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[1] The construction of a large volcanic edifice at Earth’s surface generates stresses in the
upper crust whose magnitude is comparable to those of tectonic stresses and overpressures
within a magma chamber. We study how this affects eruption behavior. Analytical
calculations are carried out in two dimensions for a cylindrical reservoir with an internal
overpressure in an elastic half-space with an edifice at the surface. Different edifice shapes
are considered, from shield volcanoes with gentle slopes to stratovolcanoes with steeper
flanks. Without an edifice at the top, the hoop stress at the cavity walls reaches a
maximum at two symmetrical points at some distance from the axis, away from the top of
the chamber. With an edifice at the top, the maximum is reached at the top of the chamber,
just beneath the edifice summit. This implies preferential failure of chamber walls at the
axis and hence the focussing of volcanic activity through a central vent system. Tensile
failure of the cavity walls occurs for a critical value of magma overpressure which
depends on the dimensions of the edifice and on the depth and size of the cavity. For a
small magma chamber beneath a large stratovolcano, the magmatic overpressure at the
onset of eruption increases as the edifice grows and decreases following edifice
destruction. These effects may explain why pressures recorded in phenocryst assemblages
at Mount St. Helens, have varied over the past 4000 years as the edifice went through
successive phases of growth and destruction. INDEX TERMS: 8164 Tectonophysics: Evolution of

the Earth: Stresses—crust and lithosphere; 8414 Volcanology: Eruption mechanisms; 8434 Volcanology:

Magma migration; KEYWORDS: volcanic edifice, magma transport, magma chamber pressure, vent location
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1. Introduction

[2] The structure and dimensions of volcanic plumbing
systems, defined to be the system of connected reservoir(s)
and conduit(s) which channels magma to Earth’s surface,
remains largely unknown despite repeated efforts. For
example, there is still considerable debate about the structure
and size of the magmatic plumbing system beneath Mount
St. Helens [Lees, 1992;Moran, 1994; Blundy and Cashman,
2001]. According to Rutherford and Devine [1988], the May
1980 magma crystallized at a pressure of about 220 MPa,
corresponding to lithostatic conditions at a depth of about 8
km. This may be compared to independent seismological
estimates. On the one hand, seismic tomography suggests
the existence of a shallow storage zone between 3.5 and 6.0
km and of a larger reservoir at 9 km below sea level [Lees,
1992]. On the other hand, local seismicity delineates a
reservoir at a depth of about 6.5 km [Barker and Malone,
1991;Moran, 1994]. These different estimates can hardly be
considered consistent with one another and generate consid-
erable difficulties when studying eruptive behavior. In a
‘‘typical’’ model of a volcanic system, a magma reservoir
feeds eruptions at regular intervals due to cristallisation or to

replenishment from a deeper magma source [Tait et al.,
1989]. Thus the magma chamber volume affects the fre-
quency and volume of eruptions. In addition, the size and
depth of a reservoir are key factors for the rates of magma
differentiation and volatile exsolution, as well as for the
stress field due to magmatic overpressure. For example, for a
spherical reservoir beneath a free surface, wall failure occurs
at some distance from the axis of symmetry, away from the
top of the reservoir [Jeffery, 1920; McTigue, 1987].
[3] This short discussion explains why it is essential to

determine the location and size of magma reservoir(s)
beneath an active volcano. An even more important goal is
to assess whether the same reservoir feeds several eruptions
in a row, which can only be achieved through petrological
studies of past eruption products. At Mount St. Helens,
petrological pressure estimates for the main eruptions of
the last 4000 years vary significantly, from about 160 to 300
MPa [Gardner et al., 1995] (Figure 1). Even more surprising
is the fact that pressure may change very rapidly, sometimes
in a few years only. Gardner et al. [1995] have argued that
magmatic overpressures cannot reach large values and hence
that petrological pressure estimates are close to lithostatic
values. They have therefore ruled out the simple model of a
fixed reservoir and have suggested that the Mount St. Helens
reservoir has moved through the crust.
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[4] From a more general perspective, it is now clear that
many different variables are required to account for the
structure and long-term evolution of volcanic plumbing
systems. Hildreth [1981] and Bacon [1985], for example,
have drawn attention to the regional stress field and to the
magma supply rate. Surprisingly, one component of volcanic
systems has received scant attention: the edifice at Earth’s
surface. Yet this part of the system obviously induces large
stresses in the upper crust. A stratovolcano frequently
exceeds 2 km in height, corresponding to a surface load of
more than 50 MPa. Thus it is responsible for stress changes
in the upper crust that are comparable to, and may be greater
than, tectonic stresses [Van Wyk de Vries and Matela, 1998].
The induced stress field affects dike propagation toward
Earth’s surface and may prevent the eruption of primitive
magmas [Pinel and Jaupart, 2000]. One crucial feature is
that it may change rapidly due to modifications of edifice
size. For example, at both Santorini, Aegean Sea, and Anak
Krakatau, Indonesia, edifices have grown to heights of
several hundred meters in a few hundred years. A volcanic
edifice may also get destroyed by magmatic intrusion,
phreatic explosion, crater excavation or landslide [Siebert
et al., 1987; Hausback and Swanson, 1990].
[5] In the present paper, we investigate how the growth of

an edifice affects a reservoir of magma in the upper crust.
We use a two-dimensional elastic model to determine the
location of fractures on the chamber walls and to calculate
the values of magmatic overpressure required to start an
eruption. The paper closes with a discussion of volcano-
logical implications.

2. Elastic Model

2.1. General Description

[6] Models involving a magma reservoir have been used
frequently to interpret deformation data during eruptive

episodes. Most calculations rely on the Mogi model for a
point source in an elastic half-space [Mogi, 1958], and there
have been few attempts at more complicated reservoir
dimensions and shapes [Okada, 1985; Davis, 1986;
McTigue, 1987]. Here, we are interested in specifying
eruption conditions, which requires knowledge of the inter-
nal magma pressure when the reservoir walls fail as well as
the location of fractures along the walls. To achieve this
aim, we study the behavior of a cavity of finite size which is
subjected to changes of magmatic pressure and to the
growth of an edifice at the surface.
[7] The theoretical model solves for elastic stress and

deformation in two space dimensions (x, z) (Figure 2). The
sign convention is such that tensile stresses are negative.
The upper crust is characterized by Poisson’s ratio n and
rigidity G. The volcanic edifice is a slab or a cone of
radius Re and height He. The magma chamber is cylin-
drical in shape with radius Rc at depth Hc. The reference
state before loading is the lithostatic stress field, such that
there is no edifice at the surface and that the magma
reservoir lies in a neutral buoyancy zone, where magma
and country rock have the same density rm. All calcula-
tions in this paper deal with perturbations from this
reference state (Figure 3). In the liquid-filled reservoir,
no long-term deviatoric stresses can be sustained and the
pressure gradient must be hydrostatic. For neutral buoy-
ancy conditions, this pressure gradient is equal to the
lithostatic gradient. Thus the pressure field within the
reservoir is constrained to remain equal to the lithostatic
pressure field plus some overpressure �P, which will be
called the magmatic overpressure.

Figure 1. Pressure values deduced from phenocryst
assemblages in erupted lava samples for several explosive
eruptions at Mount St. Helens (data from Gardner et al.,
[1995]). Symbol size is proportional to total erupted
volume. Pressure determinations are within ±0.4 kbar. Note
the very large and rapid pressure drop following the two
largest explosive eruptions, Yn and Wn. The Wn and We
eruptions are separated by only a few years.

