08d was

evaluated from sets of 500 realizations, for about 10 values
of the network density, evenly distributed in a range whereP
varies from 0.05 to 0.95. Since there is a correspondence
betweenr08, r218 , and r38, for given values ofa and Rm, the
same data sets can be used to determiner0c8 sLd, r21c8 sLd, and
r3c8 sLd. The 95% confidence interval is estimated to be about
±0.04 in terms ofr3c8 sLd.

The scaling law Eq.(17) can also be used to determine the
exponentn from the values ofr0c8 sL8d for various sample
sizes. However, percolation is not the main topic of this pa-
per, and such a finite size effect analysis was not conducted.

In order to compare the results for fracture networks with
variousRm8 , we have to choose the parameters that will be
kept constant.r38 was suggested to be the appropriate perco-
lation parameter in previous studies[21–23], which also
stressed the importance of the large scale part of the fracture
distribution for the network connectivity. The numerical

simulations performed in this study on the three-dimensional
percolation in power law fracture systems showed that this is
indeed true in the rangeL8.1, as confirmed by the follow-
ing analysis of the dependence of various percolation param-
eters on the lower cutoff length.

Figure 1 shows the percolation threshold as a function of
Rm8 . Three different definitions of the critical fracture network
density are considered, namely, the thresholdsr0c8 sL8d,
r21c8 sL8d, andr3c8 sL8d associated with the three dimensionless
densities in Eq.(6), and they give rise to very different trends
which can be rationalized as follows.

WhenRM andr08 are kept constant andRm decreases, the
same number of fractures is spread over a wider range of
sizes, and large fractures are replaced by smaller ones. For
instance, if follows from Eqs.(1)–(3) that the density of the
largest fractures decreases as

FsRMd , Rm
a−1. s19d

This is obviously unfavorable for percolation and therefore
r0c8 has to increase whenRm decreases, as observed in Fig.
1(a).

If insteadr218 , i.e., the mean number of intersections per
fracture, is kept constant andRm decreases, it implies that the
number of large fractures(with many intersections) in-
creases, in order to compensate for the larger number of
small fractures with less than the average intersections. Spe-
cifically,

FsRMd ~ Rm
1−a, 1 , a , 2, s20ad

FsRMd ~ Rm
−1, 2 , a , 3, s20bd

FsRMd ~ Rm
a−4 3 , a , 4. s20cd

This favors percolation, and thereforer21c8 decreases when
Rm decreases, as seen in Fig. 1(b).

Finally, bothkR3l and the density of large fractures scale
as Rm

a−1 for 1,a,4. This means that the density of large
fractures is nearly unaffected whenRm decreases andr38 is
kept constant. In other words, the densityr38 is almost insen-
sitive to the value of the lower cutoffRm, provided that it is
much smaller thanRM. Since the thresholdr3c8 sL8d is also
nearly independent ofRm in Fig. 1(c), it suggests that for
a,4 percolation relies on the upper part of the fracture size
spectrum.

Let us consider now in more detailr3c8 sL8d, which has the
crucial advantage of being almost independent ofa andRm8
[Fig. 1(c)]. For monodisperse networks,Rm8 =1, the percola-
tion threshold does not depend ona, but it varies with the
scale, whenL8 increases from 4 to 6. The finite size effect,
which is still relatively strong forL8=4, can explain the
small differences observed in the numerical values ofr3c8 sL8d
for periodic and nonperiodic networks as well as between
hexagons and squares. WhenRm8 starts decreasing from unity,
r3c8 sL8d also decreases a little, but whenRm8 becomes less
than about 0.1,r3c8 sL8d remains nearly constant and only
slightly smaller than the value for monodisperse networks.
The only exception is the casea=2.9 for which the critical
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densityr3c8 has not yet reached an asymptotic value whenRm8
has decreased to 0.03. This is probably because the influence
of the smallest fractures is slower to vanish, since their pro-
portion is very large fora=2.9.

In summary, for all the data in Fig. 1(c) for L8=4, which
include different fracture shapes, exponentsa from 1.5 to
2.9, and size ranges withRm/RM from 0.01 to 1,

r3c8 = 2.95 ± 0.1sL8 = 4d. s21d

Although this value is still relatively strongly influenced by
the finite sample size—recall that a critical density 2.30 is
expected for monodisperse hexagons whenL8→` [4]—this
very narrow range illustrates how successfully the definition
(6c) of r38 incorporates the effect of the fracture shape(via
vex) and of the parametersa andRm8 (via the momentkR83l).

