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Two-phase flow through fractured porous media
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Two-phase flow in fractured porous media is investigated by means of a direct and complete numerical
solution of the generalized Darcy equations in a three-dimensional discrete fracture description. The numerical
model applies to arbitrary fracture network geometry, and to arbitrary distributions of permeabilities in the
porous matrix and in the fractures. It is used here in order to obtain the steady-state macroscopic relative
permeabilities of random fractured media. Results are presented as functions of the mean saturation and are
discussed in comparison with simple models.

DOI: 10.1103/PhysReVvE.68.026703 PACS nunerd7.11+j, 47.55.Mh, 91.45.Vz

[. INTRODUCTION lowed by Warren and Rodtl1]. The review article of Ka-
zemi and Gilmarj12] describes many variants of such mod-
The description of two-phase flows in fractured porousels. Panfilof13] combines the double porosity model with a
media is a challenging problem, because of the multipledouble scale expansion in order to derive the effective mac-
scales that are involved and of the nonlinearity of the govroscopic phase permeabilities, and numerically solves the
erning equations. Yortsdd] discusses the various regimes closure problems in a few simple two-dimensional situations.
that may take place in different situations. Capillary models have also been used for direct simula-
Immiscible binary flows in homogeneous porous mediation of drainage and imbibitiorfFenwick and Blunt[14];
are commonly described by generalized Darcy’s equationRatzek{ 15]; Hughes and Blunf16]) or to evaluate effective
which are based on the concept of relative permeabilitymacroscopic relative permeabiliti€e$17]).
(Marle [2]; Bear and Bachmaf3]; Dullien [4]). A two- The present work is based on a three-dimensional discrete
dimensional(2D) equivalent of this formulation can be ap- description of the fracture network and of the embedding
plied to two-phase flows through fracturésg., Wang and matrix. Any fracture network geometry, any type of bound-
Narasimhan5]). This description results from the upscaling ary condition, and any distribution of the fracture and matrix
of the Stokes equations that govern the fluid motion at theroperties can be addressed, without simplifying approxima-
pore level, and it applies on a local scale, large compared ttons. Therefore, this description can be used to investigate
the microscopic pore scale, but small compared to the maany type of flow or transport problems, as well as other pro-
roscopic scale on which the medium properties may vary. Itesses, which may be considered in future developments,
assumes that the microscopic distribution of the two fluids issuch as mechanical deformation and hydromechanical cou-
controlled by the capillary forces. The capillary pressure angling, that simplified models like equivalent pipe networks
the relative permeabilities are functions of the microstructureare at a loss to address. The main drawback of this direct
of the porous material, and depend on the local saturation.approach used to be its computational requirements—but
Just like the classical Darcy law, generalized Darcy'sthanks to the progress of the computers it is not a real issue
equation was first introduced on an empirical bablsiskat anymore. The numerical tools described here are able to
and Mereq6]; Muskatet al.[7]), and later received a justi- handle several hundreds of fractures.
fication in various theoretical frameworksee Bourgedi8]), Other discrete fracture numerical models have been de-
if the classical requirement of scale separation of the homogscribed in the literature. Many are reviewed by Bogdanov
enization theory and a few conditions relative to the fluidet al. [18]. They generally do not incorporate a full 3D de-
interfacial properties are satisfied. scription of both fracture and matrix flow. For instance, the
Two-phase flows in heterogeneous or fractured porousimulation package RockfloWKaiseret al.[19]) apparently
media are described by the generalized Darcy laws for thdoes not include a 3D mesh of the matrix rock. The package
two fluids, coupled by a global continuity equation, and TOUGH2 (see e.g., Wu and Pruef20]) does not incorporate
supplemented with constitutive equations for the relative perfractures as discrete elements; fractures are covered by vol-
meabilities and saturation-capillary pressure relationshipgyme elements, and a dual-porosity model is applied. The
which are generally nonlinear. The difficulty of the simula- packageFRACMAN distributed by Golder is apparently lim-
tion stems from this nonlinearity, from the sharp contrast ofited to a few fractures and to single-phase flow. The numeri-
the matrix and fracture properties and from the random chareal model CompFlowUngeret al.[21]) and its extension by
acter of the medium geometry. Thus, most of the earlier conSloughet al. [22] impose that all the fracture planes are or-
ceptual or numerical approaches replaced this complex syshogonal. In all these cases, a major limitation seems to be
tem by simpler idealized models. the lack of an appropriate 3D mesh generator. A possible
A common approach is based on the extension of thexception is the model of Bastiaet al. [23], coupled with
double porosity model introduced for single-phase flow bythe mesh generator of Sdberl [24], but we are not aware of
Barenblatt and Zheltoy9] and Barenblatiet al. [10], fol-  any systematic application of this software.
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The physical model relies on generalized Darcy’s equaphase permeability of fracture networoudinaet al.[32])
tions, which are assumed to apply on the intermediate scalend on incompressible or compressible single-phase flow in
of our description, i.e., typically on a metric scale, with non-fractured porous medidBogdanovet al. [18]; Bogdanov
linear and possibly hysteretic constitutive models for theet al.[33]). A general description of the approach is given by
capillary function and the relative permeabilities. In addition,Adler and Thovert{34]. As already stated, our simulation
we use a local equilibrium hypothesis, including between theode for unsteady two-phase flow, based on a fully three-
fractures and the immediately surrounding matrix, whichdimensional discrete fracture model, can be applied to case
means that the capillary pressure is continuous. studies, in an arbitrary setting, or to determine the macro-

There are of course many complex, yet realistic and interscopic properties of a fractured medium to be used in an
esting situations where such a description is inadequate. Fepscaled description.
instance, fractures generally have self-affine geometries and The paper is organized as follows. Section Il provides the
scaling properties, which make an homogenized descriptiomathematical framework for two-phase flow in fractured po-
very difficult, if not impossible, on a range of scales. Immis-rous media, including the transport and the constitutive equa-
cible fluid displacement with buoyancy effects in self-affinetions that are eventually reformulated in dimensionless form.
fractures was investigated theoretically by Schmitttettdl.  Dimensionless parameters and criteria are also introduced to
[25] and experimentally by Auradcet al.[26]. It was shown quantify various physical regimes. In particular, ampriori
that long range correlations induce peculiar phase distribucriterion for the possibility of upscaling generalized Darcy's
tion patterns and control many aspects of the flow procesgquation is devised, which is later confirmed by the numeri-
Many other recent studies addressed two-phase flows in fragal simulations.
tures or in porous media on a microscopic saalg., Aker Section Il adresses the numerical aspects. The 3D mesh-
et al. [27]; Flekkéy et al. [28]; Kundsen and Hansef29]; ing of randomly fractured media is described first. Then, the
Méheustet al.[30]). Emphasis is often put on flow channel- spatial and temporal discretizations of the equations and the
ization and fingering, and many effects that cannot be easilgolution algorithm are presented.
homogenized are reported. Networks of parallel fractures are considered in Sec. IV.

However, we do not address this first upscaling problemrhe illustrative simple example of an array of infinite paral-
in this paper. Instead, we assume that our intermediate déel fractures is treated first. Since an analytical solution can
scription scale is large enough to encompass the range & obtained in this case, it provides a direct check of the
local self-affinity, so that the Darcy equations are applicablenumerical codes. A generalization for steady-state two-phase
Note, to support this, that even though the fracture surfaceow of the classical result of SnoWs5] for single-phase
are often self-affine over a very wide range, their two surflow in networks of infinite plane fractures is given. Finally,
faces are generally mated on the large scale. Hence, a cutdffe simulation of the flow in a closed regularly compart-
length exists beyond which a regular behavior of the fracturénented reservoir is presented in details, and discussed in

aperture and of its transport properties is recovésee, e.g., comparison with homogenized models.
Brown et al. [31]). Complex realistic situations are addressed in Sec. V. We

From this local description, we may proceed with a secconsider here networks of random fractures in a permeable
ond upscaling up to the field scale, when the standard statiock matrix. Detailed results are given firstin Sec. V Afor an
tical homogeneity requirements are fulfilled. Most of theillustrative case. Then, more systematic results are presented
present calculations address this situation, in Secs. V and Vin Sec. V B; the steady-state macroscale phase relative per-
There are also cases where a second upscaling is inappfeabilities are determined as functions of saturation, for
cable, for at least three reasons. The first reason stems frobypical situations with percolating or nonpercolating fracture
the nonlinearity of the equations, which causes the apparemgetworks. The influence of the other parameters is briefly
flow properties to become rate dependent. In the following, &onsidered in Sec. V C.
criterion is introduced, which is basically a large scale cap- The previous results are discussed in Sec. VI, in compari-
illary number, below which this effect is negligible. The two Son with two simple models.
other reasons are related to structural features. They are the Finally, a few concluding remarks are gathered in Sec.
two classical inhibitors for any homogenization procedureVII.
namely, large scale heterogeneity, such as a fracture network
with scaling properties, and some types of flows where the
boundary conditions induce significant gradients over ranges Il. MATHEMATICAL FORMULATION
that are comparable with the typical length scales of the
structure. In such situations, the numerical model can still be
applied for direct simulations. Large scale heterogeneity or Recall that the governing equations for the flow are writ-
self-affinity are not addressed in this paper, but a detaileten at some intermediate scale, small compared to the frac-
example of simulations with a doublet of injection- ture extension but large compared to the typical pore size in
production wells is provided. the matrix and to the typical fracture aperture. Hence, they

The purpose of this paper is to briefly present the methresult from the homogenization of the microscopic Navier-
odology and the first results obtained in the determination oStokes equations, and the standard requirements of statistical
the two-phase flow properties of fractured porous media. It ilHomogeneity for this preliminary upscaling are supposed to
a significant extension of our previous papers on singlebe fulfilled.

