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Macroscopic permeability of three-dimensional fracture networks with power-law size distribution
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1 .CD-CNRS, SP2MI, Boite Postale 179, 86960 Futuroscope Cedex, France
2|PGP, tour 24, 4 Place Jussieu, 75252 Paris Cedex 05, France
(Received 10 October 2003; published 14 June 2004

Fracture network permeability is investigated numerically by using a three-dimensional model of plane
polygons uniformly distributed in space with sizes following a power-law distribution. Each network is trian-
gulated via an advancing front technique, and the flow equations are solved in order to obtain detailed pressure
and velocity fields. The macroscopic permeability is determined on a scale which significantly exceeds the size
of the largest fractures. The influence of the parameters of the fracture size distribution—the power-law
exponent and the minimal fracture radius—on the macroscopic permeability is analyzed. Eventually, a general
expression is proposed, which is the product of a dimensional measure of the network density, weighted by the
individual fracture conductivities, and of a fairly universal function of a dimensionless network density, which
accounts for the influences of the fracture shapes and of the parameters of their size distribution. Two analytical
formulas are proposed which successfully fit the numerical data over a wide range of network densities.
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I. INTRODUCTION greater than when aperture and lengths are uncorrelated or

Fractures and fracture networks determine the permeabilyNen apertures arle identica(lj. N hereial
ity of many natural rocks, and their behavior has drawn at- D€ Dreuzyet al. [17] (anl the relierer!cr?s thergialso
tention in various fields; different aspects of this problem aretonsidered two-dimensional networks with various proper-

discussed by, e.g., Sahiffii], Adler and Thoverf2], and the ~ tes of the individual fractures. i
National Research CoundiB]. In the present study, the fracture network permeability is

In our previous contributions, the geometrical propertiesconsidered numerically by using a three-dimensional model
[4], the absolute permeability of fracture netwofk$ and of of plape polygons uqurmly d|'str|buted In Space W't.h SIzes
fractured porous medigs], as well as their relative perme- olowing a power-law distribution. The domain size is sup-
abilities [7] have been determined for monodisperse frac__posed to significantly exceed the size of the largest fractures

tures. It has been shown that the excluded volume introduce the networks. The presentation is organized as follows. In
’ ec. Il, the geometrical model of polydisperse fracture net-

by Balberg et'al. [8] plays.a crucial role; a @mensmnle;s works is described together with the flow equations; the nu-
fracture densityps was defined and the previous properties merical approach is briefly discussed. Each network is trian-
depend only orps whatever the shape of the fractures. gulated via an advancing front technique; the flow equations
However, it has been known for a long time that realare discretized on this mesh and solved in order to obtain the
fracture networks are polydisper§6-13. Therefore, the pressure and velocity fields. The macroscopic flow is related
main objective of this paper is to extend the results of Kouty an effective permeability to the pressure gradient imposed
dinaet al. [5] to three-dimensional fracture networks with a on the system; this permeability is averaged over a number
power-law size distribution. of independent statistical realizations of fracture networks
To the best of our knowledgesee the recent review of with the same properties. Percolation properties of polydis-
Berkowitz [14]), there is no such previous study on three-perse fracture networks are presented in Sec. Ill. In Sec. IV,
dimensional permeability. the influence of the parameters of the fracture size
Renshaw{15] discussed the applicability of different ef- distribution—the power-law exponerg and the minimal
fective medium models to the prediction of the macroscopidracture radius—on the macroscopic permeability is ana-
permeability of fractured networks. He demonstrated thatyzed for fractures with identical conductivities. The results
these models fail for the range of fracture spatial densitiesire systematically presented in terms of the ratio of the net-
observed on superficial exposures of joint networks. He studwork permeability to the fracture surface density and of the
ied numerically the permeability of two-dimensional power-third moment of the fracture size distribution. For variable
law networks of orthogonal fractures and used a fracturdracture conductivities, which are addressed in Sec. V, two
density parameter based on the second moment of the lengthodels are considered—polydisperse networks with fracture
distribution; he proposed a normalized permeability in orderconductivities scaling with the fracture size, and monodis-
to gather all the numerical results. perse systems with conductivities distributed according to a
A numerical study of the flow in two-dimensional fracture power law. Some concluding remarks in Sec. VI complete
networks has been performed by Odlifig]. Special atten- this paper.
tion was paid to the influence of the correlation between The main findings can be summarized by the general ex-
fracture lengths and conductivities on the macroscopic perpression Eq(37) for the macroscopic permeability, together
meability; she found that correlated fracture apertures anwith the models Eq9.38) and(42) for the universal function
lengths induce global permeabilities an order of magnitudef the dimensionless network density defined in Egxp).
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Il. GENERAL up of fractures with identical shapes but different sizes, it is
Consider three-dimensional networks made of fracturefhoen \é?g:jeuncttto express the excluded voluingin Eq. (4) as
that are disks or regular polygons circumscribed by disks o
radius R. According to various observations of fractured Vey= Ve, (5)
rocks ([2] and the references herginmany real probability
densities of fracture sizes follow a power law such as wherev.is a dimensionless shape factor, equal, for instance,
to 2 for disks, 9/3/2 for hexagons, andy2 for squares. It
n(R)=aR™? (1) was the introduction of this shape factor in the dengityhat

allowed unification of the description of the percolation and
wheren(R)dR is the number of fractures with radius in the transport properties of monodisperse networks of fractures
range[R,R+dR], a is a coefficient, andh a scaling expo- with various shapes. Therefore, this feature is kept in the
nent. In practiceR varies in a large interval of values which definitions of the three dimensionless densities that are used
can span five orders of magnitude, but it is limited by thein the following:
sizeR,, of the largest fractures in the system and by the size
R,, of the microcracks. Moreover, the normalization condi- p(’):pvexRﬁ,,, (6a)
tion implies thata satisfies
Aol p21= PUefREXR), (6b)
= e o 2
R~ Ru p3= pueR®), (6¢)
According to a recent synthesis of the real distribution of o
fracture trace lengths in a plane intersecting a threewhere the brackets) denote statistical moments d®
dimensional fracture network, the corresponding exponent€ighted byn(R). The subscripts are reminders of the statis-
ayp varies between 0.8 and 3.5 with a maximum occurrencéical moments involved in each definition. The first gie,
around 2.0[18]. Piggott[19] argued via an analytical devel- iS the simplest definition, based on the single length scale
opment that the exponengspy and a are related bya=a,p Ru, but it cannot be expected to capture the scaling character
+1; a similar observation in numerical simulations has beer®f the network. The second one is the generalizatiosr br
presented by Berkowitz and AdIg20]. Thus, it is reasonable monodisperse networks, since it can be shown that it is still
to expect that varies between 1.8 and 4.5 with a maximum equal to the mean number of intersections per fradi2yelt