Figure 2. Geometrical setup for the problem. A cylindrical
reservoir of radius Rc is located at depth Hc beneath a
volcanic edifice. Angle q is measured with respect to the
vertical axis of symmetry. sqq stands for the hoop stress on
the reservoir walls. The volcanic edifice may be either a
stratovolcano with steep slopes (g = He/Re = 0.6) or a shield
volcano with gentle slopes (g = He/Re = 0.1).
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[8] The problem has three dimensionless parameters
which define the different dimensions involved:

ac ¼
Rc

Hc

; ð1Þ

ae ¼
Re

Hc

; ð2Þ

g ¼ He

Re

: ð3Þ

These stand for the reservoir radius, the edifice radius and
the edifice thickness, respectively. For a conical edifice, g is
the slope of the flanks and will be set equal to values of 0.1
and 0.6, corresponding to a shield volcano with gentle
slopes and to a stratovolcano with steep flanks, respectively.
[9] Calculations for a flat edifice (slab-shaped) are

detailed in Appendix A. Solutions for a conical edifice are
obtained by adding slabs of infinitesimal thicknesses. Two
different problems are solved separately: one deals with the
edifice load and zero reservoir overpressure, and the other
deals with magma overpressure and zero surface load. In
this section, we shall briefly describe the main features of
both problems.

2.2. Model Validation

[10] Our calculations rely on the determination of the
stress function c for different boundary conditions (Appen-
dix A). Jeffery [1920] showed that provided the applied
forces taken as a whole are in equilibrium, which is always
true here, the stress function c is uniquely determined. This
stress function is the solution of the biharmonic equation
which, by construction, is the necessary and sufficient
condition for mechanical equilibrium as well as for compat-
ibility with the elastic constitutional equations. To verify
that there were no errors in the analytical formulae for series
expansions, numerical values for all stress components were

used in a finite difference scheme to check for mechanical
equilibrium, and convergence was systematically verified.
[11] We have further verified that our calculations are

correct in several well-known limit cases. In the limit of a
small reservoir beneath a large slab-shaped edifice (ac ! 0
and ae ! 1), the reservoir must behave as if it was in an
infinite medium subjected to a uniform far-field pressure
equal to the edifice load, rmg He. Solutions for zero wall
deformation may be found in [Love, 1944]

srr ¼ 2 1� nð ÞrmgHe; ð4Þ

sqq ¼ 2nrmgHe: ð5Þ

We find that, as the edifice radius increases (as ae ! 1),
both stress components tend to these limits (Figure 4). The
same is true for the hoop stress at the reservoir walls, sqq. In
the same limit of small reservoir and large edifice (small ac
and large ae), the normal stress sxx at the axis (i.e., for x = 0)
is expected to remain equal to the surface value, rmg He,
over a large depth interval above the reservoir (Figure 5).
[12] Another verification may be obtained by considering

the case of a large reservoir at shallow depth beneath a small
edifice (ac � 1). If the edifice radius is much larger than the
thickness of rocks above the reservoir (1 - ac� ae� ac), the
roof region behaves as a thin elastic plate. Thus we expect
that, at the axis, the horizontal normal stress, sxx, varies
linearly with depth and changes sign in the middle of the
plate. Our solution indeed behaves in this manner (Figure 6).

2.3. Stresses Due to Magma Overpressure

[13] The solution for zero surface load and magmatic
overpressure �P is well known [Jeffery, 1920] (Figure 7).
In this case, the hoop stress at the reservoir wall is given by

sqq qð Þ ¼ � �P

1� a2c
1þ a2c � 2a2c

ac � cos q
1� ac cos q

� �2
" #

; ð6Þ

Figure 3. Stresses involved in the problem. (left) Reference stress field, such that a neutrally buoyant
magma reservoir lies in a lithostatic stress field. (right) Stress perturbations whose effects on the
surrounding elastic medium are solved for: a magmatic overpressure �P in the reservoir and a load due
to an edifice at Earth’s surface. The problem is split into two independent problems which are solved
separately. The first problem is the classical one of an overpressured cavity beneath a stress-free surface.
The second problem is a reservoir with zero internal overpressure and a surface load.
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where q is the polar angle (Figure 2). In this case, the hoop
stress at the wall is tensile everywhere. Tension is minimum
at the points nearest to and farthest from the surface (q =
0, p, respectively), where it is equal to the magma
overpressure. Wall tension is maximum at a value sm at
two symmetrical points away from the axis, for q = qm such
that

cos qm ¼ ac: ð7Þ

This angle corresponds to locations on the chamber walls
such that the tangents pass through point O in Figure 2. The
maximum tensile hoop stress is equal to:

sm ¼ ��P
1þ a2c
1� a2c

ð8Þ

which tends to infinity when ac ! 1, i.e., when the reservoir
is brought closer and closer to the surface. sm increases as
the reservoir depth decreases because of stress concentration
in a roof region of decreasing thickness. Finally, one may
note that sm tends to ��P as ac ! 0, i.e., as the reservoir
size decreases. In this limit, the reservoir behaves as if it
was in an infinite medium.

2.4. Hoop Stresses on the Chamber Walls Due to
Edifice Load

[14] The complementary problem to the one above is that
of a liquid-filled reservoir beneath an edifice. With respect
to the reference state, we impose zero reservoir overpressure
and a load at the surface. Using the principle of super-
position, this solution can then be added to the previous one
to tackle arbitrary values of surface load and magmatic
overpressure. For simplicity, in this section, calculations are
discussed, and results shown, for a slab-shaped edifice only.

Figure 5. Horizontal normal stress sxx on the axis as a
function of depth due solely to the edifice load at Earth’s
surface for a small reservoir (ac = Rc/Hc = 0.01).
Calculations are made for a slab. Two curves are shown
for two values of the dimensionless edifice radius ae = Re/
Hc. For large ae, the edifice generates compression over a
large depth range and normal stress sxx remains constant at
shallow depth above the reservoir.

Figure 6. Horizontal normal stress sxx on the axis as a
function of depth due solely to the edifice load at Earth’s
surface for a large reservoir (ac = Rc/Hc = 0.97).
Calculations are made for a slab. Three curves are shown
corresponding to three different edifice sizes. For small
values of ae, the reservoir roof is thin and behaves as an
elastic plate. For very small values of ae (0.005), the edifice
load is taken up by deformation in the upper part of the roof
implying a small tensile stress on the reservoir wall. For
intermediate values of ae (0.05), the roof region behaves as
a thin elastic plate and normal stress sxx decreases linearly
with depth.

Figure 4. Magmatic overpressure required to achieve zero
displacement of the reservoir walls beneath an edifice, as a
function of dimensionless edifice radius ae (equal to Re/Hc).
Calculations are made for a slab. The dimensionless
reservoir radius (ac = Rc/Hc) is set at 0.01. The overpressure
tends to the constant value 2(1 � n)rmgHe corresponding to
the analytical solution for a cavity in an infinite medium.
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In this case, the edifice height He enters the problem
through a scale factor for stresses, and only two independent
parameters are involved, ac and ae.
[15] Hoop stress values on the reservoir walls are shown

in Figure 8 for different values of ac and ae. The solutions
can be understood using the solution in a half-space without
a reservoir. In this case, stresses due to the edifice are
compressive near the top and decrease with increasing
depth, becoming negligible at depths larger than about 3
Re. With a reservoir present, there are two simple end-

member behaviors for extreme values of ae and ac, the
dimensionless edifice and reservoir radii. For small values
of ae and large values of ac, the edifice acts as a narrow load
on the reservoir roof and induces bending, which generates
tensile stresses at the top of the reservoir. For large values of
ae and small values of ac, the edifice generates compression
over a large volume encompassing the whole reservoir,
inducing compression everywhere on the walls.
[16] For a more detailed look at these solutions, we focus

on the hoop stress at the top of the reservoir (i.e., for q = 0)
(Figure 9). For small values of ae, the edifice induces
stresses over a region of small vertical extent. In this case,
the load gets compensated by deformation within the roof
region only and the stress at the top of the reservoir is a
small fraction of the surface load. The hoop stress at the top
is tensile with a dimensionless magnitude smaller than 1. As
the edifice radius is made larger, deformation affects an

Figure 7. Angular distribution of hoop stress (thick plain
curve) around the reservoir walls for the first elastic
problem (magmatic overpressure and no edifice at the
surface). Stress values are scaled by the magmatic over-
pressure �P and are shown as a function of angle q for ac =
Rc/Hc = 0.8 (Figure 2). The top part of the diagram shows
the convention used to draw the figure: compression and
tension appear as negative and positive stresses, respec-
tively (contrary to the sign convention used in the
calculations). The thin plain circle corresponds to zero
stress, and the dashed line shows a uniform tension of 1
corresponding to the solution in an infinite medium. The
hoop stress is maximum for q = qm such that cosqm = ac.