IV. PERMEABILITY OF FRACTURE NETWORKS WITH
IDENTICAL CONDUCTIVITIES

A. Snow model

Let us recall first the theoretical results relative to net-
works of infinite plane channels with an arbitrary orientation
distribution [25,26]. This is equivalent to assuming that all
the fracture surfaces in the network contribute to the flow
and that the overall head gradient is uniformly distributed

over the entire flow domain. If the surface area per unit vol-
ume for the fractures normal ton is Ssnd, the permeability
tensor is given by

K Sn= sE SsndsI − nnddn. s22d

For an isotropic network,Ssnd=S/4p where S is the total
volumetric surface area andn is evenly distributed on the
unit sphere. Therefore,

K Sn= KSnI , KSn= 2
3sS. s23d

In random network with fractures of the same size and shape,
S is given by

S= rAp, s24d

and the dimensional permeability can be written in the form

KSn= 2
3rsAp. s25d

If the fracture sizes follow Eq.(1), the total volumetric
areaS is given by

FIG. 1. Percolation thresholds expressed in terms of the densitiesr0c8 sL8d (a), r21c8 sL8d (b), andr3c8 sL8d (c) for regular hexagons versusRm8
in nonperiodic networks withL8=4 anda=1.5 spd, a=2 s+d, a=2.5 s3d, a=2.9 ssd and withL8=6 anda=1.5 s>d; data for square fracture
are also shown forL8=4, a=1.5 shd. Data for periodic networks withL8=4 anda=1.5 sPd are presented for regular hexagons.
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S=E
Rm

RM

ApsRdFsRddR= rE
Rm

RM

ApsRdnsRddR= rkApl.

s26d

where the bracketsk l denote an average over the sizeR.
Equation(23) then yields a generalized form of Eq.(25),

KSn= 2
3rskApl. s27d

Note finally for later use that ifs is not identical for all
the fractures, Eq.(22) can be generalized by assuming that
the contributions of fractures with different conductivities to
the total flow are independent, and by averaging it overs. If
s is correlated with the fracture sizeR, as in Eq.(33), this
yields

KSn= 2
3rksApl, ksApl =E

Rm

RM

ssRdApsRdnsRddR, s28d

which generalizes both Eq.(25) and Eq.(27).
The macroscopic permeability of Eqs.(23), (25), (27),

and (28) relies on the assumptions that there is no flow in-
teraction between the various fractures and that the flow do-
main includes the whole surface area of the fracture system.
For monodisperse fractures, this is true for networks with a
large density[5]. In many other cases, these assumptions are
not verified and the variations ofK with the surface area are
not linear. However, it seems reasonable to use the weighted
fracture surface arearksApl as a natural measure of the mac-
roscopic permeability of a fracture network.

B. Numerical results

As stated above, fracture networks with a constant frac-
ture conductivitys8=1 are analyzed. For the sake of unifor-
mity of the presentation, the notation of fracture conductivity
s is kept in the factorrksApl throughout this section.

Examples of results for monodisperse networks and poly-
disperse networks witha=1.5 anda=2.9 are presented in
Fig. 2. It shows that very different values ofK8 are obtained
for the samer38, which is at least partly due to substantial
differences in the total fracture surface. In order to reduce
this influence, and as suggested by Eq.(28), the results of
this study will be presented henceforth in terms of the nor-
malized permeability

K28 =
K

rksApl
. s29d

The subscript 2 corresponds to the statistical moment ofR
used in the normalization[see Eq.(6)]. Note that in these
terms Snow’s model Eq.(28) is reduced to

K28sSnd = 2
3 , s30d

and it does not depend either on the fracture size distribution
or on the fracture conductivities. A similiar approach has
been used by Hestir and Long[27], who developed percola-
tion and effective medium models for two-dimensional frac-
ture networks and proposed analytical expressions which re-
late the ratio Eq.(29) to a connectivity parameter, namely,

the average number of intersections per fracture.
Let us consider first the results plotted in Fig. 3(a) for

monodisperse networks of regular hexagons, for which
ksApl is reduced to 3Î3ss0RM

2 d /2. Monodisperse fracture
networks were analyzed by Koudinaet al. [5]; the additional
numerical data presented here for such networks include
higher densities which can now be explored due to progress
of the numerical technique and of computing capabilities.
The nonlinear behavior of the macroscopic permeabilityK8
with the fracture density is well observed;K8 asymptotically
approaches the theoretical prediction Eq.(30) only for large
fracture densitiesr8 =r38*20. Close to the percolation
threshold,K28 strongly decreases, although it does not vanish
because of the finite sample size. As discussed in Sec. III, the
probability of percolation is about 1/2 forr38<3 andL8=4.
However, Koudinaet al. [5] showed that the dependence of
K28 on r38 approaches a critical transition as the system sizeL8
increases.