A. Transport equations
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Let the porous rock matrix have a porosiy, and a bulk  of apertureb, filled with a porous materiale.g., gouge or
permeabilityK ., [L?] that can vary with space. The flow in breccig with permeabilityK;, o is given by
the matrix is described by a generalized Darcy law for each
phase, with relative permeabilitié§ ; (i=w,n). Subscripts o=DbKs. )
w and n refer to the wetting and nonwetting fluids, respec-

tively. The local seepage velocities are given by It is assumed that the fractures oppose a negligible resistance

to flow normal to their plane. Hence, the pressupes P,

— Ky K _ and the potential®; are continuous across the fractures.
vi=— ~V(Pi—pig2) (i=w,n), (1a Again, constitutive equations, discussed in the following
subsection, are required to relate the capillary pressure and
the relative permeabilities, ; to the fluid saturations in the

where u; is the viscosity,p; is the density, and®; is the

pressure for fluid. For concision, denoté,; the potential ~ Tactures. . . :
P,—pigz and A, =K, ;/;1; the phase mobilities. Then, Eq. Conservation equations similar to H) could be written
(1'3) rcleads Lo for the fractures, which should include exchange terms with

the surrounding matrix. In view of the finite volume scheme

— : used for the numerical solution, it is more convenient to
i=—KpA; VO, i=w,n). 1b ) . .

vi me i ) (1b) write a global conservation equation that accounts for both

The fluids are considered as incompressible. Hence, twhhatrix and fracture flow in a control volume. Suppose that

continuity equations and a global condition on the saturatn® volume(, with boundaryd(}, contains part of one or
tions S, can be written as several fractures, denoted By By applying the divergence

theorem, conservation of phasé () can be written as
ShtSw=1, (28)

f HSd +f 0Sd +f v;d
S S ) Q—Fem ot (mFEf ot m—Fn.vi S
emW+V~vi=0 (i=w,n). (2b)

N o _ #[ om0 i=w), ©®
Additional constitutive equations are required to relate the dQNF

capillary pressurd®.=P,— P,, and the relative permeabili-

tiesK, ; to the fluid saturations. They are discussed in Secwheren is the unit vector normal té€). The volume of the

Il B. fractures inF is supposed to be negligible compared to the
Note that in the limit of an inviscid and weightless non- pore volume in the matrix i) —F. Therefore, Eq(6) can

wetting phase g&,=0.,0,=0), P, is a constant, which can be be simplified into

taken equal to 0 without loss of generality, and Eds.and
IS _—
(2) reduce to f em—sdv—kf n-vids+f nje;dl=0 (i=w,n).
o @ dt 90 wnF
IS (7)

emW+V'[KmAWV(Pc+png)]:O- ©)

Thus, the fractures introduce a singular contribution to the
This is the so-called Richard's equatidRichards[36]), mass balance equatig@b).
which is commonly used in hydrological studies to describe The flow equations can be rewritten in terms of one of the
unsaturated ground water flow. potentials and of the capillary pressure, thanks to condition
Equations similar to Eqg1) and (2) are applied for the (2a). In the rock matrix, the sum of Eqs$2b) for the two
flow through the fractures. We assume that the hydraulighases yields
properties of a fracture can be described by an effective con-

ductivity o [L3]. The in-plane flow ratef; per unit width VA [Kn(Aw+Apn) VO]
are related to the surface pressure gradi@n{P; by the J
two-dimensional generalized Darcy laws: :V'(KmAWVPC)_E(KmAW)ApgeZ! (83
. 00y .
Jsi= == Vd;  (i=w,n), (48 whereAp=p,—p,, is the density contrast arg is the ver-
1

tical unit vector. This linear stationary equation reladgsto
¢the instantaneous capillary pressure field. On the other hand,
Eqg. (2b) for the wetting phase can be written as

ISy
émWZV‘[KmAWV(q)n_Pc+Ang)]' (Bb)

whereo, ; are the relative permeabilities of the fractures. |
\i denotes the fluid mobility in the fractueg ;/u;, Eq.(4a)
reads

js‘i=—0)\iVS<1>i (i:W,n). (4b)

The conductivityo can be position and fracture dependent.It describes the temporal evolution §f, (and thus ofP, and
For a fracture that can be viewed locally as a plane channe3,), as a function of the field®, andP.
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The balance equatior() over a control volume, which small if the capillary numbelC that compares the magni-
possibly contains fractures, can be transformed in the santedes of the viscous and interfacial stresses is small enough.
way It is defined as

U
f Km(AW+An)n~V<I>nds+f o(AytAy)n-VO dI C='u—, (12
0 IONF Y

whereU is a typical fluid velocity andy is the interfacial
- LQKmAw(n' VPc—Apgn-€;)ds tension. This number is generally very small for underground
flows (typically less than 10°).
Equation(11) was applied both in the rock matrix and in
+ LMFU)\W(n-VPC—Apgn-ez)dI, 938 the fractures. Recall that owing to the local equilibrium hy-
pothesis, the pressur®;, andP,, and the capillary pressure
Sy P. are continuous; they are equal in a fracture and in the
f em—dvzf KnAwn-V(®,—P.+Apgz)ds matrix rock along its surface. However, the parametss
o = ot & andn are generally different in the two domains. In particu-
lar, at the microscopic scale, the pressure jump across the
+f oAy V(P ,—P.+Apg2z)dl. interface between the two fluids is inversely proportional to
JQNF the meniscus radius, which is of the order of the typical pore
(9b) size. Therefore, one may expect that

This formulation is the starting point for the numerical Y Pos K
scheme described in Sec. I Pox K’ 5~ \ @ =K (13
o K Pom Ks
B. Constitutive equations Unless otherwise stated, the computations in the following

Constitutive equations are required for the closure of the&orrespond tdPg = kP . _ - o
set of transport equations in the preceding subsection. Note On the other hand, the relative permeabilities appearing in
that their choice is partly arbitrary, and different models maydeneralized Darcy’s equatioi$) and(4) also depend on the
be suited for various types of rock matrix or fractures. Thosdluid saturations. Many models have been considered for po-
implemented here are among the most common, and theéipus media(see, e.g., Bear and Bachmia@]; Chenetal.
could easily be substituted with others to address specific39). Again, the most widely used model for the wetting
situations. phase relative permeability was proposed by van Genuchten

First, the stress balance at the fluid interface at the microl40l:
scopic scale has to be taken into account. Due to interfacial U nl(n— 1)\ (n— 1)/ 2
tension, a pressure junfp. takes place across the interface, Kr-W:S\Nz[l_(l_Sw )nmHim2, (14)

which is called the capillary pressure Note that Egs.(11) and (14) suppose thaS, can vary

P.=P,—P,=®,—®,+Apgz (100  over the whole range from O to 1. If its practical variations
are limited by irreducible and maximal valugg, andS,s,
Experimental evidencésee, e.g., Marlg2]; Adler and Bren-  Egs.(11) and (14) are generally written in terms of the ef-
ner [37]; Bear and Bachmdi3]; Reitsma and Kuepdi38]) fective saturatioréw:
shows thatP, is related to the saturatiorS,. Numerous

phenomenological or semiempirical formulas exist to model - Sw—Sur
this relationship(see Chenet al. [39] and the references " Sy Swr | (15
. . . S r
above. The most widely used is the van Genuchten equation
(van Genuchtef40]), which can be written as Residual saturations were not considered in the present simu-

lations, but could easily be included.

The relative permeability for the nonwetting phase is also
sometimes modeled according to Efi4), with K, ,, andS,,
replaced byK, , andS,, respectively. However, the relative
wherePy is a characteristic pressune,s an index. Typical permeability curves for the two phases are generally not mir-
values ofn range from 1 to 4. Estimates ¢¥, are given ror images of one another. Thus, a different model was used
below. here, which is discussed below.

Note that experimental measurements of capillary pres- Two-phase flows in fractures have given rise to compara-
sures are generally performed with fluids at rest, when thévely less experimental studies than three-dimensional po-
interface freely settles at a location that minimizes its arearous media, but a few references can be found in the litera-
Viscous forces may deform the interface if the fluids areture. They are reviewed, for instance, by Persoff and Pruess
flowing, which may affect the capillary pressure-saturation[41] and Fourar[42]. The relative permeabilities, ; are
relationship. However, this effect should remain reasonablisometimes found proportional to the saturatidhs with

n1(1—n)/n

P
A , (11

+
1 Py

S\N:
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oy wtor =1 (e.g., Romm43]), but more generally lower
values witho, ,+ o, <1 are observe¢see Fourar and Bo-
ries[44]). This is especially true for rough walled fractures.
In the present simulations, we used a simple modebfoy:

Ur,nzsﬂ’ (16)

with the exponent] equal to 2. This model was also applied
for K, , in the rock matrix. Moroverg, ,, was described by
an equation of the type of Eq14). It can be noted that in
most of the situations considered here, the wetting phase
saturation in the fractures is very small and, therefotg, is
very small ando, ,, is of the order of unity, for any reason-
able choice of constitutive equations.

In summary, the capillary pressuR,, the relative per-
meabilities for the wetting fluiK, ,, and o, ,, and the rela-
tive permeabilities for the nonwetting fluld, , ando, , are

(14), and(16), respectively.

Note that although the capillary pressifgis identical in
the fracture and in the adjacent matrix, the saturations may
differ if Pos# Py [see Eq.(13)] or if the exponenin has
different valuesns# n,,,. Therefore, the relative permeabili-
ties K, ; and o, ; may also be different. Sharp saturation
contrasts are actually the rule, due to the small value.of
For instance, with the constitutive parameters in Secs. V A
and VB, S, in the fractures is smaller than 0.05 for any
saturation smaller than 0.85 in the matrix nearby.

described both in the matrix and in the fractures by Ef,
f KAy, +ADN-V'd!ds'
Q)

C. Dimensionless formulation

duced by using characteristic quantities of the problem. A| ¢/,

Dimensionless variables, denoted by primes, can be introj,

possible choice is based on the typical values of the matrix ¢

porosity and permeability;,, andK,, on the pressurBq
on the wetting fluid viscosityu,, and on a characteristic
length scald.:

’ 1 ’ ’ €m
r ZE r, \" =LV, En——" (17@
€m .
yield
pro o= -9t (17b)
Pom’ ' Pom’ T Pon"T
K=~ =2 A=A, (179
==, g =——, L= - C
K., LK,, i T MwA
;L Empo,m . Hwl G Mw
== ;L == vi,  JiT= Ji -
EmMwl KmPO,m KmPO,m
(17d

Hence, the dimensionless transport equatiths (2), (4),
(8), and(9) read

St Sw=1, (193

026703-5
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J
er’n%—FV’-vi':O (i=w,n), (19b)

jéin—a")\i’Véq)i’ (i:W,n), (20)
V' [Kn(Ay+ AV D]
! ! ! ’ ! & ! ! !
=V (KA PO~ (KpAiAp e,
(213

d
e,’na—i”:vr TKLALV (@, —Pi+Ap'2")], (21b

+f o' (N tA)N- V' O dl’
IQNF
=j KimAw(n-V'P.—Ap'n-e)ds’
)
+f o' \y(n-V'P.—Ap'n-e,)dl’, (229
IONF

ISy
—dv'= J KnAyn- V' (® P +Ap'z)ds’
at’ 0

+f ANV (D! —PL+Ap'z)dl’.
IONF

(22b

The constitutive equationd.0), (11), (13), (14), and(16)

P.=P/—PL=®!-d!+Ap'Z, (23)
Sy=[1+P. A=)/ (matrix), (243
P/

S,=|1+

! ng1(1—ng)/ng
—) } (fracture§ ., (24b
K

Ky w=SA 11— (1—S{m/(m ™) (= 1)in)2
K n=S1 (matrix), (259
Or W= S\Zkl/2[1_ (1— S:lf /(“f—l))(nf—l)/nf]Z

orn=S1 (fracturey. (25b)
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D. Governing dimensionless parameters min(S,1—S)
In view of the numerous physical parameters, many di- G $Gc:ﬁ_- (29)
mensionless numbers play a role in the problem. Some of —
them describe the fractured medium intrinsic properties, such P,

aso’, which compares the single-phase fracture and matrix

transmissivities. Others characterize the fluid properties suchhis defines the physical range where two-phase flow can

as the viscosity ratio. Finally, dimensionless numbers can bsafely be described in terms of macroscopic relative perme-

introduced to compare the magnitude of the three types ofbilities independent of the flow rates. It will be shown in

forces acting on the fluids, namely, viscous forces, interfaciabec. V C 2 that Eq(29) is a conservative criterion; the mac-

tension, and buoyancy. roscopic relative permeabilities are actually found fairly con-
The capillary numbe€ (12) determines whether the fluid stant for pressure gradients as large as B(2)

interface is locally deformed by the flow. It can be estimated The contribution of gravity forces can be quantified by the

in the matrix from the typical wetting phase velodigee Eq. Bond number, which compares the buoyancy forces to the