Figure 8. Angular distribution of hoop stresses at the
walls of the reservoir due to the load of volcanic edifice at
Earth’s surface with zero magmatic overpressure. Stress
values are scaled to the weight of the edifice, rmg He. The
diagram uses the same convention than Figure 7. Two sets
of results are shown for various values of reservoir radius ac
and edifice radius ae. Note the large difference between the
results for small ac (left-hand side) and ac close to 1 (right-
hand side). For small ac, the edifice induces compression.
For ac close to 1 and for ae smaller than about 1, the edifice
induces bending in the thin roof above the reservoir, which
generates local tension at the axis.
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increasingly thicker part of the roof region and the hoop
stress is tensile with an increasing magnitude. For a reser-
voir located close to the surface (ac close to 1), the hoop
stress at the top may become much larger than the load itself
because stresses get concentrated in the thinnest part of the
roof. Above a certain critical value of the edifice radius,
deformation is no longer limited to the thin part of the roof
at the top and involves a larger lateral extent. Thus there is
less bending deformation. In this second regime, the hoop
stress is still tensile but decreases as a function of edifice
radius. For given reservoir, there is therefore a critical value
of the edifice radius, noted a1, for which the dimensionless
tensile hoop stress has a maximum. As the edifice radius is
increased further, the surface load induces compression over
an increasingly large region. There is therefore a third
regime for which the hoop stress at the top is no longer
tensile. The change of behavior from tension to compres-
sion is achieved for a second critical value of ae, noted a2,
which is of order 1 (Figure 9). As ae tends to infinity, the
reservoir behaves as if it was subjected to a uniform far-field
confining pressure in an infinite medium. The hoop stress at
the top tends to the dimensionless value of 2, as predicted
by theory [Love, 1944]. These results emphasize that wall
stresses can be significantly larger than the edifice load in
both tension and compression.
[17] We have defined two critical values of the edifice

radius which separate three different deformation regimes
for the roof region. What matters is the depth over which the
surface load can be compensated, and hence the two critical
values take values of order 1. The two critical values have

different behaviors as ac increases: a1 decreases whereas a2
increases (Figures 9 and 10). The magnitude of tensile
stresses depends on the reservoir size ac (Figures 8 and 9).
For values of ac close to 1, the roof region is thin and tensile
stresses may be very large. For small values of ac, the thick
roof can sustain large loads, implying small tensile stresses.
[18] Magma overpressure always generates tension,

whereas the edifice may be responsible for tension or
compression depending on the values of ae and ac. Thus
the effects of magma overpressure and edifice load may
counteract one another and lead to complex stress distribu-
tions at the reservoir walls. For practical purposes, the most
significant result is that, beneath a large edifice, large values
of magmatic overpressure are required to put the reservoir
walls in tension.

2.5. Displacements of the Chamber Walls

[19] As regards displacements, the situation is simpler.
Magma overpressure always acts to increase the reservoir
volume. The amount of expansion is

�V

V
¼ �A

A
¼ �P

G
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p 2 1� nð Þ � 1� 2nð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

qh i
: ð9Þ

The edifice load always has the opposite effect, that is, it
diminishes the reservoir volume.
[20] Let us first consider the effect of magma overpres-

sure alone. For small ac, the reservoir is small compared to
its depth, and the situation is close to that for a cavity in an
infinite medium. In this case, the reservoir inflates in an
isotropic way and the radial displacement tends to a uniform
value of [ac�P]/2G. As ac increases, the reservoir roof gets
thinner and deformation becomes more complicated. For ac
close to 1, the reservoir tends to become elongated in the
vertical direction.
[21] The effect of the edifice load is illustrated in Figure

11, again for slab-shaped edifices. For all cases shown,

Figure 9. Largest hoop stress at the top of reservoir as a
function of edifice radius ae. Stress values are scaled to the
edifice load rmg He. Curves are shown for different values
of reservoir size ac. For small values of ae, the hoop stress is
tensile and increases with edifice size. For given ac, the
dimensionless tensile hoop stress reaches a maximum for
some critical value of edifice radius, denoted a1. This
maximum dimensionless hoop stress value increases with
increasing ac. The hoop stress changes sign for ae equal to a
second critical value denoted a2 and becomes compressive
for larger values of ae. The dimensionless hoop stress tends
to 2 as ae ! 1.

Figure 10. Critical value a1 of the dimensionless edifice
radius ae for which the magnitude of the tensile hoop stress
reaches a maximum (see Figure 9), as a function of
dimensionless reservoir size ac.
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values for the edifice load, rmg He, and rigidity G have been
set equal to values of 2
107 and 109 Pa, respectively. For
small reservoirs (small values of ac), the edifice acts to
flatten the reservoir. For large reservoirs (large values of ac),
the thin roof region deforms markedly.

3. Eruption Conditions

[22] In the following, we consider conical edifices and
consider two different values of volcano slope, correspond-
ing to shield volcanoes (g = 0.1) and stratovolcanoes (g =
0.6). For given edifice radius Re, the smaller g, the smaller
the depth range over which stresses are compressive.

3.1. Failure Criterion

[23] We only consider tensile failure such that magma
intrudes a crack forming at the reservoir walls. We adopt a
simple rupture criterion, such that the magnitude of the
deviatoric stress exceeds some threshold value Ts, which
may be called the tensile strength of the rocks. This is
equivalent to the well-known Terzaghi condition [e.g.,
Valko and Economides, 1995, p. 65].
[24] Along the reservoir walls, the normal stress is, by

continuity,

srr ¼ �P: ð10Þ

In an infinite medium, the hoop stress due to magma
overpressure is constant along the wall:

sqq ¼ ��P : ð11Þ

Thus the stress perturbation is purely deviatoric, with no
pressure component. In a half-space, this is only longer true
for q = 0 or q = p (see equation (6)), and the stress
perturbation tensor is no longer purely deviatoric.
[25] In the present model, the perturbation stress tensor

takes the following form:

srr 0

0 sqq

� �
; ð12Þ

such that srr + sqq 6¼ 0. The reference stress field has no
deviatoric component, and hence the deviatoric stress tensor
is

�P�sqq
2

0

0 sqq��P
2

 !
: ð13Þ

In this case, the tensile failure criterion becomes

sqq ��Pc

2
¼ �Ts ; ð14Þ

where �Pc is the critical overpressure for failure. As the
reservoir size decreases, this criterion tends to the following
simple form:

�Pc ! Ts when ae ! 0 and ac ! 0: ð15Þ

[26] In practice, dike initiation from a pressurized reser-
voir must be viewed as a dynamical process such that
magma pressure is large enough to drive flow into the
incipient fracture so that a crack begins to propagate. For
viscous magmas such as dacites and rhyolites, viscous
stresses are important and it is more useful to define an
‘‘effective’’ tensile strength which is larger than the intrinsic
material property Ts [McLeod and Tait, 1999].
[27] In the following, we are only interested in cracks

opening in the upper part of the reservoir; that is, we ignore
those which may develop near the base. All the physical
properties involved are listed in Table 1 together with the
numerical values adopted for illustration purposes.