The permeability of polydisperse networks witha=1.5 is
also presented in Fig. 3(a), for variousRm8 , dM, andL8, as a
function of the fracture densityr38. The difference with re-
spect to the monodisperse case is significantly reduced, com-
pared to Fig. 2, thanks to the definition ofK28; it is of the
order of 20% forr38=6 and keeps decreasing for larger den-
sities.

The difference between monodisperse and polydisperse
systems increases near the percolation threshold where the
statistical fluctuations and the finite size effects are impor-
tant. Comparison of numerical results obtained forRm8 =0.1
and 0.01 shows that the influence ofRm8 is not significant,
and that the macroscopic permeability of fracture networks
with the same value ofr38 remains proportional torksApl.
The variations ofK28 with Rm8 for fixed values ofr38=8 and 12
are illustrated further in Fig. 4. One can see that it does not
exceed the interval of statistical fluctuations.

In order to analyze the influence of the small fractures on
flow, all fractures withR8 smaller than someRlim8 ùRm8 have

FIG. 2. PermeabilityK8 for nonperiodic networks of regular
hexagons versusr38 for Rm8 =0.1,L8=4, a=1.5 s3d anda=2.9 ssd.
Each point is the average over 25 realizations; the vertical bars
correspond to the standard deviation of the numerical results. The
thick solid line corresponds to monodisperse fracture networks and
the thick broken line to the Snow equation Eq.(28) for monodis-
perse fracture networks.
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been neutralized for flow in some networks initially gener-
ated withRm8 =0.1, and the macroscopic permeability of the
resulting networks has been calculated. Figure 5 shows the
results of numerical simulations performed forNr =25 real-
izations. The permeabilityK is normalized by the permeabil-
ity K0 of the full network. ForRlim8 up to 0.4, the decrements
of the permeability and of the total fracture surface area(and
therefore of the effectiverksApl) are roughly equal, whereas
the number of fractures drops by about 75%. The effective
densityr38 decreases even less than the surface area, since it
is dominated by the large fractures. In this situation, 25% of
the fractures account for 75% of the volumetric area and of
the permeability.

The stability of the numerical results relative to the grid
discretization has been tested forRm8 =0.01. The macroscopic
permeability calculated by usingdM =1/4 and 1/6 ispre-
sented in Fig. 3(a). One can see thatK is not affected bydM.

The variations of the numerical results due to the bound-
ary conditions applied to the system are also illustrated in
Fig. 5. The permeabilities of monodisperse fracture networks
have been calculated when a macroscopic pressure gradient
Eq. (10) was applied upon the periodic systems of fractures
and have been compared to the data for the nonperiodic sys-
tems obtained with the boundary conditions Eq.(14). One
can see that the difference between the two models is small
for all the values ofr38 explored in the simulations.

The finite size effects have been discussed by Koudinaet
al. [5] for monodisperse networks. In this study, no system-
atic work has been done to explore the influence ofL8 on K.
However, the curve forL8=6 in Fig. 3(a) is notably lower
than the curves forL8=4, since the transition to percolation
becomes sharper as the system size increases.

Let us now consider the influence of the power-law expo-
nenta. The dimensionless permeabilityK28 calculated for the

FIG. 3. Normalized effective permeabilityK28 for nonperiodic
networks of regular hexagons versusr38. Data in(a) are fora=1.5
and Rm8 =0.1, dM =0.25,L8=4 s3d, Rm8 =0.01, dM =0.25,L8=4 spd,
Rm8 =0.01, dM =0.167, L8=4 ssd, and Rm8 =0.1, dM =0.25, L8
=6 sxd. Data in (b) are for L8=4 anddM =0.25 with a=1.5, Rm8
=0.1 s3d, a=2, Rm8 =0.1 s+d, a=2.5, Rm8 =0.1 shd, a=2.5, Rm8
=0.05snd, a=2.9, Rm8 =0.1 s,d, a=2.9, Rm8 =0.05ssd. Data for
monodisperse fracture networks withdM =0.25 andL8=4 are given
by the thick solid line for for nonperiodic systems and by(h) for
periodic networks. The thick broken line is the Snow equation Eq.
(30).

FIG. 4. Normalized permeabilityK28 for nonperiodic networks
of regular hexagons versusRm8 for r38=8 ssd, and 12(p). Data are
for L8=4 anda=1.5. Error bars represent the standard deviations
corresponding to statistical fluctuations.