(1a)]. By using Egs(13) and(17), interfacial forces, and is classically defined as
VK ApL?
CmN Lm Kr,w G1 (26) Bo= s 5 ! (30)

whereG=V'P’ is the magnitude of the dimensionless mac-WhereAp is the difference in density of the two fluids. Al-
roscopic pressure gradient_ The raﬂKm/L of the micro- though gl’aVity effects are not addressed in the f0||OWing, itis
scopic to macroscopic length scales is generally of the orde¥orth noting that in view of Eq(13) the vertical capillary -
of 1079 or less. The counterpart &,, for the fractures is Pressure gradient at rest, which controls the vertical varia-
C¢~C,/k, which is larger but still much smaller than 1. tions of saturation, is related to Bo by the ratio of the micro-
Thus, the shape of the fluid interface is determined at th&COPIC to macroscopic length scale

pore scale by the capillary forces only, with the important

consequence that the local constitutive equati®® and P VK

(25) do not depend on the flow rate. Note that this does not 97 L Bo. (3D

rule out a possible dependence on history, for example, with

hysteretic capillary function and relative permeability. All the dimensionless numbers in the above describe the bal-

. On a Iarge_r scale, however, the flow can induce Ch"’mgeénce of forces in a rest or in a steady state. The transient
in the saturation field. An upper bourdSy, of the order of

. . M dynamics between two different states can be described by
mag_mtqde of the local saturation variations betvvgen a reSihtroducing the capillary diffusion coefficierd, [see Eq.
equilibrium state and a stationary floler by extension be- ¢

. L .= (8b)],
tween two stationary flows with different macroscopic driv- (80)]
ing pressure gradientsan be estimated as KK. 9P
_ r Cc
D.= o 95 (32
ASy~L|VP s =G s 2
m~LIVP] Py P! ' @ In view of the numerical results obtained in the following, it

seems that the limiting step for the transition from one state
to another with a different saturation field is the flow of the

instance, it ranges between 0.1 and 0.4 figr=2 in Eq. nonwetting fluid through the matrix, at least in the investi-

(24a when 0.2<S<0.95. Hence, the dimensionless pressuregated range of parfameters. Therefoke, K, e, and p
gradientG is a direct measure of the possible saturationshould _be replgced in EG32) _by Km, Kin, €m, and'“_n’
spectively. It is natural to build a Blet number Pg, using

variations, and it can be regarded as a macroscopic capiIIa|r JEESNE - : '
number. In particular, these variations are negligiblegif s diffusion coefficient and the typical nonwetting phase

The derivative in Eq(27) is at most of the order of unity. For

satisfies velocity U=K K, ,VP/u,, which yields
1 e UL _ VPl _ G a3
G (29) =D, T [aPd [aPl 33
7= S| | aS
P,

It is worth noting that Pgis actually independent of which
More precisely, the saturation variations should have dluid is used as a reference, sinkg and x in U and D
small effect if they are small compared to bothand 1  cancel in Eq(33). Pe only depends on the pressure gradient
—S. SinceAS,, in Eq. (27) is already a loose overestimate, magnitude and on the capillary properties. In view of Eq.
these two conditions can be combined into the following(28), this Pelet number is smaller than 1 in the range de-
criterion: fined by criterion(29).
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Furthermore, a grid Réet number can be obtained simply
as (6y /L)Pe., which is even smaller. This ensures that the
flow should not induce sharp saturation fronts with a thick-
ness smaller than the grid resolution, which would be poorly
accounted for by the finite volume formulation described in
Sec. Il B.

A typical transient timeT can be defined as follows:

L?  enun L? 1

T=—= — :
D. Pom Km  |0P,
S

(34a

r,n

In dimensionless forms, this time constant refsse Eq.

(17d]

Mn 1

) (T p— 4
P! (34

JS

rn

In the range of parameters considered in the followihg,
varies from 1 to 100. In dimensional terms, this roughly
corresponds from one day to one year. Such long transitior
times can have important consequences for the interpretatio
of well tests and for the exploitation of oil reservoirs.

Ill. NUMERICAL MODEL ¢

A. Three-dimensional meshing of fractured porous media FIG. 1. The network oN, =16 fractures in the sample used for
) ] o ) ) the simulations in Figs. 12 and 18). The saturation maps in Fig.
The first step of the numerical solution is to discretize the;» correspond to the horizontal marked plafle The three-

fracture netWOrk a.nd theﬂ the pOI’OUS med'um Surround'ng|mens|onal meshes Of the same fractured me(ﬂh}‘r‘and Of an-
the fractures in a consistent way. The geometry of the mesgther sample withNy, =32 (c). Distances are normalized by the
to be generated is constrained by many randomly locateffacture-circumscribed radiuR Both samples are spatially peri-
fractures. In addition, meshes should be routinely built forodic, with cell sizeL=4R. The tetrahedral volume elements in the
large statistical sets of stochastically generated samplesubic unit cell—2<x,y,z<+2 are displayed. The protuding frac-
Therefore, a very robust and fully automated meshing algotures in(b,c) sit astride the boundaries with the neighboring cells.
rithm is required. Several periodic replicas are shown for some of them. For the sake
Aliterature review was done by Bogdaneval.[18]. The  of clarity, the edges and the intersection lines of the fractures have
meshing technique was also extensively described in this pdeeen thickened.
per; therefore, it is briefly schematized here. The fracture
network is triangulated first, as described by Koudéataal.
[32]. Then the space between the fractures is paved by
unstructured boundary-constrained tetrahedral mesh, accord-"
ing to an advancing front technique. Typical performances
and computational requirements are discussed by Bogdanov
et al. [18]. The grid resolution can be quantified by the typi- We describe in this subsection the spatial discretization of
cal sizeé,, of the surface and volume elements. Egs. (22). Time discretization is addressed in the following
Three-dimensional views of two triangulated fracturedsubsection, as part of the description of the solution algo-
media are shown in Fig. 1. In both cases, the fractures amthm.
hexagonal, with circumscribed radi&s and the cell size is The rock matrix is represented by tetrahedral volume el-
L=4R. Figures 1a) and 1b) are the samples used in Sec. ements and the fractures are represented by triangular surface
V A. The cell containdN¢, =16 fracturesdy=R/3, and the elements. The transport coefficiets, ando, as well as the
mesh contains about 1800 node points, 22 000 triangles, argbrosity €,,, are considered as uniform over these elements.
11000 tetrahedra. Figurgd is one of the samples used in ~ The nonwetting phase potenti@l, and the capillary pres-
Sec. V B, withN¢,=32. The discretization is slightly finer sureP, are evaluated at the mesh points located at the ver-
(6w=R/4). The mesh contains about 3700 node pointstices of the tetrahedra and triangles. Since the fractures are
46 000 triangles, and 23 000 tetrahedra. viewed as vanishingly thin, empty, or very permeable layers,

The influence of the discretization parameggr on the
flow calculation results is illustrated and quantified in Sec.

B. Spatial discretization of the equations
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The derivativedS,,/dt’ is approximated by the first-order
difference over a time steft’,

BSw_ L o 1
=SS, (36)

where the superscripp refers to the successive timeg
+pét’. S, is obtained as the asymptotic value of successive

—jn. oA;.V,dd estimationsS{*

SP= lim Sk, (37)

k— o0

: Finally, S5 results from the iterative calculation of
FIG. 2. Control volume for the mass balance equations at a ally, " resuilts from the iterative calculation o

node; in this illustration, the node is on a fracture. 0.k

&S‘N ! !
(PPRHI_piPky (39

S\%k+1: S\%k—'— ( W
there is no pressure jump between two points facing each P,
other on the two opposite sides of a fracture. Thus, single
values of®, andP. can be used in the numerical formula- yence, the estimate @fS, /4t at iterationk+1 is

tion per vertex of fracture element.

A finite volume formulation of the problem is obtained b k+1 _ _
applying the balance equatioitg2) top control volumes(} g @)p ZSF')V'kH_S\?V ' _ S®k+1_s\%k+ S-S
surrounding each of the mesh points, as shown in Fig. 2. at’ ot’ St’ St’

For the evaluation of the surface integrals in E2R), the .
gradientsV’'®; and V'P/ are considered as constant over 1Sy > okl ST 39
each mesh element and, therefore, they are linear functions st P, / ' (39)

of ®; andP; at the element vertices. The mobilitids and

\{ are also supposed to be piecewise constant, per tetrah\gﬁth y/PkHlop

dron or triangle. For each mesh volume or surface element,

mean saturatiofS,,) is defined as the volume average of the

saturationsS,, evaluated at the element vertices. Then, the pkt1

mobilities in the elements are deduced from the mean satu- ( f ¢ @dv)

ration(S,). For instance, Eq22g can be written as a set of a Mot

linear equations relating the values df;, and ¥'=P;

—Ap’'z" at the node points _f
Q

(pktl_prpk  Therefore, the volume inte-
aral in Eq.(22b) can be evaluated at iteratid- 1 as

’
m

p.k pk_ ap-1
1(@) yokiy TS
B-®/—A W' =0, (35 o\ 9P o
(40)

where the matrice8 and A depend on the absolute and ] ) ) )
relative permeabilities, in addition to the mesh geometry. The discretized equatio(22b) for the capillary pressure

The volume integral in Eq22b) can be evaluated in two at Cl_Jrrent |te_rat|ork+ 1 given the potential field can be writ-
different ways. On one hand, one may use in each tetrahd€n in vectorial form as
dron the value of5, deduced from the capillary pressure at

the central grid point. Alternatively, one may use in the tet- 1 Dk o pkil 1 ok ap-1
rahedra the mean saturati¢s,) defined above, which also -y —Q(§ S )
. ) ; : ot ot
depends on the capillary pressures in the neighboring mesh
points. A similar treatment of the time derivative, described :Ap,k,(q,ép,k_q,,p,ku)_ (41)

in the following subsection, applies in both cases.

The matricesC and Q are diagonal ifS,, in the volume
C. Time discretization and solution algorithm integral in Eq.(22b) is evaluated from the capillary pressure

The strong nonlinearity of the coefficients in Eqg2) &t the central grid point onlysee end of Sec. Il B

: 1KE1_ Pk Pk i
requests an implicit time formulation. The one used here is. Since’? __\P Pty ! Eqs.(3_5) and(41) y_|eld
an extension of the modified Picard scheme described b}/na"y the following set of equations, which summarizes the

Celia et al. [45] for the solution of Richards equation. The Whole algorithm
main idea of the method is the linearization of the time de- K rpk ook
rivative in a mass conservative form. BP*. @ P= AP AP (42a
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1 k k k+1 k rp,k k Flow

SOOI APK]Ly PR L= AP (PR

Ky — L
T e~~~ ___

K_ap-1

—yﬂwsﬁ SHEY L
O = ————————————— - - -

(42b | L
b o —————————————————— - - - - - - Y

!

In a first implementation, the global mass conservation equa

tion (35) was solved once per time step for the potential field

@/, with the phase distribution quantified by the capillary _
pressurel’ at the beginning of the time step; then E42b) Ko K

was solved iteratively untiy’”*"1 converges toward 0, to 0.9t
determine the change in saturation occurring duriftg
However, it appeared that reevaluating the matritesdB 0.8f
and the field®) after each updating off’ improves the
numerical performances. Thus, Eq€2a9 and (42b) are Qe
solved alternatively until convergence @f**** toward 0, 06k
which makes the solution scheme fully implicit. Both el- '
ementary problemgt2a for ®;P* and(42b) for y'P*** are 05t
solved by use of &@GSTAB conjugate gradient algorithm.

