HAL will be down for maintenance from Friday, June 10 at 4pm through Monday, June 13 at 9am. More information
Skip to Main content Skip to Navigation
Journal articles

HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science

Robertus Erdélyi 1, 2, 3, * Luc Damé 4 Andrzej Fludra 5 Mihalis Mathioudakis 6 T. Amari 7 B. Belucz 1 F. Berrilli 8 S. Bogachev 9 D. Bolsée 10 V. Bothmer 11 S. Brun 12 S. Dewitte 13 Thierry Dudok de Wit 14 M. Faurobert 15 L. Gizon 16 N. Gyenge 1, 3 M. Korsós 17, 3, 2 N. Labrosse 18 S. Matthews 19 Mustapha Meftah 20 H. Morgan 17 P. Pallé 21 P. Rochus 22 E. Rozanov 23 B. Schmieder 24 K. Tsinganos 25 E. Verwichte 26 S. Zharkov 27 F. Zuccarello 28 R. Wimmer-Schweingruber 29
* Corresponding author
LATMOS - Laboratoire Atmosphères, Milieux, Observations Spatiales
LATMOS - Laboratoire Atmosphères, Milieux, Observations Spatiales
Abstract : Recent solar physics missions have shown the definite role of waves and magnetic fields deep in the inner corona, at the chromosphere-corona interface, where dramatic and physically dominant changes occur. HiRISE (High Resolution Imaging and Spectroscopy Explorer), the ambitious new generation ultra-high resolution, interferometric, and coronagraphic, solar physics mission, proposed in response to the ESA Voyage 2050 Call, would address these issues and provide the best-ever and most complete solar observatory, capable of ultra-high spatial, spectral, and temporal resolution observations of the solar atmosphere, from the photosphere to the corona, and of new insights of the solar interior from the core to the photosphere. HiRISE, at the L1 Lagrangian point, would provide meter class FUV imaging and spectroimaging, EUV and XUV imaging and spectroscopy, magnetic fields measurements, and ambitious and comprehensive coronagraphy by a remote external occulter (two satellites formation flying 375 m apart, with a coronagraph on a chaser satellite). This major and state-of-the-art payload would allow us to characterize temperatures, densities, and velocities in the solar upper chromosphere, transition zone, and inner corona with, in particular, 2D very high resolution multi-spectral imaging-spectroscopy, and, direct coronal magnetic field measurement, thus providing a unique set of tools to understand the structure and onset of coronal heating. HiRISE's objectives are natural complements to the Parker Solar Probe and Solar Orbiter-type missions. We present the science case for HiRISE which will address: i) the fine structure of the chromosphere-corona interface by 2D spectroscopy in FUV at very high resolution; ii) coronal heating roots in the inner corona by ambitious externally-occulted coronagraphy; iii) resolved and global helioseismology thanks to continuity and stability of observing at the L1 Lagrange point; and iv) solar variability and space climate with, in addition, a global comprehensive view of UV variability.
Complete list of metadata

Contributor : Catherine Cardon Connect in order to contact the contributor
Submitted on : Sunday, March 6, 2022 - 5:38:09 PM
Last modification on : Monday, May 16, 2022 - 8:20:25 AM


Publisher files allowed on an open archive


Distributed under a Creative Commons Attribution 4.0 International License



Robertus Erdélyi, Luc Damé, Andrzej Fludra, Mihalis Mathioudakis, T. Amari, et al.. HiRISE - High-Resolution Imaging and Spectroscopy Explorer - Ultrahigh resolution, interferometric and external occulting coronagraphic science. Experimental Astronomy, Springer Link, 2022, (in press). ⟨10.1007/s10686-022-09831-2⟩. ⟨insu-03599110⟩



Record views


Files downloads