likelihood around 3.0. is therefore a suitable candidate, but it turns out that this
The volumetric densitfF(R) is defined as the number of measure of the local connectivity does not control the global
fractures of sizeR in a unit volume network percolation and that the last opgis much more
successful in this respect, as was established e§2lie:23.
F(R) = pn(R) (3) The generation and analysis of the percolation properties

of fracture networks are similar to those presented by
where the total fracture number per unit volumei#A more  Husebyet al. [4]. The fractures are embedded in the unit
intrinsic measure of the density can be devised by combiningubic cell of sizel; Ny, =pL? is the number of fractures in the
p with the excluded volum¥,, introduced by Balbergt al.  unit cell. The centers of the fractures are uniformly distrib-
[8]; Ve is defined as the surrounding volume into which theuted in space, and their normal vectors are uniformly distrib-
center of another object may not enter if overlap is to beuted on the unit sphere.
avoided. For anisotropic objects such as polygonhs,de- In this study, only large unit cells= 4Ry, are considered.
pends on their mutual orientation, and it has to be average@ihis means that. is a natural homogenization scale over
over all possible orientations. For a wide class of objectgvhich the macroscopic permeability of a fracture network
including randomly oriented disks or convex polygons, ancan be defined. Any scaling behavior of hydraulic properties

exact expression fov,, was given by Husebgt al. [4]: of fracture systems which can arise whenvaries in the
rangelL <4Ry, is beyond the scope of the current analysis.
Vex=ApPy/2 (4) Two types of fracture systems were used in the calcula-

tions depending on the boundary conditions. First, nonperi-

where A, and P, are the polygon area and perimeter. Forodic networks were tested, so that percolation requires that a
disks with radiusR, Eq. (4) givesV,,=m°R3 [21]. connected cluster joins opposite faces of the unit cell along,

For monodisperse fracture networks, the dimensionlessay, thex direction; in this case, fracture centers were gen-
density p’ =pV,,, Which is the number of fractures per ex- erated within the unit cell as well as outside it, provided that
cluded volumeV,,, has been shown to characterize well thethe corresponding fractures intersect at least one of the six
network connectivity of fractures of various shapes; a uniqudaces of the cell. Second, spatially periodic networks were
percolation threshold was obtained @s=2.26+0.04[4]. generated; all fracture centers lie in the interior of the unit

It should be noted that’ is a direct measure of the net- cell 7,; then, percolation is ensured if a connected cluster
work connectivity, since it is exactly equal to the mean num-contains two homologous fractures, i.e., two fractures with
ber of intersections of a fracture with others in the network.the same coordinates, modulo the periodlong the corre-
For the networks under consideration here, which are madgponding direction.

066307-2



MACROSCOPIC PERMEABILITY OF THREE-. PHYSICAL REVIEW E 69, 066307(2004)

The three length scales define the two dimensionless ra- Such periodic conditions have been applied in a few

tios cases, but, unless otherwise stated, most calculations in the
following have been conducted for nonperiodic systems of
Rn L @) fractures; prescribed pressures were then applied over some
Ru Ry’ inlet and outlet plane®; and P,

which together witha determine the connectivity and perco-
lation properties of the fracture networks. In order to elimi-
nate the influence of the lower cutd®,, R,/Ry is kept as
small as possible.

At a local scale characterized by a typical apertoréhe A no-flux condition is applied over the other panes bounding
flow of a Newtonian fluid within a fracture is governed by the unit cell. The flow calculations are successively per-
the Stokes equation. lf is assumed to be much smaller than formed along the three different directions, and the macro-
the typical lateral extentR of the fracture, flow at a scale scopic permeability of the network is derived from E¢fkl)
that is intermediate betwedm and R is governed by the and(12). In this caseK is not a tensor, but for isotropic
Darcy equation networks its statistical average is still expected to be spheri-

cal.
In this paperg is taken to be constant over each fracture.
(8) ; o ,
Because of the classical Poiseuille law, the typical conduc-
tivity oq of a fracture is expected to be of the order of

b3
_1_2.

p=-(¥p),L along?,,,

p=0 alongP,,, a=Xy,z. (19

1 —
q=-—oVp
M

where q is the locally averaged flow rate per unit width
[L?T™Y], u the fluid viscosity,Vp the pressure gradient, and
o [L®] the fracture conductivity coefficient. The mass con-
servation equation becomes

This value, together witlR,, and a reference pressusg are
(9) used to recast the equations in a dimensionless form. The

dimensionless parametefwith primeg are defined by
where V4 is the two-dimensional gradient operator in the

V.-q=0

mean fracture plane. — - 1. _ 90 ,
Two types of boundary conditions can be applied to this P=Pop’, ¥ RMV v MRf,lV ’
network. For periodic systems of fractures, a macroscopic
pressure gradierfp is applied upon the unbounded medium ooPo _, 90,
made of the periodic juxtaposition of identical unit cetis a= R, 7= 07" K= R_MK : (16)

along the three directions of space. The fluid flow is de-
scribed by Egs(8) and(9), together with periodic conditions

for the local velocityv, g, andVp; Vp can be expressed as Rn=RuRw, L=Rul", R=RyR’.