Note that in the modified Picard formulation, the solution 0.4r
for the capillary pressure at time st@pis searched for in
terms of its increment with respect to time sggp 1, which 03
is the sum of the successiye”**1. Hence, the magnitude 02t
of the right-hand side in Eq42b) can be used as a natural '
stopping criterion for the Picard iterative lodgee Celia 0.1}
et al. [45]).

As already mentloned,. the _rlght—hand suje of E4Rb) 00 01 02 08 02 05 06 07 o8 09
should decrease along tketerations. It sometimes happens, =
. . S S
however, that its norm increases from stdgéo stagek wTw
+1. In such cases, a backtracking technique can be use
(see Presst al.[46]), i.e.,¥'PXis incremented by a fraction b

A of y,p,'kﬂ’ With N pin=<A<1, in order to Optamylp'kﬂ' , FIG. 3. Homogeneous rock matrix containing an array of infi-

Alternatively, a Newton step can be applied to determingite parallel fracturega) and its relative permeabilitieéb). The

from the fields at stagl the increment of#"'** that yields  solid lines are the curves for the matrix and for the fractures, which

the smallest norm of the right-hand side of E4Rb) at stage  are identical, witm,,=n;=q=2. The other lines correspond to Eq.

k+1. In practice, maximum efficiency is obtained with a (47) for o'=1/4, k=10"%2 (..... ) and ¢'=25, k=10 57

combination of the two techniques. (————). The symbols are results of numerical simulations for

The value ofst’ is automatically recomputed at each time Em (O) aﬂdK,W (O) .

step. Its choice is based on a desired maximum saturation

incrementAS. The new stepdt,, ; is deduced from the IV. REGULAR FRACTURE NETWORKS

maximum of the instantaneous local time derivative

aS,/at’. In view of Eqg.(36), this derivative is exactly the

rate of variation over the previous step. Hence, Consider the situation sketched in FigaBof a porous
matrix that contains an array of infinite parallel plane frac-
tures, with a spacing. that is taken as the unit lengfkee

A. Array of infinite parallel plane fractures

AS ASSt! Eqg. (17)]. A flow is imposed by a pressure gradient parallel
St = = P ) (43)  to the fracture planes. The matrix permeabilityKs,, the
pt1 ' p__qp-1 o .
maxdS, /at’'|  maxS;— S | fracture conductivity isr and its aperturé<L. The global

absolute permeability of this fractured medium, in the direc-
tion of the fractures, is
Other choices are possible, such as a maximum difference of

total flow rate through the cell over the time step. This latter — (|-—b)|<m+0~K 142 44
criterion might be more relevant for the computations of - L M T K (44)
steady-state global medium properties, especially for large

contrasts between the properties of matrix and fractures. The capillary pressure is supposed to be initially uniform,
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equal toP.., and it obviously remains so for a stationary flow
parallel to the fractures. The wetting fluid saturations in the
matrix and in the fracturess,,,, andS,;;, are different be-
cause of different capillary properties. The mean global satu-

ration is dominated by the matrix saturation

L—b)€enSym+berSys
(L—b)eyn+be;

(S=" ~Sym. (49

The global relative permability for fluid, K,i , is easily
obtained from

LKK, ;=(L—=b)K K, i+ 00, i, (i=nw). (46)
This yields finally, in dimensionless terms,
— — Kito'o .
K'=1+o', K j=——= (i=nw). (47
1+o’

QW Fl‘l
e (Comn s o
y
L
A L

FIG. 4. A sugar-box reservoir divided intox57 square blocks
by an array of fractures. An injection welleft) and a production
well (right) are located at the centers of two blocks. Wetting fluid is
injected with a flow rateQ,,, and the nonwetting fluid fraction in

Results(44)—(47) are also valid if the fractures are not the produced fluid is, .

evenly spaced, witlh equal to the mean spacing, i.e., to the

inverse of the volumetric fracture area.

These formulas are compared to the results of the numeri-
cal code in Fig. 3. A perfect agreement is obtained. The

influence of the fractures is much strongerﬁpn than on

N
K'=1+ p; ap(1=ngnp). (508

Except for the unit term in the right-hand side, which stands

K, w. since they offer a preferential path for the nonwettingfor the contribution of the matrix, this is the classical result

fluid, due to the small values of.

B. Multiple families of parallel plane fractures

In order to generalize E@47) to media containing several

of Snow|[35].

A similar expression can be obtained when considering
each of the phases=n or w, by replacing the matrix and
fracture absolute permeabilities by their product with the cor-
responding relative permeabilities. This yields the global ef-

families of fractures, it is convenient to rewrite it in a slightly fective permeability tensor for the fluid

different form.
Note first thato’ is simply the ratio of the absolute frac-
ture transmissivityo to the absolute transmissivityK,, of

the slab of matrix between two fractures. For a fractured
medium in capillary equilibrium, it is natural to define the

corresponding ratier; for each of the phases

__ o _ i
I-KmKr,i Kr,i

!

!
g

(i=n,w). (48

The prefactor o’ in Eq. (48) only depends on the capillary
pressure. Then, Eq47) can be reformulated in the nicely
symmetric form

K'=1+o', K/=K.(1+d]) (i=nw), (49

where E’ is the global effective permeability for phase
Ki=K'K,;.
Suppose now that the medium contalfhamilies of frac-

tures, with conductivitiesr,, spacings or reciprocal volu-
metric aread , and normal vectors, (p=1 to N), with

a,’):ap/Lme. When S,=1 and a macroscopic pressure
gradientV P is applied, the seepage velocity in the matrix is

v=—1/uK,VP and the flow rate per unit width in the frac-
tures isj,= — L/u op(1 —nyny) - VP. Thus, the absolute per-
meability of the fractured medium is given by

N
Ki =K, I+E1 ap,i(1=npnp) (I=n,w).

P
(50b)

In the particular case of a continuous and isotropic orien-
tation distribution of identical fractures, with total volumetric

area 1L, the tensorK’ andK/ are spherical, an¢s0) re-
duces to
K'=1+%0¢', K/=K,(1+2%d]). (51)

Note that both Eqs(50a9 and (50b) result from superpo-
sition principles. Hence, Eq50b) is valid only as long as
the flow equations for each of the two fluids are linear. This
requirement is fullfilled in a stationary flow in capillary equi-
librium, but it is generally not satisfied in transient flows.

C. Sugar-box reservoir

We consider here the two-dimensional problem sketched
in Fig. 4. A rectangular reservoir with impermeable bound-
aries is divided into %7 square blocks with permeability
K., and sizel 2. L is taken as the unit length. The blocks are
separated by an array of fractures with uniform properties
o'=1 and k=102 The rheological parameters age,
=10u,, andn,=n;=qg=2. The reservoir is initially at rest,
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with a uniform capillary pressurB; =10, i.e.,S,~0.10 in S, at t'=0.0773 S, at t'=0.0782
the matrix andS,,~0.0032 in the fractures. |
Wetting fluid is injected with a constant flow rat@,, o
=1 through a well(on the left in Fig. 4, and fluid is pro- 1”’ ~
duced at another we{bn the right in Fig. 4, which contains 4
a fractionF,, of nonwetting fluid. Both wells are located at |
the centers of matrix blocks. The nonwetting phase pressurt S at =022
at the production well is taken as the pressure reference, i.e W
PoU'=0.
Although the problem is two-dimensional, the calcula- o,-
tions are performed in three dimensions, in a Bx1 L3 N
volume, with periodicity conditions along the axis. The
blocks are subdivided into smaller cubes with sizéb,
which contain 24 tetrahedral volume elements; hence, the
mesh is periodic with the nodes arranged on a face-centere
cubic lattice. A dimensionless tinté is defined as the ratio
of the injected volume to the total voluméof the reservoir

_Qut
.

ul
I

~F

t' (52

Saturation maps in the rock matrix are displayed for vari-
ous times in Fig. 5. The progression of a relatively steep, _
saturation front is clearly visible. Downstream of the front, =
the initial saturation is undisturbe®y(~0.1). Then, satura-
tion rises up to about 0.7 over a distance about one block siz:
L.

The front separates two regions where the mobility of the
wetting fluid in the matrix is much smallédownstreamor
much larger(upstream than the mobility of the nonwetting «q,
fluid. In the initial conditions that prevail downstream of the
front, K, ,~7.7x10 °, whereasK, ,~0.81; hence,A,,
<10 °A,. Upstream of the frontS,>0.7, K, ,,>0.072,
am'jl'r\é'?IEV(\)/.SIEzJ%a\I,;I;]I(:C:nxsﬂig'ltgsgfv;;elgiégl.acement of the non- FIG. 5. Wetting phase saturation at various tinftp to bot-

. . ; . . tom). The left column corresponds to the sugar-box reservoir
Wettlng fluid by the ‘."’ett.'”g .ﬂu'd' as lllustrated by _the Veloc_- sketched in Fig. 4. The right column corresponds to an unfractured
ity maps for both fluids in Fig. 6, Wh_en the Satu,rat'on Trom IS veservoir with uniform equivalent properties; the broken lines are
about halfway through the reservoir. The wetting fluid flow gpqyn only to make the comparison easier with the left column. In
rate is imposed at the injection well. Its streamlines divergg,qh cases, the walls are impermeable.
from the well towards the front, whereas the nonwetting

phase velocity is very small. Downstream of the saturatiorthoj_ The proportion of produced wetting fluid rises dra-

front, the nonwetting fluid streamlines converge from the ™ . : .
. . L matically (see Fig. 8 Simultaneously, the overall pressure
front towards the production well. The wetting fluid is nearly . . ) X
drop strongly increasesee Fig. 9, since the increase df,,

immobile, and the produced fluid is almost only the nonwet—does ot compensate the decreasd of
ting fluid. This pattern lasts until the saturation front reaches P 9
It should be noted that the fractures are never a preferen-

the production well. : . . - o
However, not the whole nonwetting fluid is displaced,t'al path for the wetting fluid. In the initial conditionsP(

since its mobility in the matrix becomes smaller than the™ 103N,m“07'10)’ the transmissivity ratias,, [see Eq(48)]
mobility of the wetting fluid whenS,, is larger than 0.7. is about 10°%; behind the front B(~1.0S5, n~0.71), it is
Thus, a significant fraction of the nonwetting fluid is left Of the order of 10°, and in a late stage not reached in this
behind the front in the bulk of the matrix blocks. By capil- Simulation (P(=0.2S,, n~0.98), it is still smaller than
lary diffusion, it slowly reaches the surrounding fractures,10~%. Nevertheless, larger velocities are observed in Fig. 6
through which it eventually flows to the production well. in the matrix near to the fractures, singg (and thu, ,,) is
This entrapped nonwetting fluid is clearly visible in the satu-larger there than in the bulk of the blocks, due to the deple-
ration maps of Fig. 5, and in the mean saturation profiles irffion of nonwetting fluid that migrates towards the fractures.
Fig. 7. Conversely, the matrix and the fractures initially have
When the front reaches the production well, the mobilitycontributions of the same order of magnitude to the nonwet-
of the wetting fluid in the matrix around the well suddenly ting fluid flow, with o,~1.2 whenS,, ,,=~0.10, and the frac-
increases, and it exceeds that of the nonwetting fluid whetures become dominant as soon as the saturation in the ma-

S at t'=0.894
w
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FIG. 6. The velocity fields in the sugar-box matrix for the wet-
ting (&) and nonwettingb) fluids at timet’=0.345 in the simula-
tions of Fig. 5. A few large vectors near to the wells are not plotte

The dotted lines correspond to the fractures.

trix increasede.g., 0,,>10 whensS,, ,,>0.7).