FIG. 5. Relative variations of the permeabilityK8 s3d, total
fracture surfaceST ssd, number of fracturesNfr shd, and effective
densityr38 snd for nonperiodic networks of regular hexagons with
r38=5.75,Rm8 =0.1,a=1.5 where all fractures withR8,Rlim8 are neu-
tralized for flow.
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networks witha=1.5, 2, 2.5, and 2.9 is displayed in Fig.
3(b). For large fracture network densitiesr38.4 and a con-
stant cutoffRm8 =0.1,K28 is nearly insensitive toa, with varia-
tions within about 10%. For lower densities, the transition to
zero permeability is sharper for the larger exponentsa=2.5
and 2.9 than for the smaller onesa=1.5 and 2. This is be-
cause the largera, the more small fractures contribute to the
network connectivity and permeability; thereby, the effective
size of the system increases and the finite size effects are
reduced. Accordingly, the smoothest decay ofK28 is observed
for the monodisperse networks. For largea, a residual influ-
ence of Rm8 on K28 is observed in Fig. 3(b). The network
permeability is slightly smaller forRm8 =0.05 than in the case
Rm8 =0.1.

The efficiency of the combination Eq.(29) for the gath-
ering of the results for different polydisperse fracture net-
works is summarized in Fig. 6. The normalized permeability
K28 is presented as a function ofa for the same valuer38=8; it
slightly decreases from 0.2324 to 0.2025 with increasinga,
but remains within 20% of the valueK28=0.2556 derived for
the monodisperse networks with the samer38. For such dense
networks, the variations ofRm8 andL8 have little influence on
K28 in the range ofa used in the simulations.

Finally, numerical data obtained for networks of polygons
of various shapes, namely, squares, hexagons, and 20-gons,
are shown in Fig. 7. The macroscopic permeabilityK of
these systems for the same fracture number densityr
strongly depends on the fracture shape. However, the com-
bined use of the normalized permeabilityK28 and of the di-
mensionless densityr38 allows again to gather all the data
obtained for the various shapes.

In summary, the macroscopic permeability of polydis-
perse fracture networks with intermediate and large densities
can be written as

K = rksAplK28sr38d. s31d

The termrksApl represents the volumetric area of fractures,
weighted by the individual fracture conductivities, and the
dimensionless functionK28sr38d accounts for the network con-

nectivity and incorporates the influences of the fracture shape
and of the fracture size distribution. Unsurprisingly, it is a
function of the same quantityr38 that controls the network
percolation. This model is a direct extension of the corre-
sponding result of Koudinaet al. [5] about monodisperse
fracture networks.

It should be noted that, given the fracture shape andRM,
rkApl is unequivocally related tor38 when the exponenta is
in the range 1,a,3 andRm8 !1, since both momentskR2l
and kR3l are then insensitive toRm, and the model Eq.(31)
actually depends on a single parameter. However, this is not
true whenRm8 is not vanishingly small or whena.3. The
two terms in Eq.(31) are then a natural and convenient way
to account for the independent effects of the exponent and of
the lower cutoff of the fracture size distribution.

Most calculations in this work have been conducted for
a,3, and the model proves successful in this range even for
nonvanishingRm. As illustrated in Figs. 3, 4, 6, and 7, all the
data for 0.01øRm8 ø1, 1.5øaø2.9, and various fracture

FIG. 6. PermeabilityK28 for nonperiodic networks of regular
hexagons versusa for r38=8. Data are forL8=4 with Rm8 =0.1 ssd,
0.05(,), or 0.01(n), andL8=6 with Rm8 =0.1 sPd. The thick solid
line corresponds to the monodisperse fracture networks, and the
thick broken line is the Snow Eq.(30).

FIG. 7. PermeabilityK8 versusr (a) and normalized effective
permeabilityK28 versusr38 (b) for nonperiodic networks of regular
polygons of various shapes forL8=4, a=2.5, andRm8 =0.1. Data are
for squares(s), hexagons(P), and 20-gonsspd. The thick broken
line is the Snow Eq.(30).
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shapes are represented by Eq.(31) within at most 20%, as
soon asL /RM ù4 andr38ù4. Exponents larger than 3 have
not been systematically investigated but one case withRm8
=0.1 andr38=8 is considered in Fig. 6;K28 does not vary
whena is increased up to 3.7, which means that these data
are indeed accurately represented by Eq.(31). It may seem
disturbing that in the range 3,a,4 the permeability results
from the product of a term controlled by the smallest frac-
tures, throughkR2l, and a term controlled by the largest ones,
through kR3l, but it should be remembered that Eq.(31) is
proposed for moderate or large densities, i.e., for well con-
nected networks.