Other choices are of course possible for the units, but since

V=p: 1 pds. (10) Egs. (8) and (9) are linear, the results would not be essen-
704 oy tially different. For instance, the velocity unit could be
ooPo/ uRyb, which yields a dimensionless interstitial veloc-
The seepage velocity can be evaluated as ity of order 1, whereas the definition in E¢L6) yields a
seepage velocitys of order 1.
_:1 vd¢=if ds (11) All the following developments use this dimensionless
70J 7 To qu ’ formulation; our results will be presented in terms of the

dimensionless scalar permeabilky.
wherer; is the interstitial volume of the fractures aBgtheir A numerical method applied to solve the flow problem
projection on their mean planes. The flux is related to thevas described by Koudinet al. [5]. First, the fracture net-
pressure gradient by Darcy’s laj&] work is discretized; an unstructured triangulation of the frac-
tures is obtained by using an advancing front technique.
— 1 - Since the triangular mesh is made to coincide with the frac-
- ;K vp. (120 ture intersection lines, which are randomly located, it gener-
ally contains triangles of various sizes and shapes. The mesh
K is the permeability tensdt.?], to be determined from Eqgs. is characterized by the prescribed maximum edge lefgth
(11) and(12) once the problem of Eq$8) and(9) has been Which is set equal t&/4 in most cases. Hence, an hexago-
solved. Since all the networks considered here are isotropilal fracture withR=Ry, contains at least 61 nodes and 96
K is a spherical tensor when averaged over many realizegquilateral triangles, in the unlikely case when it intercepts

tions,

K =KI. (13)

no other fracture, and more typically about 100 nodes and
140 scalene triangles when the mesh is constrained by inter-
section lines. Small fractures witR of the order oféy or
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smaller contain at least four triangles. Let us give an examplsimulations performed in this study on the three-dimensional
of the mesh sizes used in this study; a network waitf2.5,  percolation in power law fracture systems showed that this is
R,=0.1, L'=4, and p3=12 contains approximately 4000 indeed true in the range’ >1, as confirmed by the follow-

fractures with 100 000 triangles and 50 000 nodes. ing analysis of the dependence of various percolation param-

The pressur is determined at each point of the triangu- eters on the lower cutoff length.
lar mesh. The unknown pressures are determined by solving Figure 1 shows the percolation threshold as a function of
the linear algebraic equations derived by the finite volumeR/,. Three different definitions of the critical fracture network
technique. density are considered, namely, the threshojgs(L’),

For each set of model parameters, the flow simulationg/, (L"), andps.(L’) associated with the three dimensionless
have been performed a4, =25 realizations of fracture net- densities in Eq(6), and they give rise to very different trends
works. Unless otherwise stated, the macroscopic permeabiliyhich can be rationalized as follows.
ties given in the following are always averages over thése WhenR,, and p; are kept constant arfg,, decreases, the
realizations and over the three directiony, andz. Nonper-  same number of fractures is spread over a wider range of
colating networks with zero macroscopic permeability aresizes, and large fractures are replaced by smaller ones. For

also taken into account in the statistical averaging. instance, if follows from Eqs(1)—~(3) that the density of the
largest fractures decreases as
lll. PERCOLATION PROPERTIES F(Ry) ~ R (19)
M .

OF FRACTURE NETWORKS

These properties were derived by using the same ap-l_"hls is obviously unfavorable for percolation and therefore

proach as Husebst al. [4]. For given values op, L', anda po. has to increase wheR,, decreases, as observed in Fig.

- , . : 1(a).
the probabilityII(L",a,py) of having a percolating cluster , ;o . .
which spans the cell in the direction is derived fromN, If instead p5,, i.e., the mean number of intersections per

o . fracture, is kept constant amR}, decreases, it implies that the
realizations of the system; then, the vajfg(L’) for which P ek P

=05 i d I he val . d number of large fracturegwith many intersectionsin-
11=0.5 Is estimated. In all tests, the valtig=500 Is used. creases, in order to compensate for the larger number of
In the limit of smallRy/L and at fixedR,, the fracture

small fractures with less than the average intersections. Spe-

networks are expected to follow the standard percolatiorg:iﬁca"y
theory with the percolation threshopg,.() [24]: ’
1\ F(Rw) =Ry 1<a<2, (203
poc(L") = poc(®) (L—) : (17)

F(Ry) xR, 2<a<3, (20b)
where v is the critical exponent. In our estimations of

poc(L’), the data forII(L’,a,p;) were fitted with a two- F(Ry) = R§‘43< a<4. (200
parameter error function of the form

—[£- po(L)T?
2(Ap)?

R, decreases, as seen in Figb)l
Finally, both(R® and the density of large fractures scale

(18) as Ram'1 for 1<a<4. This means that the density of large

fractures is nearly unaffected whéty, decreases angj is
whereA is the width of the transition region ¢i(L",a,py).  kept constant. In other words, the dengifyis almost insen-

In practice, the percolation probabiliif(L",a,p)) was sitive to the value of the lower cutoR,, provided that it is

evaluated from sets of 500 realizations, for about 10 valuesiuch smaller tharRy,. Since the thresholg; (L') is also
of the network density, evenly distributed in a range wHére nearly independent oR,, in Fig. 1(c), it suggests that for
varies from 0.05 to 0.95. Since there is a correspondenca<4 percolation relies on the upper part of the fracture size
betweenpg, p;,, and pg, for given values ofa andR,,, the  spectrum.

1 - This favors percolation, and therefopg,. decreases when
Po

HL’,a,’=,=f —ex{ } ,

( Po) om) AL p &

same data sets can be used to determjpé), ps,.(L), and Let us consider now in more detai}(L’), which has the
ps.(L). The 95% confidence interval is estimated to be aboutrucial advantage of being almost independena @nd R’
+0.04 in terms ofpg(L). [Fig. 1(c)]. For monodisperse networkR,,=1, the percola-

The scaling law Eq(17) can also be used to determine the tion threshold does not depend anbut it varies with the
exponenty from the values ofp(L’) for various sample scale, wherl’ increases from 4 to 6. The finite size effect,
sizes. However, percolation is not the main topic of this pawhich is still relatively strong forL’=4, can explain the
per, and such a finite size effect analysis was not conductegmall differences observed in the numerical valueggfL.’)

In order to compare the results for fracture networks withfor periodic and nonperiodic networks as well as between
variousR', we have to choose the parameters that will behexagons and squares. Wy starts decreasing from unity,
kept constantp; was suggested to be the appropriate percopa.(L’) also decreases a little, but whétj, becomes less
lation parameter in previous studi¢21-23, which also than about 0.1p4(L’) remains nearly constant and only
stressed the importance of the large scale part of the fractusdightly smaller than the value for monodisperse networks.
distribution for the network connectivity. The numerical The only exception is the cage=2.9 for which the critical
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FIG. 1. Percolation thresholds expressed in terms of the dengjigs) (a), p5,(L") (b), andpg(L’) (c) for regular hexagons versigy,
in nonperiodic networks with’ =4 anda=1.5 (), a=2 (+), a=2.5(X), a=2.9 (O) and withL’ =6 anda=1.5 (5¢); data for square fracture
are also shown fok’=4, a=1.5(0). Data for periodic networks with’=4 anda=1.5(®) are presented for regular hexagons.

densityps. has not yet reached an asymptotic value wRgn  over the entire flow domain. If the surface area per unit vol-
has decreased to 0.03. This is probably because the influenaene for the fractures normal to is S(n), the permeability
of the smallest fractures is slower to vanish, since their protensor is given by
portion is very large foa=2.9.