Figure 10 shows in more details the flow field of both
phases at various times in the block located at the middle of
the reservoir. The saturation front enters the block from the
left in the first frame {' =0.27). Then, it progresses until it
roughly covers the block at =0.345. The flows of the two
fluids are roughly pistonlike upstream and downstream of the
front. Within the front, the nonwetting fluid flow starts di- =
verging towards the surrounding fractures. Finally, when the
front has left the block t( =0.6), a quasisteady pattern is
observed, where the nonwetting fluid diffuses from the bulk
of the block to the fractures. Note that the velocities are
much smaller than in the earlier stages, and that they haw

been rescaled in the figure.

For comparison, another simulation was performed by re- o ; ; ; ;

PHYSICAL REVIEW E 68, 026703 (2003
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FIG. 7. Saturation profiles, in average over thaections, at
various times that correspond to the maps in Fig. 5. The abscissae
are in block size units. The data correspond to the full calculations
(—) and to the simplified problem in a homogeneous equivalent
medium (————).

used, according to E@45). The saturation maps obtained by
this homogenized description are shown in the right column
gin Fig. 5, in comparison with the results of the full calcula-
tions.

placing the fractured rock by an homogeneous medium with 0 0.2 0.4 0.6 0.8 1
uniform equivalent properties. Effective permeabilities ob-

tained from Eq(50b) are applied for each of the phases, and FIG. 8. The fractionF, of nonwetting fluid in the produced
the capillary pressure-saturation relationship of the matrix igluid, as a function of the dimensionless tirtie

t
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20 g g g g ' =0.266 ' =0.266
18 : : : : e e . g —>
14 ] { S —
oot~ o B —
2° 10
<
8 t' =0.312
6 B T e >
—
4 : .
2 : >
0 { 1 | 1 >
0 0.2 0.4 0.6 0.8 1 g il .
.
FIG. 9. Overall pressure drofP; between the injection and 1'=0.345
production wells, as a function of the dimensionless tirhe T .
Although Eq.(50b) is a priori not valid in this situation, D Sy Aeay M [
since the saturation varies and the flow equations are reall 77 TCCTT0L e
nonlinear, the two sets of results are in good qualitative AN >
agreement on the global scale. =N —
However, significant differences remain even after long
times. In the late stages in Fig. 5, the nonwetting fluid is still t =0.617
present in the blocks in the upstream part of the reservoir
whereas this area is fully saturated with wetting fluid in the [==== =

results of the homogenized model. This is also apparent ir |~
the mean saturation profiles in Fig. 7. This is due to the [=
underestimation in the homogenized model of the transfer [Z
time of the nonwetting fluid from the bulk of the blocks to e r
the fractures.

In the late stages, the rate of nonwetting fluid transfer
from the matrix blocks to the fractures can be estimated by
the following simple argument. L&P,)g and(P,)r denote =~ [ o0
the nonwetting fluid pressures, averaged over a matrix block pr======¢=
and over the fractures surrounding it, respectively; moreover,
(Sy)s denotes the mean saturation in the block, and)g
the mean nonwetting fluid mobility. The typical pressure gra-

TV T T 7]
{0 B

AR AEE

t' =0.894

oo - e =le

[ ]
RN

RRRAAAAE

dientis 2(P,)g—(P,)g)/L, and the block perimeter isl4d ~  p==—=——=r=———
Therefore, the transfer rate to the fractures is of the order ol
8Kn{An)e((Pn)e—(Pn)F), FIG. 10. Wetting(left column and nonwettingright column
d(S,) velocity fields in the matrix block at the center of the reservoir, at
B various times.
at ~8(An)s((Pn)s—(Pn)r). (539

The time derivative of the nonwetting fluid content of the

This is a typical exchange term in dual-porosity models forc€Mtral block in the reservoir, as obtained from the full nu-
yb g b y merical calculations, is compared to predictidh8) in Fig.

ible single-ph fl Roof11]). It I .
compressible single-phase flowd/arren and RoofL1) 11. A good agreement, within about 15%, is observed for

can be generalized in a more symmetric form t’=0.6, which corresponds to the time when the saturation
d(S,) (A s(Ay) front has crossed and left the blo@ee Fig. 5, and when the
B g WEBVIE (p )~ (P.e). (53p  honwetting fluid diverging flow patterfsee Fig. 1Dhas es-
dt’ (Aws+{(Aps  © ¢ tablished. At earlier times, wheh,, is not much smaller than
Ay, the saturation variations mostly result from the dis-
WhenS,, is large, Eq.(53b) reduces to Eq(53a), sinceA,,  placement mechanism, which can obviously not be described
<A, and the gradient oP,, is much smaller than the gra- by Eq. (53), but they are reasonably well accounted for by
dient of P,, but Eqg.(53b) can also apply in the opposite the homogeneous medium model.
limit when the wetting fluid mobility is small. Consequently, a fairly good description of the flow both
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10" - Throughout this section, the fractured medium is sup-

: = posed to be macroscopically homogeneous. Therefore, for
the purpose of determining macroscale relative permeabili-
ties, an unbounded medium is represented by the periodic
juxtaposition of identical cubic unit cells. Hence, the geom-
etry, the local fluxes, the saturation fields, and the pressure
gradient are spatially periodic. The flow is induced by a large
scale pressure gradient. The global phase saturations are
given as initial conditions and are conserved along time.

—_
o
=)

d <Sw>B /dt’

-
=)

L
T

A. lllustrative examples

A detailed set of results is presented in this section, rela-
: : . . tive to an homogeneous matrix rock containing the fracture
) i i i network shown in Figs. (&) and 4b). The fractures are plane
; v ' ' regular hexagons, with a circumscribed radRiswhich is

taken as the length unit in Eq. (17), and they have a con-
_ FIG. 11._ The time derivativel(S,)g/dt’ of th_e mean satL_Jration stant permeabilityc’ =1 with k=10"%2 The cell size is
in the matrlx blolck f:lt the center of the reservoir as afun(.:tlon gf the(4R)3, and 8, = R/3. The network does not percolate. The
dimensionless time'. The data correspond to the numerical simu- ..\t tive parameters are set as described in Sec. Il B, with
lations(—) and to the predictions of E¢5339 (— ———) and Eq. - . o
(530) (— - —-—) . Nm= nf=q=_2. The fluid densities are equal and their vis-
cosity ratio isu,,/ = 10.

downstream and upstream of the saturation front could be All the frames in Fig. 12 are wetting phase saturation
achieved by a dual-porosity model, with the capillary mapsS, in the matrix in the horizontal sectioH in Fig.
pressure-saturation relationship of the matrix in the primaryl(@). The three columns of Fig. 12 show the evolution of the
porosity, the fluid effective permeabilities obtained from Eq.saturation field when a macroscopic flow is induced by a
(50b) in the secundary porosity, and a coupling equation ofpressure gradietV P||=Py,,/R, starting from the three dif-
the form of Eq.(53b). Such a model is presented by Panfilov ferent initial saturation fields in the top row, with identical

[13]. _ global saturatior§, = 0.371.
However, it should be remembered that the present €St g |ofimost initial state corresponds to rest equilibrium,

case 1S the ideal sugar-box model, where such a descr!ptlcwith uniform capillary pressure. The two others are arbitrary
can _mdeed be expected to be successiully and pract'c"i“i%itial phase distributions, with bands normal or parallel to
applicable. In the general case of complex random networksh . L=

of finite fractures, there is no equivalent of res@éb). The e applied pressure gradieWP. o

determination of the steady-state global relative permeabili- !N @ll cases, an identical steady regime is reached, where
ties is the object of Sec. V. The modelization of the exchang&aturation is not unifornt,, ranges from about 0.32 to 0.43,
term is another difficult problem, due to the randomness ofnd it is different on the inlet and outlet sides of the frac-
the matrix domains shape and size, and it should probabl{gres. The disturbances in the saturation field introduced by
involve a broad range of time scales. Finally, in view of Eq.the presence of the fractures during a steady flow with re-
(53b), such a model cannot account for the spatial variationspect to the rest state are due to the different capillary prop-
of saturation that exist on the fracture scale, even in a steadrties of the fractures and rock matfisee Eq.(13)]. They

-2

10

state flow, as demonstrated in Sec. V A. are observed in all our simulations, and increase with the
fracture permeabilityg’ and with the mean flow ratéor
V. RANDOMLY FRACTURED POROUS MEDIA pressure gradient This effect will be specifically investi-

. . . o gated in a future work.
We address in this section complex situations, where thé

rock matrix contains a network of randomly located frac-  1he evolutions of the global mean seepage velocit{gs
tures. The first subsection provides detailed illustrative reandu,, are plotted for the three initial phase distributions in
sults in a sing'le random reali;ation, includ'ing thg .evolutionFig. 13.1;:\;V corresponds to the instantaneous value of the
of the saturation maps, starting from various initial phase ) o . . =
distributions. Then, more systematic results are presented @obal relative permeabiliti, , defined in Sec. V B, andj,
Sec. V B. The relative permeabilities of randomly fracturedcorresponds tqu,,/u.K, . ldentical phase flow rates are
rocks are computed for two fracture densities that corresponrkached in all cases, although the convergence is not monoto-
to nonpercolating and percolating networks, respectively. Imous. The dimensionless time required to reach the limit is of
view of the large number of parameters, only the mean satuthe order of 10, which is consistent with the time constant
ration is varied, and all other quantities are kept constant andi’ ~3 predicted by Eq(34b).

equal to typical values. The influence of these parameters is Before we proceed with systematic calculations in the fol-
briefly considered in Sec. V C. lowing section, it may be the right place to discuss the effects
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FIG. 12. Wetting phase satura-
tion at various time<top to bot-
tom), in the planell marked in
Fig. 1(@. The mean flow is ori-
ented from the left to the right of
the figure. The mean saturation is
always S,,=0.371. Each column
corresponds to the evolution of
the saturation, which starts from
the initial condition shown at the
top of the column.

of the grid resolution on the results of the simulations. Thisis Note first that nearly identical effects are obtained in the
done here by considering a second example, which we oftetiree directions, regardless of the percolation status. The
used in the past as an illustrative benchmese Koudina  computed absolute permeability varies very little; it is

et al. [32]). The sample has a side=3R and it contains larger by 1% 6, /R="5) and by 3% 6,,/R=23) than for
N, =10 fractures. All the transport and constitutive param- —

eters are set exactly as in the previous example. The fractufé"' / Rz.g' The wetting phase flow rate, ".KK"W’ 'S n_early_ .
network percolates in the direction only. The spanning insensitive to the grid resoIL_mon, wh|ch is nat_ural since it is
cluster contains six fractures, and four fractures are isolate@SSentially the same as for intact matrix, as discussed in Sec.
Hence, a variety of situations can be tested by setting th¥ B- The largest differences are observed for the nonwetting
macroscopic pressure gradient along xhg, andz axes. phase flow rateKK, , is larger by 3% 6y /R=5) and by