Figure 11. Displacement of the reservoir walls for the
same cases illustrated in Figure 8. Displacement values have
been multiplied by a factor of 5. Note the different results
for small and large reservoir radii.

Table 1. Parameters and Physical Properties Used in the

Calculation

Parameters/Properties Symbol Value

Geometrical parameters
Depth of the reservoir Hc

Radius of the reservoir Rc

Radius of the volcano Re

Height of the volcano He

Physical properties
Poisson’s ratio n 0.25
Rigidity, Pa G 1 
 109

Tensile strength, Pa Ts 2 
 107

Density of the magma, kg m�3 rm 2700
Dimensionless numbers

ac ¼ Rc=Hc

ae ¼ Re=Hc

g ¼ He=Re
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3.2. Fracture Location

[28] Wall rupture is achieved for some value qr of angle q,
implying that dikes are generated at specific locations in the
reservoir. Without any edifice, qr = qm (equation (7)) and the
critical magma overpressure for eruption is

�Pc ¼ Ts 1� a2c
� 

; ð16Þ

which is smaller than Ts. With increasing ac, rupture occurs
at increasingly smaller values of overpressure because of
stress concentration in a roof of decreasing thickness.
[29] As explained above, an edifice may generate tension

or compression on the reservoir walls depending on its size.
In the former case, tensile stresses at the wall are largest for
q = 0, i.e., at the top of the reservoir, beneath the edifice
summit. Adding the effects of magma overpressure leads to
a complicated stress field, and it is useful to think in terms
of a given reservoir under edifices of increasing dimensions.
Beneath a small edifice, the stress field is dominated by the
effect of magma overpressure and dikes may be generated
away from the edifice. A large edifice always acts to
localize rupture at the top of the reservoir. For values of
ae below the critical value a2, this result is obvious because
the surface load generates tension on the reservoir walls
with a maximum value at the top. For values of ae above
this critical value, the surface load induces compression on
the reservoir walls and tensile stresses are due to magmatic
overpressure only. The largest net tension shifts to the top of
the reservoir because the load-induced compression is
smallest there (Figure 8).
[30] Rupture locations depend on edifice size and shape

and reservoir size. The edifice shape comes into play
because its affects the scale of deformation: induced stresses
decrease over increasingly smaller distances in both the
vertical and horizontal directions as g increases. Three cases
may be defined according to the value of qr: (1) qr � qm, i.e.,
closer to the axis than in the absence of an edifice, (2) qr = 0,
i.e., at the top of the reservoir, and (3) qr > qm, i.e., farther
from the axis than in the absence of an edifice.
[31] Mature volcanic edifices have typical dimensions of

several kilometers, implying that a reservoir with radius
<1 km may be considered small in our context. For the
purposes of illustration, we first consider a ‘‘small’’ reservoir
with Rc = 200 m (Figures 12a and 12b). Beneath small
edifices, the rupture angle qr remains close to the reference
value qm. Beneath a shield volcano (g = 0.1), the rupture
angle varies over a large range as a function of reservoir
depth and depends weakly on edifice size (Figure 12a). In a
shallow reservoir (ac larger than about 0.4), the rupture angle
is never zero, implying that eruptive vents remain at the same
distance from the central region throughout the history of the
volcano. In a deep reservoir (ac smaller than about 0.4), the
edifice generates compression, and wall rupture is achieved
at the top, i.e., for qr = 0. Reservoir behavior is markedly
different beneath a stratovolcano (g = 0.6, Figure 12b). With
steeper flanks, the edifice may generate bending stresses on
the roof even if the reservoir is small. Thus, as soon as there
is an edifice of significant size (more than a few hundred
meters in radius), the rupture angle is zero.
[32] Next, we consider a ‘‘large’’ reservoir such that Rc =

4 km (Figures 13a and 13b). Stresses due to the edifice vary
significantly on the scale of the reservoir and one may not
think simply in terms of superimposing two effects at the

top of the reservoir. For small edifices, the magma over-
pressure effect dominates but the top part of the reservoir
strongly deforms. The rupture angle is larger than qm,
implying that dikes are issued from the sides of the
reservoir. Above some threshold value of the edifice radius,
the effect of the surface load eventually dominates and the
rupture angle jumps to zero. In this case, there is no solution
with values of the rupture angle qr between qm and 0. All
else being equal, the threshold edifice size is smaller for a
stratovolcano than for a shield volcano.

3.3. Overpressure in the Chamber

[33] In the following, we focus on stratovolcanoes (g =
0.6). The critical magma overpressure �Pc at the onset of

a

b

Figure 12. Values of the rupture angle qr where the
reservoir wall fails in tension for a small reservoir (Rc = 200
m), as a function of edifice radius and dimensionless
reservoir size ac. (a) Shield volcano with gentle slopes (g =
0.1). (b) Stratovolcano with steep slopes (g = 0.6).
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eruption depends strongly on edifice size. The change in
overpressure increases as ac ! 1 and we illustrate results
for two values of ac (Figures 14a and 14b). For small
edifice radii, as explained above, the edifice load and
magmatic overpressure have the same effect on the upper
half of the reservoir walls. Furthermore, as the edifice
grows, the magnitude of induced tensile stresses increases.
Thus it takes smaller and smaller magmatic overpressures
to generate an eruption. Above a critical value of Re

(corresponding to ae = a1, see Figure 9), the edifice starts
to exert compressive stresses on the reservoir walls, and it
takes larger and larger magmatic overpressures to generate
an eruption. These two types of behavior are associated
with different rupture locations along the reservoir walls.
Fractures open away from the axis beneath a small edifice
and at the axis beneath a large edifice. One should note
that the critical value of magmatic overpressure for erup-

tion may be much larger than the tensile strength of
encasing rocks.

4. Volcanological Implications

4.1. Discussion

[34] In our model, the upper crust is assumed to behave
elastically with no viscous stress relaxation. This is appro-
priate for the cold upper crust and for the short lifetimes of
volcanic systems. Relaxation timescales have been esti-
mated for the lithosphere as a whole, and are consistently
larger than 5 Myr [Beaumont, 1981; Nunn and Sleep,
1984]. Such estimates must be considered as vertical
averages and hence provide lower bounds for the upper
crust where magma reservoirs are located. In comparison,
Mount St. Helens is less than 50,000 years old [Mullineaux,
1986] and the more complicated Mount Adams system was
active for about 500,000 years [Hildreth and Lanphere,
1994]. These observations suggest that an elastic model
provides a reasonable approximation. Indeed, stratovolca-

a

b

Figure 13. Same as Figure 12 with a large reservoir (Rc =
4000 m).