In summary, for all the data in Fig(d) for L' =4, which
include different fracture shapes, exponeatérom 1.5 to Kgn= JS(n)(I -nn)dn. (22
2.9, and size ranges witR,,/R,, from 0.01 to 1,

p3.=2.95+0.1(L" = 4). (21)  For an isotropic networkS(n)=S/47 where S is the total

Although this value is still relatively strongly influenced by Volumetric surface area amu is evenly distributed on the
the finite sample size—recall that a critical density 2.30 isUnit sphere. Therefore,

expected for monodisperse hexagons whén: « [4]—this

very narrow range illustrates how successfully the definition Ksn=Ksd, Kgp= %aS. (23
(60) of pg incorporates the effect of the fracture shapi

’ : 13
vex and of the parameteesandR;, (via the momentR™™)). | random network with fractures of the same size and shape,

Sis given by

IV. PERMEABILITY OF FRACTURE NETWORKS WITH
IDENTICAL CONDUCTIVITIES S=pAyp, (24)
A. Snow model and the dimensional permeability can be written in the form
Let us recall first the theoretical results relative to net-
works of infinite plane channels with an arbitrary orientation
distribution [25,26. This is equivalent to assuming that all
the fracture surfaces in the network contribute to the flow If the fracture sizes follow Eq¢l), the total volumetric
and that the overall head gradient is uniformly distributedareaS is given by

Kgn= %pa’Ap. (25)
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Rw

fRM Ap(R)F(R)dR:prm

m

S A(RN(RIAR= p(A).

(26)

where the bracket¢é ) denote an average over the sie
Equation(23) then yields a generalized form of E@®5),

Ksn=3p0(Ap). (27)

Note finally for later use that itr is not identical for all
the fractures, Eq(22) can be generalized by assuming that
the contributions of fractures with different conductivities to
the total flow are independent, and by averaging it awelf
o is correlated with the fracture siZ@ as in EQ.(33), this
yields

Rm
Ksn= 50(0Ap), (oA = JR a(RA(RIN(RAR, (28)

which generalizes both E¢25) and Eq.(27).
The macroscopic permeability of Eq&3), (25), (27),
and (28) relies on the assumptions that there is no flow in-

PHYSICAL REVIEW E69, 066307(2004)

FIG. 2. Permeabilityk’ for nonperiodic networks of regular
hexagons versug; for R},=0.1,L"=4,a=1.5(X) anda=2.9 (O).
Each point is the average over 25 realizations; the vertical bars
correspond to the standard deviation of the numerical results. The
thick solid line corresponds to monodisperse fracture networks and
the thick broken line to the Snow equation Eg8) for monodis-
perse fracture networks.

teraction between the various fractures and that the flow do-

main includes the whole surface area of the fracture syste

For monodisperse fractures, this is true for networks with a

large density[5]. In many other cases, these assumptions ar
not verified and the variations &f with the surface area are

rﬁhe average number of intersections per fracture.

Let us consider first the results plotted in Figa3for
onodisperse networks of regular hexagons, for which
%r(]rAp> is reduced to 33(00Rf,|)/2. Monodisperse fracture

not linear. However, it seems reasonable to use the weightddtWworks were analyzed by Koudieaal. [S]; the additional

fracture surface arg&oA,) as a natural measure of the mac-
roscopic permeability of a fracture network.

B. Numerical results

As stated above, fracture networks with a constant frac
ture conductivityo’ =1 are analyzed. For the sake of unifor-

numerical data presented here for such networks include
higher densities which can now be explored due to progress
of the numerical technique and of computing capabilities.
The nonlinear behavior of the macroscopic permeabKity
with the fracture density is well observeld; asymptotically
approaches the theoretical prediction E2D) only for large
fracture densitiespr =p;=20. Close to the percolation

mity of the presentation, the notation of fracture conductivitythresholdK; strongly decreases, although it does not vanish

o is kept in the factop(oA,) throughout this section.

Examples of results for monodisperse networks and poly

disperse networks witta=1.5 anda=2.9 are presented in
Fig. 2. It shows that very different values Kf are obtained

for the samepg, which is at least partly due to substantial

differences in the total fracture surface. In order to reduce

this influence, and as suggested by E2f), the results of
this study will be presented henceforth in terms of the nor
malized permeability

K, = K
27 oAy

The subscript 2 corresponds to the statistical momerR of
used in the normalizatiofisee Eq.(6)]. Note that in these
terms Snow’s model Eq28) is reduced to

K5(Sn =2, (30)

and it does not depend either on the fracture size distributio

(29)

because of the finite sample size. As discussed in Sec. lll, the
probability of percolation is about 1/2 fg;~3 andL’=4.
However, Koudinaet al. [5] showed that the dependence of
K, on p; approaches a critical transition as the systemIsize
increases.

The permeability of polydisperse networks wik 1.5 is
also presented in Fig.(8, for variousR’, &y, andL’, as a

function of the fracture density;. The difference with re-

spect to the monodisperse case is significantly reduced, com-
pared to Fig. 2, thanks to the definition Kf; it is of the
order of 20% forp;=6 and keeps decreasing for larger den-
sities.