Three meshes were built, with different discretization pa-8% (8, /R=3) than ford,,/R=8. The error scales roughly
rametersdy,,=R/3, R/5, and R/8. Sections through these as a quadratic function 0.3(,/R)?. Hence, an overestimate
meshes are shown in the left column of Fig. 14. As in theof about 5% is a fair guess of the error associated \#jgh
previous case, calculations were run from an arbitrary initial= R/4, which is used throughout the rest of the paper.
phase distribution, until a steady state was reached, where Saturation maps for a steady flow along ¥direction are
the phase permeabilities were measured. The results askown in the right column of Fig. 14, for the three discreti-
given in Table I. zations. They are in excellent agreement.
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FIG. 13. The dimensionless seepage velocﬁgsﬁndv:r’] of the
wetting and nonwetting phases as functions of the dimensionles:
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left, middle, and right columns of Fig

B. Steady-state relative permeabilities as functions
of mean saturation

The previous example has shown that identical saturatior -5
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fields and phase flow rates are eventually reached when «
fractured medium is submitted to a macroscopic pressure i, 14. |llustration of the grid resolution effects. Sections
gradientV P, starting from very different initial phase distri- through the mesh of a fractured sampled withR=3, N;, =10,
butions. It is, therefore, possible to define steady state maand 8,,/R=1/3, 1/5, and 1/8top to bottom, left colump and
roscopic phase relative permeabilities for this medium at a@orresponding wetting phase saturation maps for a steady flow ori-

given mean saturatio8,,. These relative permeabilitieg,‘i
are intrinsic in the sense that they do not depend on the
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ented from the left to the right of the figufeght column).

initial conditions; it will be shown on a few examples in Sec. from the present numerical calculations are the macroscale
V C that they do not depend either on the magnitude of theounterpart of the constitutive equati¢t¥). The last miss-

applied macroscopic pressure gradient, nor on the viscosityg element is an upscaled capillary pressure-saturation rela-
ratio, at least in a reasonable range.

Thus, for the steady flow of two given fluids in a fractured section.

medium, it is possible to relate the mean global phase flow

tionship. This topic will be discussed at the end of this sub-

ratesv; to the phase pressure gradients by a generalized Dar- 1ag|E |. Steady-state permeabilities computed in the same

cy’s law of form (1)

== KKr,i
i

U=~ m (VP;—pige,)

(i=w,n),

(59

sample along three directions for three meshes with different reso-
lutions (see text in Sec. V A

whereK is the macroscopic absolute permeability of the me--

dium. Recall thatk was investigated by Bogdanoet al.
[18], for the same type of fractured porous media as consid-

ered here.

K

Equation(54) is the first step towards the upscaling of the
steady state two-phase flow problem. It corresponds to the
transport equatiofil) in an homogeneous material. The con- o

servation equatiori2) applies also tcgi andu:i, for steady

flows. Finally, the data for the relative permeabilitiK;i

Direction 6 /R=3 ou/R=5 Su/R=8
X 1.611 1.579 1.558
y 1.455 1.431 1.411
z 1.392 1.369 1.354
X 0.003136 0.003125 0.003218
Ky w \ 0.003121 0.003129 0.003126
z 0.003084 0.003097 0.003099
X 0.8928 0.8530 0.8290
n \ 0.7491 0.7191 0.6950
z 0.6898 0.6617 0.6449
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FIG. 15. Macroscopic relative permeabilitigs ; as functions of the mean saturati§p . Data are for samples containing (& or 32
(b) hexagonal fractures. The cell sizelis-4R. The fractures have a permeability =1, and«x=10 %2 The fluids have equal densities.
The symbols are the averageskof, () andK, ,, (O) over 27 calculations, conducted i,=9 random realizations, with a pressure
gradient with magnitud®,,,/R set along the, y, andz axes. The horizontal lines show the full variation range of the individual data. The
solid lines are the relative permeabilities for the fractures and for the rock matrixpyyitm;=q=2. The broken line irb) is prediction

(59) for K'n for infinite plane fractures with the same characteristics and the same global intrinsic permeability.

In view of the large number of parameters, which includeerror bars to the full range of variation of the individual data.
the rock and fractures geometry and transport properties, tHiehe solid lines are the relative permeabilities for the frac-
fluid characteristics, and the coefficients in the constitutivetures and for the rock matrix, which are identical functions of
equations, in addition to the initial and boundary conditionsthe saturation, in the present case. The mean results are also
we chose to study only the influence of the mean saturatiogymmarized in Table 1.

Sw on K, ;, for two fracture densities and a single typical In spite of the difference in percolation probability be-
value of the other parameters. Specifically, the exponentsveen the two cases, the general aspects of the results are
nm, N¢, and q are all equal to 2; the viscosity ratio is similar. The presence of the fractures increases the relative
#n!py=10 and the fluids have the same density; the fracpermeability for the nonwetting phase and decreases the rela-
ture permeability isr’ =1 with x=10"%2 tive permeability for the wetting phase, with respect to the

However, we considered samples of size 4R contain-  intact matrix material. However, the amplitude of these
ing either 16 or 32 randomly located fractures. An exampleyariations is larger for the denser fracture networks.
with Nf, =32 is shown in Fig. (). ;=9 realizations were  The strongest effects are observed for the largest satura-
generated in each case, and the flow equations were SOIV%%ns and for the nonwetting fluid permeabili; . This is

with a pressure gradient of magnituélg,,/R set along the . . ;
X, ¥, andz axes, successively. In the first case, the percolatiort’?1 conse%uenclf: of tth.; d|ffeéen(t1(::§]plI'I:arytl;:mctlons of The fr?c—
probability of the fracture network in a prescribed direction ures and rock matrixsee £q. - ~or the same value o

¢, the nonwetting phase saturation is much larger in the

is about 20%, whereas in the latter, it is about 80%. Th i than in th di i dth lati
examples displayed in Figs(ld) and Xc) belong to the first ractures than in the surrounding matrix, and the relative per-
meability o, , is larger thanK, ,. Thus, the fractures are

and second families, respectively. ¢ tial baths for th i b
The computations were run starting from initial rest statgPreferential paths for the nonwetling phase.

equilibrium conditions, i.e., with a uniform capillary pressure ~ ConverselyK, , is smaller tharK, ,, in the rock matrix,

corresponding to various mean saturati@sin the range but this is mostly a consequence of the increase of the abso-

0.1-0.9, until convergence of the saturation field. In addi-lﬂte permeability inducﬂby the presence of the fractures,

tion, a single-phase calculation was performed in order t&<>Kmn. The productskK, , and KK, ,, are identical,

determine the sample absolute permeability. The relative peWhich means that the fractures do not significantly affect the

meabilitiesﬁi for each case were then deduced from thewetting phase flow rate, with respect to the intact rock. This

phase flow rates via Eq54) is confirmed in Fig. 16, where the normalized phaie flow

The results are shown in Figs.(@5and 13b), for the 16-  ratesF=KK, ;/Kp=K'K, ; are plotted as functions &, .
and 32-fracture samples, respectively. The symbols corre- Let us finally consider the macroscopic capillary pressure-
spond to the statistical averages over 27 calculations, and teaturation relationship. The mean saturat&ncorresponds
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TABLE Il. Numerical results in the base casé=1, G=1, u,/uy,=10, n{=n,=q=2, k=102 The data are averages over the
y, andz directions for nine random realizations of fractured media contaiNing: 16 of 32 hexagonal fractureB, , is the initial (rest statg
capillary pressure, a@s the corresponding mean saturatiéq’ is the volume-averaged capillary pressure in the steady reg¢imeand
K, w are the matrix relative permeabilities correspondin§foK’K, ; is the normalized flow rate of phasén the final steady regime, ;
is the corresponding global relative permeability.

Ny =16, 0'=1, G=1, u,/py=10,n=2, n,,=2, k=107

Pér Su P,/ Krn Krw KK, Kin K™ Ky w Kt w
0.00 1.0000 0.000 0.000 1.000 0.000 0.000 1.316 1.000
0.75 0.8000 0.746 0.040 0.143 0.121 0.092 0.152 0.116
1.00 0.7071 1.007 0.086 0.0721 0.209 0.158 0.0741 0.0564
1.50 0.5547 1.509 0.198 0.0210 0.379 0.288 0.0211 0.0161
2.00 0.4472 2.007 0.306 0.00745 0.521 0.396 0.00745 0.00567
2.50 0.3714 2.505 0.395 0.00312 0.632 0.480 0.00311 0.00237
3.00 0.3162 3.004 0.468 0.00148 0.719 0.546 0.00148 0.00113
5.00 0.1961 5.030 0.646 0.000167 0.927 0.704 0.000165 0.000126
10.00 0.0995 10.000 0.811 0.000008 1.109 0.843 0.000008 0.000006
Ni;=32,0'=1, G=1, pp/my,=10,n{=2, np,=2, k=102
0.00 1.0000 0.000 0.000 1.000 0.000 0.000 1.657 1.000
0.50 0.8945 0.465 0.011 0.289 0.165 0.100 0.338 0.204
0.75 0.8001 0.747 0.040 0.143 0.299 0.180 0.153 0.0926
1.00 0.7071 1.009 0.086 0.0721 0.428 0.258 0.0739 0.0446
1.50 0.5547 1.512 0.198 0.0210 0.630 0.380 0.0211 0.0128
2.00 0.4472 2.009 0.306 0.00745 0.795 0.479 0.00745 0.00450
3.00 0.3162 3.005 0.468 0.00148 1.017 0.614 0.00148 0.00089
5.00 0.1961 4.997 0.646 0.000167 1.241 0.748 0.000168 0.000102
10.00 0.0995 10.000 0.811 0.000008 1.438 0.868 0.000008 0.000005

in a rest state to a capillary pressitg, . Since the intersti-

gradient, the viscosity ratig.,,/u,,, and the exponents,,

tial volume in the medium is widely dominated by the poreandn;, was briefly tested by varying a single parameter at a

volume in the rock matrixP , is related toS,, by the law
(11) for the matrix, withn=ng and Py=P,,,. When a

time with respect to the base case considered in Sec. V B.
Calculations were run for a few values of the mean saturation

Steady flow takes place through the fractured medium, thg,v, on a Sing|e Samp|e of fractured medium, Containing

saturation and capillary pressure fields are not unif¢see
Fig. 12. The volume average of the fluctuationsSjf is 0,

sinceS,, is conserved. However, due to the nonlinearity of

Eqg. (11), the volume averag§C is not necessarily equal to
P.,. It was calculated for the 27 steady states obtained in

the two types of fractured media. It appears that the differgepends both on the aperture and on the filling permeability

ence betwee§C andP, , is negligible(see Table ). Hence,

1. Fracture permeability

N, =16 or 32 fractures. The results are given in Tables Ill—
VI.

It should be recalled first that the fracture permeability

[see Eq.(5)]. In the following, the aperture was kept con-

the volume averaged capillary pressure does not differ bestant. Hence, variations @f correspond to variations of,

tween rest state and steady flow.
Recall that in the present case the global volume averag&ee Eqs(11) and(13)].

is equivalent to an average over the matrix only, since thé The numerical results for’ =1 to 1000 are given in

fracture volume is negligible. The previous statement mightl’able lIl. Recall thats’

which, in turn, modify the capillary properties of the fracture

not be valid if the matrix contained three-dimensional het-
erogeneities such as lenses of a more permeable material. In

this case, the concentration of the nonwetting fluid in the
permeable region would induce a noticeable decrease of i
saturation in the matrix.