For smaller densities, significant size effects are observed
for the sample sizes that have been used in this study, which
have not been systematically investigated. Still, we can for-
mulate the general statement that these size effects decrease
when the exponenta increases, because the role played by
small fractures becomes more important.

Finally, whena.4, both momentskR2l andkR3l, i.e., the
volumetric surface area and the network connectivity, are
controlled byRm, and large fractures are uncommon. Hence,
although such networks have not been considered at all in
this work and we do not have numerical data to support it,
we can conjecture that they behave essentially like monodis-
perse networks of fractures with sizeRm, and therefore that
the model Eq.(31) is still applicable. A similar statement is
possible fora,1, since small fractures are then not numer-
ous enough to play a significant role. Therefore, if this was
verified, Eq.(31) would be a quite general and useful result
which would provide a reasonable estimate of the network
permeability for any range and exponent of the fracture size
distribution.

V. VARIABLE FRACTURE CONDUCTIVITIES

It has been shown in the previous section that the macro-
scopic permeability of the polydisperse fracture networks
with constant conductivity is proportional to the fracture sur-
face density. An extension of this result to the case of vari-
able fracture conductivity is discussed in this section.

A. Polydisperse networks

In natural fracture systems, geometrical apertures may
vary over a wide range. These variations influence the frac-
ture conductivity distribution as can be seen in the classical
cubic law Eq.(15).

Fracture lateral sizes and apertures are in many cases
positively correlated. When both characteristics follow
power-law distributions, a scaling relationship can be tenta-
tively written as

b = FRk. s32d

From the existing data in the literature, one can find that the
scaling exponentk varies between 0.5 and 2[28–32].

In order to obtain the distribution of fracture conductivi-
ties, it is assumed in this study that the fracture hydraulic
conductivitys is related to its mean geometrical apertureb
via Eq. (15). In many cases, this relation is not exactly sat-

isfied for rough walled fractures, but it can be used for a first
estimate of a fracture hydraulic aperture.

The scaling relationship Eq.(32) and the cubic law Eq.
(15) imply

s8 = R8b, s33d

whereb=3k, with a possible range of variation 1.5,b,6.
The value of the exponentb (or k) may depend on the physi-
cal origin of the fracture system as well as on its history
[33–36]. However, any detailed discussion of this question is
beyond the scope of this study, and the model Eq.(33) is
used here in a straightforward manner withb=1.5, 3, and 6.

Note that the case of a variable conductivity along the
fracture surface has not been addressed in the present study.

Figure 8(a) shows the numerical results obtained for frac-
ture networks witha=1.5 and various exponentsb. The
macroscopic permeabilityK8 of polydisperse networks is
substantially influenced by the value of the exponentb.
However, the results are nicely gathered when the ratio Eq.
(29) is used with the weighted fracture surface density
rksApl. Whenb varies from 0 to 3,K28 remains very close to
the data obtained for identical fracture conductivities. A sub-
stantial departure from this case is observed forb=6. Note
that K28 starts increasing withb, and then decreases. These
results can be explained by the fact that fora=1.5 the net-
work percolation is mainly due to large fractures. If the frac-
ture conductivities are correlated with their sizes, a gradual
increase ofb from 0 to moderate values “switches off” small
fractures which do not contribute significantly to the overall
flow. Whenb is increased further, larger and larger fractures
are progressively neutralized, and the macroscopic perme-
ability decreases. Note that this tendency is partly hidden by
the fact that the macroscopic permeability is normalized by
the factor ofrksApl which decreases with increasingb.

The numerical data for the networks with the exponent
a=2.9 are presented in Fig. 8(b). The influence ofb is much
more pronounced when compared to Fig. 8(a) with a=1.5;
this influence cannot be reduced by the use ofK28. It is inter-
esting to note that for small fracture densities the numerical
data for variousb are close to one another. In this range of
densities, the large fractures are rare events and the network
is composed mostly by small fractures which have similar
sizes, and a variation of fracture conductivities results in a
uniform global increase or reduction of fluid velocities, with-
out flow redistribution. For large densities, some large frac-
tures provide connections between various parts of the sys-
tem and ensure the total flow rate even when small fractures
are “switched off.”

However, bothK and rksApl are affected by the varia-
tions of fracture conductivities, and their dependence onb is
not the same, so the combinationK28 slightly increases at first
with b and then decreases gradually. Figure 9 shows the
normalized permeabilityK28 as a function ofb for a=1.5 and
2.9 whenr38 is kept constant. A nonmonotonic behavior ofK28
with b is well observed; it is more pronounced fora=2.9.