The difference between monodisperse and polydisperse
systems increases near the percolation threshold where the
statistical fluctuations and the finite size effects are impor-
tant. Comparison of numerical results obtained Ry=0.1
and 0.01 shows that the influence Rf, is not significant,
and that the macroscopic permeability of fracture networks
with the same value op; remains proportional t@(cA).

or on the fracture conductivities. A similiar approach hasThe variations oK} with R}, for fixed values op;=8 and 12

been used by Hestir and Loiig7], who developed percola-
tion and effective medium models for two-dimensional frac-

are illustrated further in Fig. 4. One can see that it does not
exceed the interval of statistical fluctuations.

ture networks and proposed analytical expressions which re- In order to analyze the influence of the small fractures on

late the ratio Eq(29) to a connectivity parameter, namely,

06630

flow, all fractures withR’ smaller than som&;,,= R/, have
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10 P53 20
(b)

FIG. 3. Normalized effective permeabilitg; for nonperiodic
networks of regular hexagons verspfs Data in(a) are fora=1.5
andR;=0.1, §4,=0.25,L'=4 (X), R/,=0.01, 5,=0.25,L" =4 (%),
R,=0.01, §4=0.167, L'=4(O), and R,=0.1, §,=0.25, L’
=6 (>>). Data in(b) are forL’=4 and §,=0.25 witha=1.5, R/,
=0.1(x), a=2, R,=0.1(+), a=25, R ,=0.1(0), a=2.5, R},
=0.05(4), a=2.9, R},=0.1(V), a=2.9, R[,=0.05(0). Data for
monodisperse fracture networks wiffy=0.25 andL’ =4 are given
by the thick solid line for for nonperiodic systems and (fy) for
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FIG. 4. Normalized permeabilitik; for nonperiodic networks
of regular hexagons versig, for p;=8 (O), and 12(x). Data are
for L’=4 anda=1.5. Error bars represent the standard deviations
corresponding to statistical fluctuations.

The stability of the numerical results relative to the grid
discretization has been tested ®ff=0.01. The macroscopic
permeability calculated by using,,=1/4 and 1/6 ispre-
sented in Fig. @). One can see th#t is not affected bysy,.

The variations of the numerical results due to the bound-
ary conditions applied to the system are also illustrated in
Fig. 5. The permeabilities of monodisperse fracture networks
have been calculated when a macroscopic pressure gradient
Eqg. (10) was applied upon the periodic systems of fractures
and have been compared to the data for the nonperiodic sys-
tems obtained with the boundary conditions Etg). One
can see that the difference between the two models is small
for all the values ofp; explored in the simulations.

The finite size effects have been discussed by Koudtna
al. [5] for monodisperse networks. In this study, no system-
atic work has been done to explore the influencé'obn K.
However, the curve fot.’=6 in Fig. 3a) is notably lower
than the curves fok’=4, since the transition to percolation
becomes sharper as the system size increases.

Let us now consider the influence of the power-law expo-
nenta. The dimensionless permeabilitf}, calculated for the

periodic networks. The thick broken line is the Snow equation Eq.
(30).

been neutralized for flow in some networks initially gener-
ated withR/,=0.1, and the macroscopic permeability of the
resulting networks has been calculated. Figure 5 shows the
results of numerical simulations performed fdr=25 real-
izations. The permeabilitil is normalized by the permeabil-

ity Ko of the full network. ForR;,, up to 0.4, the decrements
of the permeability and of the total fracture surface desdal
therefore of the effective(oAy)) are roughly equal, whereas

the n_umper of fractures drops by about 75%. The effective g, 5. Relative variations of the permeability’ (x), total
densityp; decreases even less than the surface area, sincefdficture surfaceS; (O), number of fracturesl;, (), and effective

is dominated by the large fractures. In this situation, 25% ofensitypj (A) for nonperiodic networks of regular hexagons with
the fractures account for 75% of the volumetric area and op,=5.75,R/ =0.1,a=1.5 where all fractures witR’ <R/, are neu-

the permeability.

tralized for flow.
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FIG. 6. PermeabilityK; for nonperiodic networks of regular
hexagons versua for p;=8. Data are fot.’ =4 with R},=0.1(O),
0.05(V), or 0.01(A), andL’'=6 with R’ =0.1(®). The thick solid
line corresponds to the monodisperse fracture networks, and the
thick broken line is the Snow E@30).

networks witha=1.5, 2, 2.5, and 2.9 is displayed in Fig.
3(b). For large fracture network densitig§>4 and a con-
stant cutoffR},=0.1,K} is nearly insensitive ta, with varia-
tions within about 10%. For lower densities, the transition to
zero permeability is sharper for the larger exponert®.5

and 2.9 than for the smaller ones1.5 and 2. This is be-
cause the larges, the more small fractures contribute to the
network connectivity and permeability; thereby, the effective
size of the system increases and the finite size effects are
reduced. Accordingly, the smoothest decay¢fis observed

for the monodisperse networks. For la@ea residual influ-
ence of R/, on K, is observed in Fig. ®). The network . . .
permeability is slightly smaller foR,=0.05 than in the case 0 5 10 Py 15
R,=0.1. (b)

The efficiency of the combination E¢R9) for the gath-
ering of the results for different polydisperse fracture net-
works is summarized in Fig. 6. The normalized permeability
K5 is presented as a function affor the same valup;=38; it
slightly decreases from 0.2324 to 0.2025 with increasing
but remains within 20% of the valu€,=0.2556 derived for
the monodisperse networks with the sapjeFor such dense o ) ]
networks, the variations g2 andL’ have little influence on Nectivity and incorporates the influences of the fracture shape
K} in the range ofa used inmthe simulations. and pf the fracture size dis.tribution. Unsurprisingly, it is a

Finally, numerical data obtained for networks of polygonsfunction of the same quantity; that controls the network
of various shapes, namely, squares, hexagons, and zo_goﬁgrcolf'ﬂlon. This model is a direct extension of the corre-
are shown in Fig. 7. The macroscopic permeabiktyof sponding result of Koudin&t al. [5] about monodisperse
these systems for the same fracture number dengity fracture networks. _
strongly depends on the fracture shape. However, the com- !t should be noted that, g|ven,the fracture shape Bpd
bined use of the normalized permeabilky and of the di- P(Ap) IS unequivocally related tp; when the exponerd is
mensionless density} allows again to gather all the data in the range ¥a<3 andR; <1, since both moment&?)
obtained for the various shapes. and(R® are then insensitive t&,, and the model Eq31)

In summary, the macroscopic permeability of polydis-actually depends on a single parameter. However, this is not
perse fracture networks with intermediate and large densitiesue whenR;, is not vanishingly small or whea>3. The
can be written as two terms in Eq(31) are then a natural and convenient way

to account for the independent effects of the exponent and of
K= p(aAKx(p3). (31 the lower cutoff of the fracture size distribution.
Most calculations in this work have been conducted for
The termp(oA,) represents the volumetric area of fractures,a< 3, and the model proves successful in this range even for
weighted by the individual fracture conductivities, and thenonvanishindR,,. As illustrated in Figs. 3, 4, 6, and 7, all the
dimensionless functiol;(p3) accounts for the network con- data for 0.0kR,, <1, 1.5<a=<2.9, and various fracture