C. Influence of the other parameters

=1 corresponds to the base case in

Note at first that the normalized flukK, ,, for S,=1is
the fractured medium absolute permeabikty As observed

by Bogdanowet al. [18], for large fracture permeabilities, it
increases asymptotically as a linear functionodf for the
percolating network Nl;,=32), whereas it tends toward a
finite limit for the nonpercolating networkiN;, = 16). In the

The influence of various parameters, namely, the fracturdatter case, the flow rate is controlled when the fractures are
permeability o', the magnitudeG of the driving pressure very permeable by the gaps that the fluid has to cross through
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when ¢’ increases. Recall that this applies only when the

I:i * variations ofo result from a change of the fracture filling
1.2} 1 permeability.
= On the other hand, the fractures are more and more satu-

rated with the nonwetting fluid whea’ increases. Hence,
when the fracture network percolates and dominates the glo-

bal absolute permeabilit}?, the total permeabilityKK, ,

approachest?, andK, , tends toward unity. When the net-
work does not percolate, the non-wetting fluid flux increases

with o', but it tends toward a finite limit, as do¢s. The

global relative permeabilityK, , first increases, and then
slightly decreases, with a maximum aroumt= 10.

2. Pressure gradient

Denote byG the dimensionless macroscopic pressure gra-
dient, i.e.,

P
VP:G%. (55)

It was decreased to 0.1 or increased to 10 in a few cases, as
Fi w w w w ‘ ‘ ‘ ‘ ‘ shown in Table IV. Of course, the global absoldgingle

1.6 I phase permeability K does not depend o, and it is a
- constant for each of the two parts of the Table, Kgf=16
1.41 I or 32.

= For low saturationsg,vgo.Z), the phase relative perme-
abilities are nearly unchanged by a chang&dfom 1 to 10.

The variations oK, ; never exceed 3%.

For large saturations§,=0.7), the relative permeabili-
ties vary more significantly whe@ changes from 0.1 to 1.

Generally, bothK, , andK, ,, slightly increase wherG in-
creases by a factor of 10. The variation is maximum (19%)

for the nonwetting phase with a large saturati@w# 0.8).
However, the nonwetting phase permeability behaves in the

opposite way forS,=0.9, with a decrease by 7%.
Several mechanisms may play a role in these variations.
0 : ‘ ‘ The spatial saturation variations increase wh causing
0 0.1 02 03 04 05 06 07 08 09 _ local variations of relative permeability and modifying the
S S hydraulic interactions between the fractures. Strong gradients
may even cause the intrusion of wetting fluid in the fractures.
This will be investigated in detail in a future work.
b Still, these observations are quite consistent with criterion
FIG. 16. Normalized phase flow ratern:K’K » (O) and (29). With the present parametersG. is equal to
' V(1-9)/(1+9)/S. For S,=0.0995 G.~11), G=1 and
G=10 yield identical results. Fo8,=0.196 G.~6), the
. results forG=1 andG =10 differ at most by a few percents.
the matrix between the fractures. , __ The same applies to the data f6r=0.1 andG=1, when
__ Wheno increases, the wetting fluid relative permeability S,=0.7 (G,~0.8). HoweverG.~0.5 andG,~0.3 for S,,
Krw decrgases, but this is merely a consequence of the in= .8 andS,=0.9, respectively. TherG=1 exceeds &,
crease oK; indeed, the produdtK, ,, remains nearly con- and significant saturation changes may occur, thereby modi-
stant. It was already noted in Sec. V B that the fractures ddying the apparent relative permeabilities with respect to the
not significantly contribute to the wetting phase flow whensmaller gradienG=0.1, by 10—20%.
o'=1. For largerg’, S,, in the fractures, and thus, ,,, are It is gratifying to note that Eq(29) indeed provides a
smaller. It can easily be checked that with the present paranreliable a priori criterion stating whether intrinsic macro-
eters,o, ,, decreases much faster than increases. Hence, scopic relative permeabilities can or cannot be defined. It
the fractures contribute even less to the wetting fluid flowwill be seen in Sec. VI A that the same criterion also deter-

FW:E’K,W (O) corresponding to the data in Fig. 15.
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TABLE lll. Numerical results for individual realizations with a nonpercolating; (= 16) or a percolating N;, = 32)
fracture network, when the fracture permability varies with respect to the base case in Table Il. Same notations as in

Table II.
G=1,,un/y,w=10,nf=2,nm=2,/<c=10“3/2
N;, =16 N;, =32

o | P, S, |KEKn Kn|KEK,. K. | KK, K. K. Ko
1 ] o000 1.000] 0000 0000| 1.318 1000 | 0.000 0.000| 1.66 1.000
10 | 000 1.000] 0000 0.000| 2239  1.000 | 0.000 0.000| 445 1.000
100 | 000 1.000| 0.000 0.000| 3521  1.000 | 0.000 0.000| 19.6 1.000
1000 0.00 1.000| 0.000 ©0.000| 4298 1000 | 0.000 0.000| 154. 1.000
1 150 0.555| 0.383 0.290{ 0.0212 0.0161 [ 0.630 0.380| 0.0211  0.0128
10 | 150 0.555| 00686 0.303| 0.0213 00096 | 236 0.532| 0.0215 0.00483
100 | 1.50 0.555| 0.968 0.270| 0.0211 00065 | 160  0.806 | 0.0223  0.00116
1000| 1.50 0.555| 1.078 0251 0.0211 0.0057 | 149. 0.967| 0.0225  0.00016
1 [300 0316] 0721 0.547| 0.00148 0.00113| 1.02  0.613| 0.00148 0.000895
10 | 300 0316 1266 0.563| 0.00147 0.00066 | 3.17  0.713 | 0.00148 0.000333
100 | 3.00 0316 1910 0.533| 0.00143 0.00044| 17.3  0.876| 0.00149 0.000077
1000 3.00 0.316| 2229 0.513| 0.00142 0.00038 | 151.  0.978 | 0.00149 0.000010

mines whether the macroscopic two-phase flow properties aksults in Table V show a total absence of influence of this
the fractured porous medium can be accurately evaluated kparameter. This also supports the macroscopic description

using a simple first-order model.

3. Viscosity ratio

(54).

4. Capillary functions

A few calculations were run with a viscosity contrast Finally, the exponents; andn,, were changed from 2 to
unl =1 instead of 10 in the base case of Sec. V B. The3 in a few cases. The results are presented in Table VI. The

TABLE IV. Numerical results for individual realizations with a nonpercolatidy,(& 16) or a percolating N, = 32)
fracture network, when the macroscopic pressure gradient is changed by a factor of 10 with respect to the base case in Table
Il. Same notations as in Table II. Lines starting with a star correspond to the predictions of (@fdahd (59).

o' =1, pin/p = 10, nf =2, 0, = 2, K = 1073/2

Ny =16 Ny =32
¢c|p, S |KK, K,.|KEK., K. |EEK, E.|KEK., K.
1.0] 0.50 0.895 0.172 0.104 0.332 0.200
0.1] 0.50 0.895 0.183 0.111 0.289 0.175
* 0.50 0.895 0.110 0.174
1.0] 0.75 0.800 0.131 0.0992 0.152 0.115 0.305 0.1838 0.151 0.0911
0.1] 0.75 0.800 0.110 0.0829 0.143 0.109 0.283 0.1710 0.143 0.0864
* 0.75 0.800 0.0817 0.109 0.1716 0.0863
1.0( 1.00 0.707 0.215 0.1628 | 0.0743 0.0564 0.420 0.253 0.0739 0.0446
0.1 1.00 0.707 0.197 0.1493{ 0.0721 0.0548 0.400 0.242 0.0721 0.0435
% 1.00 0.707 0.1485 0.0548 0.241 0.0435
1.0 5.00 0.196 0.927 0.7032 | 0.000168 0.000128 1 1.240 0.748 | 0.000171 0.000103
10.] 5.00 0.196 0.933 0.7081{0.000174 0.000132| 1.252 0.755 [ 0.000175 0.000105
* 500 0.196 0.7078 0.000127 0.748 0.000101
1.0110.00 0.0995| 1.111 0.8430 1} 0.000008 0.000006| 1.439 0.868 { 0.000008 0.000005
10.110.00 0.0995| 1.111 0.8430| 0.000008 ©.000006 | 1.441 0.869 | 0.000008 0.000005
* 10.00 0.0995 0.8464 0.000006 0.868 0.000005
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TABLE V. Numerical results for individual realizations with a nonpercolatiiN,=16) or a percolating N;, = 32)
fracture network, when the viscosity contrast/w,, is changed by a factor of 10 with respect to the base case in Table II.
Same notations as in Table II.

o'=1,G=1,n;=2,n, =2, k=10"32

N, =16 Ny, = 32
ﬂn/ﬂw Pé,r §1: K, K_r,r: m ?I Kr,w Kr,w ?, Kr,n Kr,n ?, Kr,w Kr,w
10 1.00 0.707| 0.215 0.163| 0.0743 0.0564 0.420 0.253| 0.0739 0.0446
1 1.00 0.707, 0.215 0.163| 0.0743  0.0565 0.420 0.253] 0.0739 0.0446
10 3.00 0.316] 0.721  0.547; 0.00148 0.00113
1 3.00 0.316 0.721 0.547 | 0.00148 0.00112

change ofn; induces negligible changes in the relative per- In this approximation, the local distribution of the phases
meabilities. This is because the fractures are nearly saturateéa the pore volume is assumed to be determined by capillary
with nonwetting fluid both fom;=2 andn;=3. A similar  forces only, and each phase flows through its own system of
behavior can be expected for any fracture capillary functiorchannels as if the other phase were immobile. Thus, the two
that yieldsS,<1. flows are actually decoupled, and can be treated as two
A change in the capillary properties of the rock matrix hassingle-phase flows in a medium where the local permeability
more dramatic effects. First, for a given initial capillary pres-is determined by saturation, via the local relative permeabili-
sureP,, it changes the mean saturatip, as shown by U€s. _ _ _ .
Table VI. However, for the same saturation, it also modifies These considerations, together with the additional feature
the relative permeabilities in the matripsee Eq.(14)].  that the fractures are nearly saturated with the nonwetting
Therefore K, , for n,=3 does not correspond to the value I!wd, ??ﬁ belak[:))pllledl tg devise a sgq_pt)_le model for the predic-
obtained with the same mean saturation wimgp=2. For ion of the global refative permeaniities. :
. ) — . Recall first that the macroscopic single-phase permeabil-
instance, withNs, =16, n,=2 andS,=0.63, an interpola-

ity of a fractured medium can be written &see Bogdanov
tion of the data in Table Il yield¥, ,~0.038, instead of et al.[18])

0.086 forn,=3 in Table VI. The nonwetting phase global .
relative permeabilities are in better agreement, but this is K=Knx(p',0" 0'), (56)
because the model fdt, , does not involve the exponen,
[see Eq(16)].