We may conclude from these results that Eq.(31) is also
successful in representing the permeability of polydisperse
fracture networks with correlated individual fracture size and

MACROSCOPIC PERMEABILITY OF THREE-… PHYSICAL REVIEW E 69, 066307(2004)

066307-9



conductivity, whenbø3, and at least in the investigated
range of the exponenta, thanks to the use of the statistical
moment ksApl. Note that b=3 already corresponds to a
fairly wide range ofs8, from 10−3 to 1 if Rm8 =0.1. However,
the very steep dependence ofs on R with b=6 does not fit in
this model. Finally, the case of size-dependent fracture con-
ductivities with scaling exponentsa larger than 3 has not
been investigated.

B. Comparison with monodisperse networks

In this section we compare the macroscopic permeabili-
ties of polydisperse networks with fracture conductivities
distributed according to Eq.(33) to those of monodisperse

fracture systems with fracture conductivities following the
power-law distribution

nss8d =
z − 1

smin81−z − 1
s8−z, s34d

where the normalization constant is chosen so thatsmax8 =1.
This might be of practical interest, first because the treatment
of the latter situation is numerically much less demanding
and also because some field acquisition techniques such as
line surveys can provide area-weighted fracture aperture dis-
tributions, but no information regarding the fracture size dis-
tribution [37].

In order to set a common basis for the comparison, the
value ofsmin8 in this simulation is set to the valueRm8

b used in
the previous one. The area-weighted fracture conductivity
distributions should also be the same in both systems. This is
true when

z =
a − 3

b
+ 1 s35d

Then the surface-weighted mean fracture conductivity is
equal in both models:

ks8l* =
ks8Ap8l

kAp8l
=

sa − 3dsRm8
b+3−a − 1d

sa − 3 −bdsRm8
3−a − 1d

. s36d

The macroscopic permeabilityK28 is compared for both
systems for the same value of the fracture densityr38; this
means that the total fracture surface is not the same in the
monodisperse and polydisperse networks.

Figure 8(a) presents the results for polydisperse networks
with a=1.5 and for monodisperse networks with varying
fracture conductivity. Forb=1.5 which corresponds tosmin8
=0.032, the predictions of the macroscopic permeability by
both models are close enough, while forb=6, smin8 =10−6

they differ significantly.
The simulation data fora=2.9 are shown in Fig. 8(b). It

can be seen that forb=1.5, smin8 =0.032, the prediction is

FIG. 8. Normalized effective permeabilityK28 for nonperiodic
networks of regular hexagons versus local conductivity versusr38
for L8=4, Rm8 =0.1,a=1.5 (a) or a=2.9 (b). Data are forb=0 s3d,
1.5 (p), 3 (¹), and 6(1). Broken and dashed-dotted lines are for
monodisperse systems with verying local conductivity, model Eqs.
(34) and (35), for smin8 =0.032,z=0, (a) or z=0.9333(b) andsmin8
=10−6, z=0.75(a) or z=0.9833(b), respectively. Data for monodis-
perse fracture networks are given by the thick solid line. The thick
broken line is the Snow Eq.(30).

FIG. 9. Normalized permeabilityK28 for nonperiodic networks
of regular hexagons versusb. Data are for3 sa=1.5, L8=4, Rm8
=0.1, r38=16d; s sa=2.9, L8=4, Rm8 =0.1, r38=10d. The thick
solid and dotted-dashed lines correspond to monodisperse fracture
networks forr38=16 andr38=10, respectively. The thick broken line
is the Snow Eq.(30).
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fairly good, while for b=6, smin8 =10−6, the monodisperse
networks significantly underestimate the permeability.

Hence, the monodisperse fracture network model with
variable conductivity is shown to mimic the behavior of
polydisperse systems if they have the same fracture conduc-
tivity distributions in surface and for small values ofb only.
It should be noted that for small fracture densities, the model
Eqs. (34) and (35) gives reasonable predictions, even when
b=6, but the difference increases with increasingr38.

VI. DISCUSSION AND CONCLUSIONS

Numerical simulations of steady flow in fracture networks
with a power-law distribution of fracture sizes show that the
hydraulic behavior of such networks varies substantially with
the contrast between minimal and maximal fractures radii as
well as with the exponenta. However, a unified description
of the macroscopic permeabilityK of polydisperse networks
can be proposed as

K = rksAplK28sr38d. s37d

This model involves two factors. The extensive termrksApl
is a measure of the network density, weighted by the indi-
vidual fracture conductivities. The dimensionless functionK28
is fairly universal, and the influence of the fracture shape and
of the parameterssa,Rm8 d of their size distribution are incor-
porated in the dimensionless densityr38. It was shown in Sec.
IV B that this relation is valid for alla in the range
1.5,a,3 and does not vary withRm8 and the fracture shape.
It was also conjectured that it is applicable for any value of
the exponenta.