FIG. 7. Permeabilityk’ versusp (a) and normalized effective
permeabilityK}, versusp; (b) for nonperiodic networks of regular
polygons of various shapes fof =4,a=2.5, andR/,=0.1. Data are
for squareqO), hexagong®), and 20-gongx*). The thick broken
line is the Snow Eq(30).
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shapes are represented by [E8l) within at most 20%, as isfied for rough walled fractures, but it can be used for a first

soon asL/Ry =4 andp;=4. Exponents larger than 3 have estimate of a fracture hydraulic aperture.

not been systematically investigated but one case Rjth The scaling relationship Eq32) and the cubic law Eq.

=0.1 andp;=8 is considered in Fig. 6K, does not vary (15) imply

whena is increased up to 3.7, which means that these data

are indeed accurately represented by &4). It may seem o' =R'B, (33

disturbing that in the range<8a< 4 the permeability results

from the product of a term controlled by the smallest frac-where 3=3x«, with a possible range of variation x53<6.

tures, throughR?), and a term controlled by the largest ones, The value of the exponet (or ) may depend on the physi-

through(R3), but it should be remembered that §g1) is  cal origin of the fracture system as well as on its history

proposed for moderate or large densities, i.e., for well conl33—38. However, any detailed discussion of this question is

nected networks. beyond the scope of this study, and the model B8) is
For smaller densities, significant size effects are observedS€d here in a straightforward manner with 1.5, 3, and 6.

for the sample sizes that have been used in this study, which Note that the case of a variable conductivity along the
have not been systematically investigated. Still, we can foriracture surface has not been addressed in the present study.
mulate the general statement that these size effects decrease 19Ure &) shows the numerical results obtained for frac-

when the exponert increases, because the role played bylUré networks witha=1.5 and various exponenfs. The
small fractures becomes more important. macroscopic permeabilit)k’ of polydisperse networks is

Finally, whena> 4, both moment¢R?) and(R%), i.e., the substantially influenced by the value of the expongnt

volumetric surface area and the network connectivity, aré—|owever, the results are nicely gathered when the ratio Eq.

controlled byR,, and large fractures are uncommon. Hence,(zg) is used with . the weighted fractur_e surface density
although such networks have not been considered at all if(“Aw- When varies from 0 to 3K; remains very close to
this work and we do not have numerical data to support it,the data obtained for identical fracture conductivities. A sub-
we can conjecture that they behave essentially like monodiss-ta”“é}| departure from this case is observedfer6. Note
perse networks of fractures with iR, and therefore that thatK; starts increasing witl, and then decreases. These
the model Eq(31) is still applicable. A similar statement is eSults can be explained by the fact that &+1.5 the net-
possible fora<1, since small fractures are then not numer-WOrk percolation is mainly due to large fractures. If the frac-
ous enough to play a significant role. Therefore, if this wadure conductivities are correlated with their sizes, a gradual
verified, Eq.(31) would be a quite general and useful resultINcréase of3 from 0 to moderate values “switches off” small
which would provide a reasonable estimate of the networractures which do not contribute significantly to the overall

permeability for any range and exponent of the fracture siz&OW. Wheng is increased further, larger and larger fractures
distribution. are progressively neutralized, and the macroscopic perme-

ability decreases. Note that this tendency is partly hidden by
the fact that the macroscopic permeability is normalized by
the factor ofp(oA,) which decreases with increasin

It has been shown in the previous section that the macro- The numerical data for the networks with the exponent
scopic permeability of the polydisperse fracture networks2=2.9 are presented in Fig(l8. The influence of3 is much
with constant conductivity is proportional to the fracture sur-more pronounced when compared to Figa)8vith a=1.5;

face density. An extension of this result to the case of varithis influence cannot be reduced by the us&bflt is inter-
able fracture conductivity is discussed in this section. esting to note that for small fracture densities the numerical

data for various3 are close to one another. In this range of
densities, the large fractures are rare events and the network
is composed mostly by small fractures which have similar
In natural fracture systems, geometrical apertures magizes, and a variation of fracture conductivities results in a
vary over a wide range. These variations influence the fracuniform global increase or reduction of fluid velocities, with-
ture conductivity distribution as can be seen in the classicabut flow redistribution. For large densities, some large frac-
cubic law Eq.(15). tures provide connections between various parts of the sys-
Fracture lateral sizes and apertures are in many casésm and ensure the total flow rate even when small fractures
positively correlated. When both characteristics followare “switched off.”
power-law distributions, a scaling relationship can be tenta- However, bothK and p(cA,) are affected by the varia-
tively written as tions of fracture conductivities, and their dependenceds
b= ER¥ (32) not the same, so the combinatik slightly increases at first
’ with 8 and then decreases gradually. Figure 9 shows the
From the existing data in the literature, one can find that thenormalized permeabilitiK; as a function of3 for a=1.5 and
scaling exponenk varies between 0.5 and[28-33. 2.9 whenpj is kept constant. A nonmonotonic behaviordf
In order to obtain the distribution of fracture conductivi- with g is well observed; it is more pronounced far2.9.
ties, it is assumed in this study that the fracture hydraulic We may conclude from these results that E2{) is also
conductivity o is related to its mean geometrical apertbre successful in representing the permeability of polydisperse
via Eqg.(15). In many cases, this relation is not exactly sat-fracture networks with correlated individual fracture size and