wherep’ is a measure of the network density, ant is the
hydraulic resistance of the fractures to cross flow, which is
taken equal to O in the present case. In the following, we
A. Comparison with a capillarity dominated model write in short y(o’), since the two other parameters are
. . - fixed. The functiony was tabulated by Bogdanat al.[18]
Underlying the macroscopic description of steady WO~tor various values of the density and fracture permeability; it

phase fI(_)v_vs in terms of relgtive permeabilities independe_rnéan also easily be computed for any given fractured medium
of the driving pressure gradient magnitude is the assumpﬂogince it involves only single-phase flow '

that the spatial phase distribution is not significantly influ- ) —
enced by the flow, with respect to the equilibrium rest state. SUPPOSE that in the rest state the mean satur&jocor-
This corresponds to the small value of the capillary numbef€SPonds to a capillary pressukg. The saturation in the
(12) and to criterion(29). matrix S, , is nearly equal t&,,, and the associated relative

VI. DISCUSSION

TABLE VI. Numerical results for individual realizations with a nonpercolatiNg =16) or a percolating N;, = 32)
fracture network, when the exponemtsor n,, are modified with respect to the base case in Table Il. Same notations as in
Table II.

o' =1,G =1, pin/p = 10, k = 10~3/2

Nf, =16 Nfr = 32

ny nm| P, Sy |KKpn Kn KKw Kouw |KEKy KalKKu Ko

1.00 0.707| 0.215 0.163| 0.0743 0.0564 0.420 0.253 | 0.0739 0.0446
1.00 0.707| 0.219 0.166| 0.0744 0.0565 0.436 0.263 | 0.0740 0.0446

2 2
3 2
2 3 (100 0630 0308 0.233| 0.1127 0.0857 | 0.540 0.325| 0.1116 0.0673
2 2
3 2
2 3

3.00 0316| 0.721 0.547| 0.00148 0.00113
3.00 0.316| 0.724 0.550| 0.00148 0.00113
3.00 0.109| 1.091 0.828| 0.00019 0.00015
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TABLE VII. Comparison of the full solution of the two-phase flow equations in single realizations of porous media
containing a non-percolatind\N¢, = 16) or a percolatingN;, = 32) fracture network, with model&7) and(59). Data are for
G=1, pn/py=10, ny=n,=q=2, k=10"%2

Sw o’ Ny =16 Ny, =32
Kom 10° K, K. 10° Ky
Num. Model Num. Model Num. Model Num. Model
0316 1 0.5467  0.5497 1.125 1.126 0.6129 0.6102 0.8945 0.8935

10 0.5626  0.5515| 0.6620 0.6693 | 0.7126 0.7140 0.3325 0.3330
100 0.5333 0.5049 ( 0.4417 0.4572| 0.8759 0.8721| 0.07670 0.07641
1000 0.5126 0.4765| 0.3841 04016 0.9784 0.9765| 0.01018 0.01009
0.555| 1 0.2905 0.2834 16.08 15.97 0.3800  0.3708 12.72 12.68
10 0.3032 0.2749 9.606 9.495 0.5315 0.5244 4.827 4.725
100 0.2699  0.2272 6.490 6.486 0.8062  0.7998 1.155 1.084
1000| 0.2509  0.2042 5.674 5.698 0.9671  0.9644 0.1548 0.1431

permeabilities are denoted byr ;. The saturation in the set as in Sec. V B. The critical gradie®t, is about 4 and 2

fractures results from Eqg11) and (13), and is generally  for S,=0.32 and 0.55, respectively; therefore, criter(@)
close to 1, except for very large mean saturat&n The s fairly well satisfied. The functiory was computed before-
correspondmg relative permeabilities in the fractures aréhand for a few values of’, and the values required for the
or i» with o 0 <1. application of Egs(57) and (59) were obtained by a spline
Consider first the wetting-phase flow. As already noted ininterpolation of the data.

Sec. VB, the fractures have a negligible contribution to the Note first that the agreement is always very good for the
flow, sinces?,<1. In the present model, the fractures dowetting phase. The only significant differences are an under-
not present any resistance to cross-flow, and thus, they aestimation by about 7% for the networks of very permeable
neutral with respect to the wetting fluid. Hence, the Wetti”gfractures ¢=100) and for the largest saturati<§J,=0.55.

ﬂl;'?s f:fws througgl ?]umlfot;ml medium V;:'th applar_ent PETME this situation, the fracture network seems to slightly con-
ability - and the global wetting-phase relative perme-yy e o the wetting fluid flow,

ability is The agreement is also very good for the nonwetting phase
0 0 in the sample containing a percolating fracture network. The
— KKy, Kiw . ; : :
Kpw=——m =", (57) differences between the numerical solution and the predic-
K x(o") tion (59) is always less than 1%, except for the least perme-

. . ble fract "=1, where it hes 3%.
On the other hand, the nonwetting fluid flows through a a © fracturess Where [t reacnes 57

fractured porous medium with apparent matrix permeability The two previous cases are the most simple, since each
hase flows in a single domain, namely, the wetting phase in
K KO’ and fracture permeablhtylronn Denote byo, the b g Y gp

dimensionless ratio defined similarly &' for the nonwet- the matrix and the nopwetting fluid in the percolating frac-
ting phasdsee Eq(48)] ture network. I\_lonwettmg phase ﬂqw when thg network does
' not percolate is more complex, since the fluid has to flow

o ‘T?n U?n through both the fractures and the m_atrix.
=g —, (58) Nevertheless, a good agreement is also observed for the

LK KO, KO , = - :
mr,n rn nonwetting phase fog,=0.32. Prediction59) slightly un-
Then, the global apparent permeability of the fractured mederestimates, ,,, but the difference is small. It increases
dium is given by Eq(56) asK, K0 x(op), and the corre- with the fracture permeability, but remains smaller than 8%
sponding relative permeability for the nonwetting phase is for o' = =10°.
The largest errors occur for very permeable fractures and
e :KmK(r),nX(Ué) KO x(op) Sw=0.55. The underestimation &, , by Eq. (59) reaches
r.n K "M (o) 15% and 18% fow’' =107 and 18, respectively.
Another comparison is provided in Table 1V, with numeri-
Predictions(57) and (59) are compared with the full so- cal simulations for small and large values of the mean satu-
lution of the two-phase flow equations in Table VII, for ration, and different magnitudes of the macroscopic pressure
single realizations of porous media containing a nonpercolatgradient(;. In all the cases, predictior(§7) and (59) are in
ing (N, =16) or percolating Ny, = 32) fracture network, for excellent agreement with the full numerical solution for the
various fracture permeabilities’ =1 to 10° and two mod-  smallest value of5, as expected in view of the simplifying
erate values o&N 0.32 and 0.55. The other parameters areassumption of the model.

on=

(59
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In summary, the predictions of the model are quite satisfluence of many other parameters was briefly addressed.
factory, in the range of pressure gradient defined by criterion Among the main results is the demonstration that the large
(29). scale steady-state flow properties can be estimated from the

rest state phase distribution, if criteriq@9) is fullfilled.
B. Comparison with the infinite plane model However, this still requires the solution of the flow equations
in the actual fractured medium complex geometry, since nei-

It was s_h_own by KOUd'n&t al. [32] that_l_n the limit of ther the absolute nor the relative permeabilities are accu-
large densities, the single phase permeability of fracture ne},—

K | bl 1 mated b imol del ately predicted by an infinite plane model for small or mod-
WOTKS IS reasonably well approximatéd by a SImple MOdel Oy a4q fracture density. For faster flows, the phase distribution

infinite plane fractures, where the volumetric fracture area I9< influenced by the fluid motion, and a full solution of the

conserved. The same applies for fract_ured porous _me_dl upled two-phase flow equations cannot be avoided. This is
when the fractures are very permeable, since the COﬂtrIbUtIO{he macroscopic counterpart of the property that the local

of the malirix to the. ﬂ‘.)W is negligible. _Therefore, one may capillary function measured in a rest state applies under flow
wonder whether a similar property applies for the nonwettmgﬁ’ but only if, the capillary number is small enough.

phase in the case of two-phase flow through fractured porous Although the results correspond to certain types of con-

lmedla,thsmcteh the ftr:_glctture tra_ns_m_ltsswlty 'Sf gene:jally tmuchstitutive equationg(capillary function and relative perme-
arger than e matrix transmissivity, even for moderale abilities), many of the main features are expected to apply in
due to the larger relative permeability in the fractufsse a more general setting. For instance, criteii@8) may have
Eq;r(r?S)]. tested b ing in Fig. (b5 th Its of to be applied either to the matrix or to the fractures or in a
h f'ﬁ Wals t_es ef t%’ c?\rvnparr:ng mﬂ ig. (b5 te' resu '?hoth mixed form, but it probably always applies in some sense.
e Iull soiution ot the two-phase flow equations wi eSimiIarIy, time constan{34b) may actually have to be evalu-
analytical expr_essmn@Sl), for identical 'fracture aperturh ated for the wetting or nonwetting phase, in the fractures or
and permeability ratioc. The volumetric area of the frac- in the matrix, depending on which flow is physically ex-

tures Was_ _set_in Ed51) in order to match the glgbal intrinsic pected to be limitant, but probably always have the same

permeability K of the random fractured media. It appears general form.

that Eq.(51) does not agree with the numerical data. For  The numerical model should be extended by including a

S»=0.8, Eq.(51) overestimateX, , by a factor larger than few additional features. Some are minor changes, such as the

two, even thoughr/, is equal to about 20. |:(§N:0_9, with  introduction of residual saturations. Hysteretic local capillary
o/ ~85, the overestimation is a factor larger than 3. funcuon; can also, in principle, be eas!ly |ntr.oduced, except
Paradoxically, a better agreement is observed for smalfPr Possible numerical convergence difficulties, and would

L= . . . : probably induce new types of behaviors on the macroscopic
saturationsS,,, where the model is less JUSt'f'ed;S'me 'S scale. Mixed-wettability cannot be accounted for in the

not large compared to le.g., oy~20'=2 for §,=0.3).  present implementation of the model, but could probably be
This is probably because the fractures do not introducéntroduced, provided that consistent constitutive equations
strong heterogeneities, and any reasonable mixing rulgre used(see, e.g., Kjosavilet al. [47]). Finally, fractures
would yield reasonable estimates of the transport coefficiengan act as obstacles to the flow in their normal directions, for
Hence, it can be concluded that the infinite plane fractur&everal reasons such as capillary effects, filling with a mate-
model fails to account for the two-phase flow properties ofrjg| |ess permeable than the matrix rock, or alteration of the
random fractured porous media, even when the fracture defnatrix material along the fracture caused, for instance, by

sity is fitted to match the single-phase permeability. solute precipitation. This would result in apparent pressure
discontinuities on the intermediate scale of the present de-
VIl. CONCLUDING REMARKS scription. Technically, accounting for these effects requires to

We presented in this paper a numerical tool for the Simu_decouple the pressures on either side and in the middle of the

. . . fractures, as done by Bogdanet al. [18] for single-phase
lation of two-phase flows in fractured porous media, togethehow However, capillary barriers would require additional
with a set of applications that demonstrated its ability to .~ - '

. . . nstitutiv ions, which ar rently n learl
handle steady or transient flows in complex random med|a.CO stitutive equations, ch are apparently not yet clearly

Owing to the large number of physical parameters, theStated_

scope of the simulations was necessarily restricted to a few

represgntatlve S|tuat|qns. Still, a systematic study of the mac- ACKNOWLEDGMENTS

roscopic flow properties was conducted as a function of the

global mean saturation, for two types of media containing Most computations were performed at CINEsibsidized
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