Figure 14. Critical magmatic overpressure for eruption as
a function of edifice radius for a stratovolcano (g = 0.6). (a)
Results for a deep reservoir (ac = 0.2). (b) Results for a
shallow reservoir (ac = 0.8).
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noes are usually associated with positive free-air gravity
anomalies, showing that their surface loads are not com-
pensated [Williams and Finn, 1985]. On a smaller scale,
rocks which are around the magma reservoir get heated up.
Such local viscous behavior is limited to the thermal halo
around the reservoir, which grows by heat diffusion. One
should therefore introduce some ‘‘effective’’ reservoir size,
which is slightly larger than that of the purely magmatic
part.
[35] The model relies on a specific reservoir shape. A

different shape would affect the quantitative results but not
the main physical principles. For example, in a elastic half-
space, the maximum hoop stress on the walls is reached at
approximately the same location on the walls of a 2-D
cylinder and a sphere, i.e., at angle qm given by equation
(7) [McTigue, 1987; Tsuchida et al., 1982]. The behavior
of reservoirs with more complicated shapes may be under-
stood using three principles. One is that a concentrated
load acting on a thin roof induces bending, and hence
tensile stresses at the top of the reservoir. A second
principle is that the hoop stress due to magmatic over-
pressure depends on the local wall curvature. For a
reservoir in the shape of a prolate spheroid, the maximum
tensile stress due to magmatic overpressure is achieved at
the top when the height/width ratio is larger than about 2
[Tsuchida et al., 1982]. In this case, the effects of edifice
load and magmatic overpressure reinforce one another to
induce failure at the top for all edifice sizes. A third
principle is that a large edifice generates compressive
stresses over a large depth range. The bulk effect on the
reservoir is an increase of internal pressure whose magni-
tude depends on the vertical extent of the reservoir. In
Appendix B, we discuss the case of a reservoir with the
shape of vertical crack and show that the liquid-filled
volume acts as an integrating body which averages the
externally imposed stress field.
[36] Detailed comparisons between model predictions

and observations on a specific volcanic example are pre-
mature given the rather large errors on pressure estimates
and reservoir location, as discussed below. It is clear that
the model does not account for many complications which
may arise in nature. The upper crust may be anisotropic and
faulted. Results may be sensitive to reservoir shape, a point
which we plan to investigate in a future paper. However,
we have already explained that reservoirs with different
shapes would have the same behavior than the cylindrical
cavity studied here, and expect only quantitative differ-
ences. Another complication is that wall failure may not
always ensure eruption at Earth’s surface because, at
shallow levels, the compressive stress field due to the
edifice may halt dike ascent [Pinel and Jaupart, 2000]. A
key variable is the magma volatile content and one may in
fact calculate the minimum value required for a successful
eruption. Such considerations are outside the scope of this
paper.
[37] Below, we discuss eruptive behavior. The effects of

the surface load are important only if the magmatic
reservoir is not too deep. All mature stratovolcanoes have
radii exceeding 4 km (about 5 km and 10 km for Mount
St. Helens and Mount Adams, respectively, for example),
implying that they affect the stress distribution in the upper
crust over a depth range of more than 10 km. Most known

magma reservoirs are located in this zone of influence.
Two important points must be borne in mind. One is that
stresses exerted on the walls of a reservoir may be
significantly larger than the edifice load. The growth of
a several kilometers high stratovolcano can cause pressure
variations of as much as 100 MPa in a reservoir. The
induced stresses may be larger than tectonic ones. The
other point is that, depending on the location of there-
servoir, the edifice may generate compressive or tensile
stresses on the walls.

4.2. Distribution of Eruptive Vents

[38] The difficulty to locate magma chambers with
geophysical techniques has led many authors to use other
lines of reasoning. One such line of reasoning makes use
of the distribution of eruptive vents at Earth’s surface.
Another line of reasoning relies on the composition and
volume of erupted lavas and links the observed differ-
entiation trend to the chamber size. Such chemical models
require assumptions on the efficiency of mixing in
reservoirs that simultaneously undergo differentiation,
replenishment and eruption. These processes remain
poorly understood, especially for reservoirs that contain
viscous melts and that often become compositionally
stratified. It is therefore useful to assess the physical
evidence independently.
[39] We assume for the sake of argument that there is a

magma reservoir at some depth which may or may not
coexist with peripheral conduit systems connected to a
deeper source of magma. This reservoir may also grow
with time and one should account for this possibility. The
model links the location of fractures opening at the reservoir
walls to the sizes of the reservoir and of the edifice. In our
calculations, fractures are generated at the reservoir walls at
distance d from the axis, such that

d ¼ Rc sin qr: ð17Þ

Thus, as the rupture angle decreases to zero, wall fractures
shift toward the axis. For small reservoirs, this shift may be
gradual (Figures 12a and 12b). For large reservoirs, this
shift occurs abruptly when the edifice reaches a certain size
as the rupture angle jumps from values larger than qm to zero
(Figures 13a and 13b).
[40] Beneath a small stratocone, qr > qm. In this case,

dikes are issued from the sides of the reservoir where the
local stress field is dominated by the effects of reservoir
overpressure. Thus they initially follow a radial trajectory
away from the axis. There is no mechanism to bring them
back to the axis and the end result is a number of vents away
from the focal region, at distances which may in fact be
larger than d. Beneath a mature stratovolcano, dikes are
always generated at the top of the reservoir and cannot stray
away from the axis in the stress field due to the edifice load
[Dahm, 2000; Muller et al., 2001]. In this case, eruptive
activity gets automatically focused in the central region.
Thus the distribution of eruptive vents together with a
known edifice (or the lack of an edifice) leads to constraints
on the size and depth of the reservoir.
[41] Large stratocones often arise from the central region

of diffuse volcanic zones. In early stages of volcanic
activity, primitive magmas erupt from fractures at the edges

ECV 4 - 10 PINEL AND JAUPART: MAGMA CHAMBER BENEATH AVOLCANIC EDIFICE



of the reservoir (such that qr > qm). At Earth’s surface, the
associated vents would outline the reservoir in horizontal
cross section. For such primitive lavas which are fluid and
relatively volatile-poor, successive eruptions lead to a set of
overlapping flows and domes which collectively build a
lava shield. Regardless of the exact shape of such a shield,
the diffusion-like character of elastic equations implies that
the induced stress field at depth retains the same axial
symmetry than the examples studied above, and the effects
on the reservoir are the same. Above a certain height, or
radius (Figure 13a), the lava shield or incipient edifice is
sufficient to change the location of vents and to focus
eruptive activity in the central region. Additionally, dikes
rising through the stress field of such an edifice get
deflected toward the axial region [Dahm, 2000]. In the
present framework, therefore, edifice growth is a self-
reinforcing process.
[42] A well-known feature of andesitic volcanic systems

is that differentiated lavas seem to be confined to the
focal region, i.e., erupt through a central vent system in
the main stratocone, while primitive lavas may get erup-
ted simultaneously through peripheral vents and fissures
[e.g., Hildreth and Lanphere, 1994]. This has been
attributed to the fact that primitive magmas rising in the
central region are ‘‘captured’’ by a reservoir. This model
is incomplete because it says nothing about the size of the
reservoir and does not specify the connection between the
deep supply system and the central vent complex. At
Mount Adams, for example, the large stratocone lies at
the center of a diffuse volcanic field extending over a
radius of about 20 km [Hildreth and Lanphere, 1994].
The largest magma volumes were erupted in the focal
region from central or proximal flank vents in the vicinity
of the summit. The buildup of the edifice clearly went
hand in hand with the focussing of eruptive activity, by
definition, but was not necessarily due to the focussing of
magma conduits from deep sources. As shown above, a
magma reservoir would automatically sustain the central
vent region.
[43] Some volcanic areas are characterized by a diffuse

pattern of vents issuing evolved lavas. It has been argued
that these provide evidence for large shallow reservoirs, on
the assumption that vents can be generated over the whole
surface of a reservoir [Bacon, 1985]. For example, the
Glass Mountain-Long Valley system, which generated the
enormous eruption of the Bishop Tuff, is laced with a large
number of silicic vents over a broad region larger than the
caldera itself [Metz and Mahood, 1985]. The system was
active for more than 1 million years before the catastrophic
Bishop Tuff event [Metz and Mahood, 1985]. The present-
day caldera obviously demonstrates that a shallow magma
chamber developed, but a key issue is to evaluate when it
did develop. According to our model, if there had been a
large reservoir in early stages, eruption of evolved magmas
would have eventually been focused in the central region
and a diffuse vent pattern could not have been sustained.
This argument suggests that there was no large magma
chamber in early stages of magmatic activity and hence that
the reservoir grew with time. This is consistent with the
chemistry of erupted lavas, which reflects mixing between
primitive melt and evolved resident magma. Indeed, Metz
and Mahood [1991] have suggested that the reservoir was

smaller in early stages. There is a gradual evolution toward
slightly more primitive compositions. As regards the reser-
voir, this requires that the input from the primitive source
exceeds output toward the surface, which implies reservoir
growth.