V. VARIABLE FRACTURE CONDUCTIVITIES

A. Polydisperse networks
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10 ——————————————————————————————7  peeeeeceeceeceeeececccccecaa
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107"}
1072}
B B e
10°° FIG. 9. Normalized permeabilitik; for nonperiodic networks
1 of regular hexagons versya Data are forx (a=1.5,L'=4, R/,
=0.1,p4=16); O (a=2.9,L'=4, R, =0.1, p4=10. The thick
0 solid and dotted-dashed lines correspond to monodisperse fracture
10 networks forp;=16 andp;=10, respectively. The thick broken line
K, is the Snow Eq(30).
fracture systems with fracture conductivities following the
107"} power-law distribution
-1
n(o’) = ETO',_g, (39
Omin- — 1
1072 where the normalization constant is chosen so tfat=1.
This might be of practical interest, first because the treatment
of the latter situation is numerically much less demanding
and also because some field acquisition techniques such as
R , line surveys can provide area-weighted fracture aperture dis-
10 5 T 5 10 o 20 tributions, but no information regarding the fracture size dis-
Py S
b tribution [37].
() In order to set a common basis for the comparison, the
value ofa’.in this simulation is set to the valtR:? used in

FIG. 8. Normalized effective permeabilitg;, for nonperiodic . . .
networks of regular hexagons versus local conductivity vepgus the previous one. The area-weighted fracture conductivity
for L'=4, R,=0.1,a=1.5(a) or a=2.9 (b). Data are for3=0 (X), distributions should also be the same in both systems. This is
1.5 (%), 3 (V), and 6(+). Broken and dashed-dotted lines are for trué€ when
monodisperse systems with verying local conductivity, model Egs. a
(3% and(35), for ¢,,,=0.032,{=0, (a) or {=0.9333(b) and o, [=—+1 (35)
=107%, £=0.75(a) or /=0.9833(b), respectively. Data for monodis-
perse fracture networks are given by the thick solid line. The thic

broken line is the Snow Eq30). k‘I'hen the surface-weighted mean fracture conductivity is

equal in both models:

conductivity, whenB<3, and at least in the investigated (@A) (@=-3)(Rf*"-1
range of the exponer#, thanks to the use of the statistical (A) " (a-3 -pREA-1
moment (oA,). Note that3=3 already corresponds to a _ o

fairly wide range ofo’, from 103 to 1 if R/,=0.1. However, The macroscopic permeabilitit, is compared for both
the very steep dependencesbn Rwith 4=6 does not fitin ~ Systems for the same value of the fracture dengitythis

this model. Finally, the case of size-dependent fracture con€ans that the total fracture surface is not the same in the

ductivities with scaling exponenta larger than 3 has not Monodisperse and polydisperse networks.
been investigated. Figure 8a) presents the results for polydisperse networks

with a=1.5 and for monodisperse networks with varying
fracture conductivity. Fop3=1.5 which corresponds tay,
B. Comparison with monodisperse networks =0.032, the predictions of the macroscopic permeability by
both models are close enough, while {66, o,,=107°
In this section we compare the macroscopic permeabilithey differ significantly.
ties of polydisperse networks with fracture conductivities The simulation data foa=2.9 are shown in Fig.(®). It
distributed according to Eq33) to those of monodisperse can be seen that fo8=1.5, o},,,=0.032, the prediction is

(o)"=

(36)
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fairly good, while for 3=6, o/,,=10°°, the monodisperse
networks significantly underestimate the permeability.
Hence, the monodisperse fracture network model with
variable conductivity is shown to mimic the behavior of
polydisperse systems if they have the same fracture conduc-
tivity distributions in surface and for small values gfonly.
It should be noted that for small fracture densities, the model
Egs. (34) and(35) gives reasonable predictions, even when
B=6, but the difference increases with increasjrig

VI. DISCUSSION AND CONCLUSIONS

Numerical simulations of steady flow in fracture networks 10 Py P, 10'

with a power-law distribution of fracture sizes show that the

hydraulic behavior of such networks varies substantially with  FIG. 10. Normalized effective permeabilitg, for nonperiodic
the contrast between minimal and maximal fractures radii asetworks of regular hexagons vergys-p.. for p.=2.31. Black dots
well as with the exponerd. However, a unified description (®) correspond to the numerical data =0 witha=1.5, 2.0, 2.5,
of the macroscopic permeability of polydisperse networks or 2.9,8=1.5 witha=1.5 or 2.9, angB=3 with a=1.5. Other sym-

can be proposed as bols are for =3 and a=2.9(V), B=6 and a=1.5(0O) or a
o =2.9(0). In all casesR/,=0.1 andL’'=4, except fora=1.5, 3=0
K= p(aAK5(p3). (37)  with L'=6. Data for periodic monodisperse fracture networks are

. . . given by the thick solid line. The thick broken line is the Snow Eq.
This model involves two factors. The extensive tqj(ﬁAP) (30). The thin solid line is Eq(42). The thin broken line is the

ig a measure of the ngty\(ork densi.ty, We.ighted by thg indi-Ioreoliction of Eq.(38).
vidual fracture conductivities. The dimensionless functgn

is fairly universal, and the influence of the fracture shape an
of the parameter&a, R;) of their size distribution are incor-
porated in the dimensionless dengify It was shown in Sec.
IV B that this relation is valid for alla in the range
1.5<a< 3 and does not vary witR;, and the fracture shape.
It was also conjectured that it is applicable for any value o

q/(l—K/KSn) increases linearly with increasing, when p;
tends to infinity. A least squares fit of all the numerical data
for three-dimensional polydisperse networks wiRh=0.1,
B=0, a=1.5 to 2.9, the largest sample size availaflé
f:4, except fora=1.5, withL’'=6), andp;=2.5 yields

the exponent. 2 1
In the case of varying fracture conductivity, Eq. (37) K= —[ —,—], C,=0.10, C,=6.6. (39
holds fora<3 and for moderate contrasts betwesy), and 3 Cilp3 +Cp)

Tmax WhiCh. corresponds to small or moderate values of therpg two-parameter fit is shown in Fig. 10 in comparison
exponents in the scaling relation E¢33). It breaks down,  ish the numerical results. A good agreement is observed
however, wheng Increases up to 6, and exponeatiarger with the data for3=0, for densitiep;=3.5. Concordance is
than 3 have not been investigated with varying fracture CoNz 50 good with the data fo8=1.5(a=1.5 and 2.9 and for

ductivities. B=3 (a=1.5), which were not used in the determination of

f I\Iteat( the gerc?la;!oq thr.esho}-fﬁ,z tappr(r)]aches zelr'? ;V'thd the coefficients of the least squares fit. Only the most ex-
uctuations due 1o nite size enects, Wnose amplitude deyeme cases witm=2.9 andB=3 or with B=6 deviate sig-

pends ona and on the contrast of fracture sizes in the net-nificarltly from Eq.(38).