In the case of varying fracture conductivitys, Eq. (37)
holds foraø3 and for moderate contrasts betweensmin and
smax, which corresponds to small or moderate values of the
exponentb in the scaling relation Eq.(33). It breaks down,
however, whenb increases up to 6, and exponentsa larger
than 3 have not been investigated with varying fracture con-
ductivities.

Near the percolation threshold,K28 approaches zero with
fluctuations due to finite size effects, whose amplitude de-
pends ona and on the contrast of fracture sizes in the net-
work. For large densities,K28 slowly tends to the value 2/3
predicted by Snow’s model Eq.(30), although it is always
smaller than this prediction for finite densities; the same phe-
nomenon was observed for monodispersed networks[5].
This is partly due to the fact that not all the fractures con-
tribute to the flow, especially for low fracture density, but
also to nonuniformity of the flux distribution among the frac-
tures as well as to the flow interactions between them, since
both factors violate the assumptions leading to Eq.(28).

In view of the universality of Eq.(31), and of its high
practical interest, it may be desirable to model it by an ana-
lytical formula, which could be easier to use than the tabu-
lated data in Fig. 3(b) or Fig. 8(a). Two such models are
proposed here.

An approximate expression for the permeabilityK28 can be
proposed for large fracture densities by using a numerical fit.
The effective medium model developed by Hestir and Long
[27] for two-dimensional networks shows that the ratio

1/s1−K /KSnd increases linearly with increasingr38 when r38
tends to infinity. A least squares fit of all the numerical data
for three-dimensional polydisperse networks withRm8 =0.1,
b=0, a=1.5 to 2.9, the largest sample size available(L8
=4, except fora=1.5, with L8=6), andr38ù2.5 yields

K28 <
2

3
F1 −

1

C1sr38 + C2dG, C1 = 0.10, C2 = 6.6. s38d

This two-parameter fit is shown in Fig. 10 in comparison
with the numerical results. A good agreement is observed
with the data forb=0, for densitiesr38ù3.5. Concordance is
also good with the data forb=1.5 (a=1.5 and 2.9) and for
b=3 sa=1.5d, which were not used in the determination of
the coefficients of the least squares fit. Only the most ex-
treme cases witha=2.9 andb=3 or with b=6 deviate sig-
nificantly from Eq.(38).

The second model is a generalization of a result of Kou-
dinaet al. [5] Close to the percolation threshold, the conduc-
tivity of a site or bond lattice is known to vanish according to
a power law[24]. In continuum percolation, a similar scaling
law is expected,

K ~ sr38 − rc8d
t. s39d

The exponentt=2.0 is generally accepted for lattice perco-
lation in three dimensions. However, in continuum percola-
tion this exponent may depend upon the geometrical model.
Koudinaet al. [5] analyzed monodisperse fracture networks
and showed by considering large samples very close to the
critical density that the power law Eq.(39) is well satisfied
with an exponent close to the usual lattice value.

Furthermore, Koudinaet al. [5] showed that a similar
power law with an exponent 1.57 describes fairly accurately
the network permeability in a wide range 3.5ør38ø16. They

FIG. 10. Normalized effective permeabilityK28 for nonperiodic
networks of regular hexagons versusr38−rc8 for rc8=2.31. Black dots
(P) correspond to the numerical data forb=0 with a=1.5, 2.0, 2.5,
or 2.9,b=1.5 witha=1.5 or 2.9, andb=3 with a=1.5. Other sym-
bols are for b=3 and a=2.9 s,d, b=6 and a=1.5 ssd or a
=2.9 shd. In all cases,Rm8 =0.1 andL8=4, except fora=1.5, b=0
with L8=6. Data for periodic monodisperse fracture networks are
given by the thick solid line. The thick broken line is the Snow Eq.
(30). The thin solid line is Eq.(42). The thin broken line is the
prediction of Eq.(38).
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conjectured that this dependence is merely a transition be-
tween the critical power law near the percolation threshold
and the linear growth Eq.(28).