4.3. Mount St. Helens Magma Reservoir

[44] At Mount St. Helens, petrological studies indicate
large pressure changes of more than 100 MPa, from 160 to
300 MPa over 4000 years [Gardner et al., 1995] (Figure 1).
Such pressure changes are significantly larger than exper-
imental errors of about 40 MPa. This error level makes it
difficult to tie down precisely the magnitude of pressure
variations, but it is clear that pressure changed because
the phase assemblages did evolve. At Mount St. Helens,
a systematic trend is that the more evolved the magma,
the larger the pressure [Hopson and Melson, 1990;
Gardner et al., 1995]. The data exhibit a pattern which
is repeated twice. Two cycles can be defined, starting by
very large eruptions (Yn and Wn) and characterized by
monotonous changes toward more primitive magma com-
positions and by temperature increases (from 770�C to
910�C between the Yn and Bi eruptions, and from 850�C
to 920�C between the Wn and May 1980 eruptions).
Each cycle begins with a large and extremely rapid
pressure drop, followed by smaller eruptions associated
with weak pressure changes. The two cycles are separated
by a rather long lull in explosive activity (1000 years)
between the Bi and Wn events, during which time the
volcano issued lava flows and domes. This transitional
phase is characterized by a large pressure increase. At
Mount St. Helens, therefore, the consistent pattern seems
to be that pressure decreases rapidly whereas phases of
pressure increase take much longer. This provides an
important clue. A convincing interpretation for Mount St.
Helens should account for the systematics in the data,
including the existence of two cycles as well as the relation-
ship between pressure and compositional (and hence tem-
perature) changes.
[45] We briefly review problems with a number of

possible explanations. Magma withdrawal may affect a
small fraction of the reservoir and hence different erup-
tions may be fed from different levels in a stratified
reservoir. However, the samples analyzed by Gardner et
al. [1995] have homogeneous matrix glass and phenocryst
assemblages, save for one particular event, implying that
the eruptions tapped a homogeneous magma body. The
general trend of chemical and petrological variations, such
that the more evolved the magma, the larger the pressure,
is the opposite of what is expected of a stably stratified
magma chamber. In such a chamber, density must increase
with depth, and hence more evolved magmas would be
located at the top [Hildreth, 1981; Blake and Ivey, 1986].
In another class of models, pressure changes are due to
variations of reservoir depth [Gardner et al., 1995]. A first
problem is that it is very difficult to account for the ascent
of large amounts of magma in the short times which
separate the Yn-Ye and Wn-We eruptions (Figure 1)
[Miller and Paterson, 1999; Petford et al., 2000]. In one
end-member model, each eruption is fed by its own
independent reservoir. Within this framework, the data
imply that, in one cycle, successive magma batches get
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emplaced at increasingly shallower levels. There is no
obvious explanation for the fact that more primitive
magmas are able to rise to shallower levels than their
evolved counterparts which are less dense. In the other
end-member model, a single magma batch moves verti-
cally, feeding eruptions along the way. Replenishment by
more primitive magma is required, and the gradual shift
toward less evolved compositions implies that the input of
primitive magma increases through a cycle. How this is
achieved is not specified. None of these models can
account for the existence of a second cycle beginning at
large depth.
[46] We now evaluate how our model fits the Mount St.

Helens observations. As shown by Figures 14a and 14b,
the reservoir behavior depends on the values of Rc and Hc.
The rather small erupted volumes at Mount St. Helens
suggest a reservoir of limited extent. Seismological con-
straints indicate that this reservoir is probably deeper than
6 km. The present-day edifice has a radius of about 5 km,
which puts the reservoir in the zone of compression, such
that the critical magmatic overpressure increases with
edifice size. Indeed, this is consistent with stratocone
growth, as this implies preferential failure of reservoir
walls at the axis. As discussed above, we restrict ourselves
to a qualitative discussion, postponing a fuller investiga-
tion until a range of reservoir shapes has been studied.
This is also warranted by the rather large errors in pressure
estimates. One can make a good case for Mount St.
Helens solely on the basis of the systematics in the
observations.
[47] According to our framework, the threshold over-

pressure for eruption increases as the edifice grows and,
conversely, decreases if the edifice gets destroyed (Figure
1). One may note as a starting point that this implies that a
pressure increase takes much longer than a pressure
decrease, as observed. From the Bi to the Wn eruptions,
pressure increased by about 100 MPa in about 1000 years
(Figure 1). This period saw voluminous flows and domes
which buried older deposits, and the modern edifice was
built during that time [Mullineaux and Crandell, 1981;
Hopson and Melson, 1990]. Our model predicts that this
should lead to a pressure increase, which is exactly what
happened (Figure 1).
[48] The model can also be tested in reverse with

destructive events which led to significant reductions of
edifice size. A landslide decapitated Mount St. Helens at the
end of the Pine Creek period [Hausback and Swanson,
1990], after the Pu eruption (Figure 1). The next recorded
eruption (Bi) is indeed associated with a smaller pressure.
The Wn eruption was very voluminous and was associated
with exceptionally large lithic fragments [Carey et al.,
1995]. It resulted in partial edifice destruction, as witnessed
by the large carter (>500 m deep) which formed at that time
[Hopson and Melson, 1990]. This led to a significant
reduction of edifice load which should have led to a
pressure decrease in the reservoir. This is exactly what is
observed.
[49] Last, we address the relationship between composi-

tion and pressure. In our framework, the reservoir remains
at a fixed depth and its temperature varies because of
cooling against country rock and because of heating due
to replenishment with more primitive and hence hotter

magma. An increasing temperature indicates that the effects
of replenishment dominate. A phase of falling temperature
following an increase can only be accounted for by a drop in
replenishment rate. At Mount St. Helens, the significant
temperature drop between the Bi and Wn eruptions (from
913�C to 850�C [Gardner et al., 1995]) occurs as pressure
increases. This is consistent with a simple hydraulic model
for magma flow between a source at pressure Ps and the
reservoir at pressure Pr. For a conduit of radius a and
distance H between source and reservoir, the flux of magma
is equal to

Qin ¼
pa4

8m
Ps � Prð Þ � rmgH

H
; ð18Þ

This shows that an increase of reservoir pressure acts to
reduce the flux of magma into the reservoir, and hence to
enhance cooling. This accounts for the change toward more
evolved magma compositions which took place between the
Bi and Wn eruptions. Conversely, a sequence of falling
pressures implies an increase of replenishment rate, and
hence accounts for the shift toward more primitive composi-
tions in a cycle.
[50] With our model, eruptions with the smallest edifice

load are associated with the smallest values of reservoir
overpressure. Thus the pressures recorded by their eruptive
products are closest to the local pressure in country rock
surrounding the reservoir. At Mount St. Helens, the smallest
pressure value of 1.6 kbar [Gardner et al., 1995] corre-
sponds to a depth of 6–7 km using the density model of
Williams et al. [1987]. This is very close to the reservoir
depth determined by seismicity studies [Moran, 1994].