work_. For large der;sitiesKg slowly tends to th_e _value 2/3 The second model is a generalization of a result of Kou-
predicted by S_nows _m(_)del Eq?’(.))' althoggh it is always dinaet al. [5] Close to the percolation threshold, the conduc-
smaller than this prediction for finite d¢n3|t|es; the same pheﬂvity of a site or bond lattice is known to vanish according to
homenon was observed for monodispersed netwqehs a power law{24]. In continuum percolation, a similar scaling
This is partly due to the fact that not all the fractures con-

. : ) law is expected,
tribute to the flow, especially for low fracture density, but P

also to nonuniformity of the flux distribution among the frac- K o (p = po)t. (39)
tures as well as to the flow interactions between them, since ¢
both factors violate the assumptions leading to &8). The exponent=2.0 is generally accepted for lattice perco-

In view of the universality of Eq(31), and of its high lation in three dimensions. However, in continuum percola-
practical interest, it may be desirable to model it by an anation this exponent may depend upon the geometrical model.
lytical formula, which could be easier to use than the tabuKoudinaet al. [5] analyzed monodisperse fracture networks
lated data in Fig. @) or Fig. §a). Two such models are and showed by considering large samples very close to the
proposed here. critical density that the power law E@39) is well satisfied

An approximate expression for the permeabikiycan be  with an exponent close to the usual lattice value.
proposed for large fracture densities by using a numerical fit. Furthermore, Koudinat al. [5] showed that a similar
The effective medium model developed by Hestir and Longoower law with an exponent 1.57 describes fairly accurately
[27] for two-dimensional networks shows that the ratiothe network permeability in a wide range 3p;<16. They

066307-11



MOURZENKO, THOVERT, AND ADLER PHYSICAL REVIEW EG69, 066307(2004)

conjectured that this dependence is merely a transition be-
tween the critical power law near the percolation threshold
and the linear growth Eq28).

Since such a relation is of interest for practical purposes,
the same kind of fit was attempted for polydisperse net-
works. We used as the critical density for finite polydisperse
networks the valug;.=p.=2.31, which is a slight improve-
ment on the estimate of the percolation threshold for mono-
disperse systems of hexagons derived[#) it is extrapo-
lated for L’ =o0 via the finite size scaling method E(L7),
based on data fdr’ up to 20 instead of 8 if4]. The notation )
t in Eq. (39), which is reserved traditionally for the critical 10,0 Paop. 10
exponent near the percolation threshold, is kept regardless of ‘
the fact that it will be derived from the data obtained with
larger network densities.

Substituting Eq(6c¢) in Eqg. (37), the permeabilityk can
be written in the form

FIG. 11. Permeabilitk’ for nonperiodic networks of regular
hexagons versup;-p, for p/=2.31. The symbols correspond to
a=1.5, B=0(A); a=1.5, B=0, L'=6 (V); a=2.9, B=0(X); a
=1.5,8=3 (%); a=1.5,8=6 (O); a=2.9,5=0 (0OJ); the thick solid
line corresponds to monodisperse fracture netwoR{s;0.1 and

<0'A;> , L L’=4 in all cases unless otherwise stated. The dotted line shows the
K= v X<R3>¢'(p3), P = p3Ky. (40) slopet=1.63 corresponding to E@42).
e

Writing the scaling law Eq(39) as
The error bars fot are 95% confidence intervals for the

® =Cy(ps— po)t (41 values of the exponent, resulting from the statistical fluctua-
tions of the individual data.
and fitting the same permeability data set as for @8) in _The first three_ lines of Taple I, for polydisperse networks
the rangep;—p.> 1.5, yieldsC;=0.101 andt=1.63. Hence, with 8=0 or 3, give very similar results, and exponents con-
the resulting model reads sistent with the global fit Eq42), as well as with the value

of t obtained by Koudinat al. (5) in monodisperse samples
with L up to 10. In contrast, the exponent obtained here for
Ky = %’(pé_pé)t, C;=0.10, t=1.6. (42) monodisperse networks is abnormally low, because of the
p3 small sample siz&’=4. The polydisperse networks, which
contain only a few large fractures, are less sensitive to this
It is shown in Fig. 10, and the agreement between the préfinite size effect. Finally, and as already noted in Fig. 10, the
dictions and the numerical data is good in the rangeesults for polydisperse networks with varying fracture con-
0.4<p;-p,<10. There is a wide interval gb; where the ductivities with 3=6, especially whem is also large, do not
predictions of both models Eq&8) and(42) are very close fit in the same pattern as the others. However, the simulation
to one another. However, for large fracture densities, where gesults are too influenced by finite size effects to conclude
constantK; is expected , the latter model predicks, whether or not this is due to a transition to another univer-
= (py)'~Y, which imposes a limit for the applicability of Eq. sality class.
(42).
Just like the first model Eq38), Eq.(42) is also success-
ful in representing the numerical data for networks with vari- ~ TABLE I. Exponentt of the power law Eq(42), with its 95%
able individual fracture conductivities, except for the mostconfidence interval, and associated correlation coefficientb-
extreme cases witte=2.9,8=3) or with 3=6. tained by least squares fits of the data in Fig. 11gpfp.=1.5.
Figure 11 shows in more detail the macroscopic perme=

ability in a few casesK’, instead ofK,, is plotted versus @& B L’ t r
ps—pe in order to make the power law apparent. Thus, the 15 0 6 162+006  0.9990
data do not all fall on a single curve since they are not nor-, o ' 0 4 1.66;0.08 0'9993
malized by the volumetric surface area, but they are arranged S '
along straight lines over nearly a decade in this log-log plot1-> 3 4 1.58+0.16  0.997
The exponentst estimated from these data by least1-5 6 4 1.77£0.16  0.9998
squares fits in some of these cases are given in Table I. Sin@ed 6 4 2.4+0.4 0.998
the power laws are fitted over slightly less than a decade, andonodisperse 4 1.38+0.07  0.9999
because of the statistical noise, the estimatiortsaoé some-  Monodispersd5] 4~10 1.57 0.9994
times imprecise. Nevertheless, the correlation coefficignt Global, Eqs.(40)42) 4~6 1.63+0.03 0.997

which quantifies the quality of the fit, is always close to 1.
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In summary, the two analytical formulas Eq88) and ACKNOWLEDGMENTS
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