Since such a relation is of interest for practical purposes,
the same kind of fit was attempted for polydisperse net-
works. We used as the critical density for finite polydisperse
networks the valuer3c8 =rc8=2.31, which is a slight improve-
ment on the estimate of the percolation threshold for mono-
disperse systems of hexagons derived by[4]; it is extrapo-
lated for L8=` via the finite size scaling method Eq.(17),
based on data forL8 up to 20 instead of 8 in[4]. The notation
t in Eq. (39), which is reserved traditionally for the critical
exponent near the percolation threshold, is kept regardless of
the fact that it will be derived from the data obtained with
larger network densities.

Substituting Eq.(6c) in Eq. (37), the permeabilityK can
be written in the form

K =
ksApl
vexkR3l

Fsr38d, F = r38K28. s40d

Writing the scaling law Eq.(39) as

F = C3sr38 − rc8d
t s41d

and fitting the same permeability data set as for Eq.(38) in
the ranger38−rc8.1.5, yieldsC3=0.101 andt=1.63. Hence,
the resulting model reads

K28 =
C3

r38
sr38 − rc8d

t, C3 = 0.10, t = 1.6. s42d

It is shown in Fig. 10, and the agreement between the pre-
dictions and the numerical data is good in the range
0.4,r38−rc8,10. There is a wide interval ofr38 where the
predictions of both models Eqs.(38) and(42) are very close
to one another. However, for large fracture densities, where a
constant K28 is expected , the latter model predictsK28
~ sr38d

t−1, which imposes a limit for the applicability of Eq.
(42).

Just like the first model Eq.(38), Eq. (42) is also success-
ful in representing the numerical data for networks with vari-
able individual fracture conductivities, except for the most
extreme cases withsa=2.9,b=3d or with b=6.

Figure 11 shows in more detail the macroscopic perme-
ability in a few cases.K8, instead ofK28, is plotted versus
r38−rc8 in order to make the power law apparent. Thus, the
data do not all fall on a single curve since they are not nor-
malized by the volumetric surface area, but they are arranged
along straight lines over nearly a decade in this log-log plot.

The exponentst estimated from these data by least
squares fits in some of these cases are given in Table I. Since
the power laws are fitted over slightly less than a decade, and
because of the statistical noise, the estimations oft are some-
times imprecise. Nevertheless, the correlation coefficientr,
which quantifies the quality of the fit, is always close to 1.

The error bars fort are 95% confidence intervals for the
values of the exponent, resulting from the statistical fluctua-
tions of the individual data.

The first three lines of Table I, for polydisperse networks
with b=0 or 3, give very similar results, and exponents con-
sistent with the global fit Eq.(42), as well as with the value
of t obtained by Koudinaet al. (5) in monodisperse samples
with L8 up to 10. In contrast, the exponent obtained here for
monodisperse networks is abnormally low, because of the
small sample sizeL8=4. The polydisperse networks, which
contain only a few large fractures, are less sensitive to this
finite size effect. Finally, and as already noted in Fig. 10, the
results for polydisperse networks with varying fracture con-
ductivities withb=6, especially whena is also large, do not
fit in the same pattern as the others. However, the simulation
results are too influenced by finite size effects to conclude
whether or not this is due to a transition to another univer-
sality class.

TABLE I. Exponentt of the power law Eq.(42), with its 95%
confidence interval, and associated correlation coefficientr, ob-
tained by least squares fits of the data in Fig. 11 forr38−rc8ù1.5.

a b L8 t r

1.5 0 6 1.62±0.06 0.9990

2.9 0 4 1.66±0.08 0.9993

1.5 3 4 1.58±0.16 0.997

1.5 6 4 1.77±0.16 0.9998

2.9 6 4 2.4±0.4 0.998

Monodisperse 4 1.38±0.07 0.9999

Monodisperse[5] 4,10 1.57 0.9994

Global, Eqs.(40)–(42) 4,6 1.63±0.03 0.997

FIG. 11. PermeabilityK8 for nonperiodic networks of regular
hexagons versusr38−rc8 for rc8=2.31. The symbols correspond to
a=1.5, b=0 snd; a=1.5, b=0, L8=6 s,d; a=2.9, b=0 s3d; a
=1.5,b=3 s.d; a=1.5,b=6 ssd; a=2.9,b=0 shd; the thick solid
line corresponds to monodisperse fracture networks;Rm8 =0.1 and
L8=4 in all cases unless otherwise stated. The dotted line shows the
slopet=1.63 corresponding to Eq.(42).
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In summary, the two analytical formulas Eqs.(38) and
(42) are equally successful in representing all the numerical
data for intermediate and large network densities, except for
very large conductivity exponentsb, and together with the
expression Eq.(37) they provide a general, simple, and fairly
accurate estimate of the permeability of polydisperse fracture
networks.
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