5. Conclusion

[51] A 1000 m high volcanic edifice exerts a load of
about 30 MPa on Earth’s surface and induces stresses in the
upper crust which are comparable to magmatic overpres-
sures in volcanic reservoirs. If the reservoir is not too deep,
this generates stresses on the reservoir walls which may be
larger than the surface load itself. There are two important
consequences for eruption characteristics. One is that the
reservoir walls fail preferentially beneath the top of the
edifice, at the top of the reservoir, implying eruptions
through a central vent system. The second consequence is
to change the magnitude of magmatic overpressure required
for reservoir wall fracture. For small reservoirs, this critical
overpressure is larger than in the absence of an edifice and
increases with edifice size. Conversely, edifice destruction
through landslides or explosions, implies a reduction of the
critical overpressure. This effect is enhanced for stratovol-
canoes with respect to shield volcanoes with gentle slopes.
The amplitude of such pressure variations are comparable
to, and may even be greater than, tectonic stress levels and
may be large enough to be recorded by phenocryst assemb-
lages in crystallizing magma.

Appendix A: Elastic Model

[52] For plane strain, the relationship between stress and
strain is

sxx ¼ � l exx þ eyy
� 

þ 2mexx
� �

; ðA1Þ
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syy ¼ � l exx þ eyy
� 

þ 2meyy
� �

; ðA2Þ

sxy ¼ �mexy: ðA3Þ

such that a tensional stress is negative. Stresses and
displacements are calculated from the stress function c
defined by

sxx ¼
@2c
@y2

; ðA4Þ

sxy ¼ � @2c
@y@x

; ðA5Þ

syy ¼
@2c
@x2

: ðA6Þ

This function satisfies the biharmonic equation.
[53] Following Jeffery [1920], we solve the elastic prob-

lem in bipolar coordinates (a, b), so that the free surface and
the cavity wall correspond to two surfaces a = const. This
system of curvilinear coordinates is defined by the con-
jugate functions:

aþ ib ¼ ln
xþ i zþ að Þ
xþ i z� að Þ ; ðA7Þ

with x, z stand for the Cartesian coordinates, a is the real
positive length 1

2
O1O2 and i the imaginary number. This

system of coordinates is shown in Figure A1 and is such
that a = 0 for the free surface and a = a1 at the cavity wall.
a1 is defined by

cosh a1ð Þ ¼ 1

ac
: ðA8Þ

Coordinates a and b may be calculated using two particular
points O1 and O2 of Cartesian coordinates (0, a) and (0, -a),
respectively (Figure A1),

a ¼ ln
PO2

PO1

; ðA9Þ

b ¼ O1
bPO2: ðA10Þ

[54] We first describe the solution obtained by Jeffery for
a uniform pressure inside the chamber and zero stress at the
free surface and then present the calculation for a uniform
load over a disk of radius Re at the surface.

A.1. An Overpressured Reservoir Beneath a Free
Surface

[55] In the bipolar coordinates (a, b), the boundary
conditions are

saa a1; bð Þ ¼ 1; ðA11Þ

sab a1; bð Þ ¼ 0; ðA12Þ

saa 0; bð Þ ¼ 0; ðA13Þ

sab 0; bð Þ ¼ 0: ðA14Þ

[56] Pressure is normalized by the reservoir overpressure
�P. In this case, c is given by

c ¼ B0a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
cosha� cos b

f1 að Þ cos bð Þ; ðA15Þ

where

f1 að Þ ¼ A1 cosh 2að Þ þ B1 þ C1 sinh 2að Þ ðA16Þ

[57] Constants B0, A1, B1 and C1 are set by the boundary
conditions

B0 ¼ � a2c
1� a2c

; ðA17Þ

A1 ¼
a2c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p ; ðA18Þ

B1 ¼ � 1

2

a2cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p ; ðA19Þ

C1 ¼ � a2c
2ð1� a2cÞ

ðA20Þ

Stresses are given by

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
saa ¼ B0 sinh að Þ cos bð Þ � cosh að Þ½ � þ f1 að Þ

� cos bð Þ sinh að Þ _f1 að Þ; ðA21Þ

Figure A1. Bipolar coordinates for a half-space with a
cylindrical cavity.
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ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sab ¼ sin bð Þ B0 � _f1 að Þ

� 
cos bð Þ � cosh að Þ½ �; ðA22Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sbb ¼ B0 sinh 2að Þ � �f1 að Þ þ 2f1 að Þ

þ 2 cos bð Þ½cosh að Þ�f1 að Þ � B0 sinh að Þ
� sinh að Þ _f1 að Þ� � cos 2bð Þ�f1 að Þ: ðA23Þ

We are particularly interested in the chamber walls, where
the hoop stress is

sbb a1; bð Þ ¼ 1� a2c cos 2bð Þ
a2c � 1

; ðA24Þ

where

cos b ¼ ac � cos q
1� ac cos q

: ðA25Þ

[58] The radial displacement is taken to be positive when
it is directed toward increasing values of a, i.e., from the
exterior to the center of the cavity. This is the opposite of
what occurs in the cylindrical coordinate system attached to
the cavity center. The radial displacement is given by

2G

ac
u a1; bð Þ ¼ � 1

1� a2c
� þ 3� 4nð Þ ac

1� a2c
�  cos b

� ac 1� 2nð Þ
1� ac cos b

ac

1� a2c
�  sin bð Þ2þ cos b

" #
: ðA26Þ

The tangential deplacement is taken positive when it is
along decreasing values of q:

G

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
a2c

v a1; bð Þ ¼ 1� nð Þ sin b: ðA27Þ

A.2. Load at the Free Surface and Zero Pressure Inside
the Reservoir

[59] At Earth’s surface, the new boundary condition is

szz ¼ rmgHe for 0 � r � Re: ðA28Þ

The boundary conditions for this problem are

saa a1; bð Þ ¼ 0; ðA29Þ

sab a1; bð Þ ¼ 0; ðA30Þ

saa 0; bð Þ ¼ p� bc
p

�
X1
n¼1

2

np
sin nbcð Þ cos nbð Þ; ðA31Þ

sab 0; bð Þ ¼ 0; ðA32Þ

where bc2 [0;p] and is given by

cos bc ¼
a2e � 1þ a2c
a2e þ 1� a2c

: ðA33Þ

Here, pressure is normalized by the load of the edifice, rmg
He. The stress function c may now be written as

c ¼ B0a
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
cosha� cos b

X1
n¼1

fn að Þ cosðnbÞ; ðA34Þ

where

f1 að Þ ¼ A1 cosh 2að Þ þ B1 þ C1 sinh 2að Þ; ðA35Þ

and, for n � 2,

fn að Þ ¼ AN cosh nþ 1ð Það Þ þ BN cosh n� 1ð Það Þ
þ CN sinh nþ 1ð Það Þ þ DN sinh n� 1ð Það Þ: ðA36Þ

[60] The integration constants are

B0 ¼
p� bc

p
a2c

1� a2c
; ðA37Þ

A1 ¼ �p� bc
2p

a2cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p ; ðA38Þ

B1 ¼
p� bc
2p

2� a2cffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p ; ðA39Þ

C1 ¼
p� bc

p
a2c

2 1� a2c
�  ðA40Þ

for n � 2;AN ¼ fn
nþ1ð Þ�cosh 2na1ð Þ� n cosh 2a1ð Þ

2 nþ1ð Þþ 1
n�1

cosh 2na1Þ � n2

n�1
coshð2a1

� � � ;
ðA41Þ

BN ¼ fn
nþ 1ð Þ þ nþ1

n�1
cosh 2na1ð Þ � n nþ1ð Þ

n�1
cosh 2a1ð Þ

2 nþ 1ð Þ þ 1
n�1

cosh 2na1ð Þ � n2

n�1
cosh 2a1ð Þ

� � ; ðA42Þ

CN ¼ fn
sinh 2na1ð Þ þ n sinh 2a1ð Þ

2 nþ 1ð Þ þ 1
n�1

cosh 2na1ð Þ � n2

n�1
cosh 2a1ð Þ

� � ; ðA43Þ

DN ¼ fn
� nþ1

n�1
sinh 2na1ð Þ � n nþ1ð Þ

n�1
sinh 2a1ð Þ

2 nþ 1ð Þ þ 1
n�1

cosh 2na1ð Þ � n2

n�1
cosh 2a1ð Þ

� � ðA44Þ

fn are given by

f1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q p� bc
p

; ðA45Þ

f2 ¼ � 2

3p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sinðbcÞ; ðA46Þ

f3 ¼ � 1

3p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sin bcð Þ þ 1

2
sin 2bcð Þ

� �
; ðA47Þ

fnþ1 ¼
� 4

np

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
sin nbcð Þ þ 2 n� 1ð Þ nþ 1ð Þfn � n� 2ð Þ n� 1ð Þfn�1

nþ 1ð Þ nþ 2ð Þ
ðA48Þ
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for n � 3. Stresses are given by

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
saa ¼ � 2B0 sinh að Þ cosh að Þ þ 2f1 að Þ

þ 2B0 sinh að Þ cos b

þ
X1
n¼1

cos nbð Þ
nþ1ð Þ nþ2ð Þfnþ1 að Þ�2 cosh að Þ n2 � 1ð Þfn að Þ

þ n� 1ð Þ n� 2ð Þfn�1 að Þ � 2 sinh að Þ _fn að Þ

8<:
ðA49Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sab ¼ �2B0 cosh að Þ sin bð Þ þ B0 sin 2bð Þ

�
X1
n¼1

sin nbð Þ nþ 1ð Þ _fnþ1 að Þ
�

� 2n cosh að Þ _fn að Þ þ n� 1ð Þ _fn�1 að Þ� ðA50Þ

2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

q
sbb ¼ B0 sinh 2að Þ � �f1 að Þ þ 2f1 að Þ

þ cos bð Þ 2 cosh að Þ�f1 að Þ � 2B0 sinh að Þ � �f2 að Þ
� 2 sinh að Þ _f1 að Þ þ 3f2 að Þ:

�

þ
X1
n¼2

cos nbð Þ
2 cosh að Þ�fn að Þ � �fnþ1 að Þ � �fn�1 að Þ
� 2 _fn að Þ sinh að Þ
� n� 2ð Þfn�1 að Þ þ nþ 2ð Þfnþ1 að Þ:

8<: ðA51Þ

[61] The hoop stress at the wall is given by

sbb a1; bð Þ ¼ p� bc
p

2� a2c
1� a2c

þ 4 cos b
acae

p a2e � a2c þ 1
�  ffiffiffiffiffiffiffiffiffiffiffiffiffi

1� a2c
p

þ 4

a2c

X1
n¼2

cosðnbÞ
sinh na1ð Þ 2Qn � Qnþ1 � Qn�1ð Þ

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
cosh na1ð Þ �Qnþ1 þ Qn�1ð Þ:

(
ðA52Þ

with

Q1 ¼ 2
p� bc
8p

a4c

1� a2c
� 3=2

Qn>1 ¼
n nþ 1ð Þfn

2 nþ 1ð Þ þ 1
n�1

cosh 2na1ð Þ � n2

n�1
cosh 2a1ð Þ

� � ðA53Þ

Using the same sign conventions as before, the radial and
tangential displacements of the wall are equal to

Appendix B: A Magma-Filled Vertical Crack

[62] In order of characterize the effect of the shape of the
reservoir, we consider the example of a vertical crack filled
with magma. A crack of length 2zo is initially opened by an
overpressure �Pi and is then subjected to stresses due to an
edifice. The z axis is oriented positively upward and
centered at the middle of the crack. The crack width w
may be obtained by [see, e.g., Lister and Kerr, 1991]

dw

dz
¼ 1

mp

Z zo

�zo

p sð Þ z2o � s2

z2o � z2

� �1=2
ds

s� z
þ k2

z2o � z2
� 1=2 ; ðB1Þ

where m = G/(1 � n) and p is the ‘‘elastic’’ pressure (i.e., the
difference between the internal magma pressure and the
external normal stress). Constant k2 is determined by

u a1;bð Þ ¼
1

G

p� bcð Þac
2p 1� a2c
� 

� p� bcð Þa2c
2p 1� a2c
�  3� 4nð Þ cos b

þ p� bcð Þa2c
2p 1� a2c
�  1� 2nð Þ ac sin bð Þ2

1� ac cos b

� p� bc
2p

2n� 1ð Þ cos b
1� ac cos b

þ 2K 1� nð Þ cos b� ac

1� ac cos b

�2 1� nð Þ
P1

n¼2

Qn

n n� 1ð Þ nþ 1ð Þ nþ 1ð Þ sinh nþ 1ð Þa1ð Þ � n� 1ð Þ sinh n� 1ð Þa1ð Þ½ �

� n cos nbð Þ � ac sin nbð Þ sin b
1� ac cos b

� �

8>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA54Þ

v a1;bð Þ ¼
1

G

p� bc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p 1� 2n
2

� 1� nð Þa2c
� �

sin b

� p� bc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p 3� 4n
2

a2c sin b
1� ac cos b

þ p� bc
p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p 1� 2n
4

ac sin 2bð Þ
1� ac cos b

þ 2K
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
1� nð Þ sin b

1� ac cos b

� 2 1� nð Þ
X1
n¼2

Qn

n nþ 1ð Þ
nþ 1ð Þ
n� 1ð Þ sinh nþ 1ð Þa1ð Þ � sinh n� 1ð Þa1ð Þ

� �
�

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1� a2c

p
1� ac cos b

� sinðnbÞ

� 2 1� nð Þ
X1
n¼2

Qn

n
sin nbð Þ cosh nþ 1ð Þa1ð Þ � cosh n� 1ð Þa1ð Þ½ �

8>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

ðA56Þ

where K is given by

K ¼
X1
n¼2

Qn

n� 1ð Þ nþ 1ð Þ sinh 2na1ð Þ þ n sinh 2a1ð Þ½ � ðA55Þ
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the condition that the crack is closed at its upper end (i.e.,
w(zo) = 0).
[63] In the initial state, the elastic overpressure p(s) is

uniform and equal to some value �Pi. Integrating equation
(B1), we obtain

w zð Þ ¼ �Pi

m
z2o � z2
� 1=2 ðB2Þ

[64] We now consider that a volcanic edifice has grown at
Earth’s surface above the same magma-filled crack. For an
incompressible magma, the volume contained within the
crack must remain constant. For the sake of simplicity, we
approximate the stress distribution due to the edifice in the
vicinity of the crack by a linear function, which is valid only
if the crack is close enough to the surface. The external
stress change due the edifice is thus imposed to be

�Pe ¼ h�Pi þ hz ðB3Þ

where h > 0 is positive. The elastic overpressure is thus

p sð Þ ¼ �Pf � h�Pi � hs ðB4Þ

where �Pf is the new overpressure inside the crack, which
must be solved for. If the crack is open everywhere, w(z) is

now given by

w zð Þ ¼
z2o � z2
� 1=2

2m
2 �Pf � h�Pi
� 

� hz
� �

: ðB5Þ

The constraint that the volume of magma inside the crack is
conserved implies that

�Pf ¼ �Pi þ h�Pi: ðB6Þ

This shows that the magma pressure within the crack has
been increased by an amount equal to the average value of the
normal stress due to the edifice over the length of the crack.
[65] The above calculation is only correct if the crack

remains open everywhere, i.e., if w(z) > 0 for jzj < zo. This
gives a condition relating the crack length, �Pi and h,

zo <
2�Pi

h
: ðB7Þ

Figure B1 shows the crack width w for the maximum value
of zo. For larger values of zo, the crack closes at its upper
boundary due to the edifice load.
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