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Three-dimensional characterization of a fractured 

granite and transport properties 

R. Gonzalez-Garcia, • O. Huseby, 2'3 J.-F. Thovert, 
B. Led•sert, 4 and P.M. Adler 2 

Abstract. A three-dimensional fracture network in a granite block is reconstructed 
from a series of experimental serial sections. It is visualized and its most important 
geometrical characteristics are studied, namely the orientation of the fractures, the 
connectivity of the fractures, the number of cycles, per unit volume, the distributions 
of surface areas and of the intersection lengths, and the number of finite solid blocks 
isolated in the solid matrix by the network. Though the network mostly consists of 
two families of fractures, it is interesting to note that a simple model of randomly 
oriented, monodisperse hexagons often yields a good order of magnitude for the 
various geometrical properties, which have been measured on the real block. The 
flow properties are then studied; examples of velocity field are provided as well as 
histograms of velocities; the permeability tensor is determined and is found to be 
in good agreement with Snow's formula. Finally, dispersion is analyzed by means 
of a random walk method; histograms of arrival times are provided and interpreted 
in terms of dispersion tensor. 

1. Introduction 

In most cases, the experimental data concerning ge- 
ological fracture networks are obtained from one- or 
two-dimensional observations. Examples of borehole 
surveys are given by Narr and Lerche [1984] and Gen- 
ter et al. [1995]. A variety of information can be ob- 
tained from core analysis, such as fracture density or 
spacing, or orientation statistics. However, these one- 
dimensional sections provide little information regard- 
ing the extension or the interconnectivity of the frac- 
tures. 

Two-dimensional observations provide a much more 
realistic image of the fracture network. Sections of var- 
ious extensions can be revealed in man-made excava- 

tions, such as tunnels or drifts [e.g., Rouleau and Gale, 
1985; Billaux et al., 1989; Abelin et al., 1991], or quar- 
ries [e.g., Gervais, 1993]. They may also appear nat- 
urally in outcrops. Fracture trace maps can then be 
drawn at various scales of observation. For instance, 
Odling [1992] investigated a 18x 18 m e area from ground 
observation, whereas Barthdl&ny [1992] and Barthdldmy 
et al. [1996] used photographs shot from planes or he- 
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licopters, and Vignes-Adler et al. [1991] used satellite 
images. Unlike borehole surveys, these two-dimensional 
views provide information (at least partial) relative to 
fracture extensions and to their connectivity. Their in- 
plane orientation (strike) is also readily available, al- 
though the inclination (dip) is not. Fracture density 
can be measured by counting the number or the cumu- 
lated length of fracture traces per unit area. 

Stereological techniques have often been applied to 
infer three-dimensional (3-D) information from 2-D trace 
maps. For instance, Berkowitz and Adler [1998] de- 
vised a solution algorithm to the inverse problem of de- 
termining the fracture size distribution from the trace 
length distribution. They also obtain analytical expres- 
sions for the fracture density, for the fracture intersec- 
tion density, and for the intersection length distribution. 
However, this approach necessarily relies on a priori hy- 
potheses such as the usual assumption that fractures 
can be treated as disks. 

Very few attempts to fully characterize fracture net- 
works in three dimensions have been reported in the lit- 
erature for obvious practical reasons. Three-dimensional 
imaging techniques such as nuclear magnetic resonance, 
X-ray computed tomography (CT), and confocal mi- 
croscopy are restricted to laboratory measurements on 
small samples because of their limited imaging field 
or penetration depth. For instance, Montemagno and 
Pyrak-Nolte [1995] and Pyrak-Nolte et al. [1997] im- 
aged decimetric coal samples with a 300/•m spatial res- 
olution by X-ray CT. Three characterizations by serial 
sectioning can be mentioned, namely that of Koestler 
and Reksten [1992] at a decametric scale in a quarry, 
and that of Led4sert et al. [1993] and Gertsch [1995] 
at a decimetric scale in the laboratory. Only Gertsch 
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[1995] actually reconstructed a three-dimensional frac- 
ture network from serial sections data, although he did 
not proceed beyond a 3-D visualization of the network. 

In this paper, the geometry of a natural fracture net- 
work is fully characterized from the experimental se- 
rial sections obtained by Leddsert et al. [1993]. Our 
purpose is to reconstruct the fracture network in three 
dimensions, with a threefold objective. First, 3-D visu- 
alizations provide more direct insight into the network 
structure. Second, an appropriate 3-D description al- 
lows one to determine geometrical parameters that are 
not accessible in 2-D sections. Finally, it can also be 
used to investigate the transport properties of the net- 
work. 

This paper is organized as follows. Some necessary 
concepts and terminology are introduced in section 2, 
where general results from previous numerical investi- 
gations of the geometrical and transport properties of 
random fracture networks are briefly recalled. The rock 
sample and the primary data acquisition are described 
in section 3. Section 4 is devoted to the 3-D reconstruc- 
tion of the fracture network from the serial 2-D trace 

maps, which is performed by triangulating the fracture 
surfaces. The geometrical and topological properties of 
the network are addressed in section 5. Extensive re- 

suits are provided, with emphasis on the connectivity. 
Finally, fluid flow and solute transport through the net- 
work are considered in sections 6 and 7 by solving the 
local transport equations in the fractures. 

2. General Concepts and Terminology 

The geometrical and topological properties of ran- 
dom fracture networks were systematically investigated 
by direct 3-D numerical simulations by Huseby et al. 
[1997]. Their transport properties were studied by 
Koudina et al. [1998] and Huseby et al. [1997] for 
fluid flow and solute transport, respectively. The most 
salient results of these works are summarized by Adler 
and Thoreft [1999], who also provide an extensive sur- 
vey of the related literature. 

The results of the present work will be compared with 
the general results of these studies, and their numerical 
tools are used to investigate the transport properties of 
the real fracture network. Therefore some terminology 
and necessary concepts are introduced in this section. 

2.1. Topology 

The concept of excluded volume was introduced by 
Balberg et al. [1984] and it was extensively used in the 
context of continuum percolation. If a population of 
objects is uniformly distributed in space, the excluded 
volume V• is defined as the volume surrounding an 
object in which the center of another object must be 
in order for them to intersect. For example, consider 
monodisperse spheres with volume ¬; it is obvious that 
two spheres intersect when the distance between their 
centers is less than one diameter; hence the excluded 
volume of a sphere is simply in terms of ¬, 

V• = 8 V•, (1) 

for spheres. Let us now consider a set of randomly ori- 
ented convex polygons with perimeter Pp and area ap; 
each polygon is a 2-D object; the volume V• which 
surrounds a given polygon in which the center of an- 
other polygon must be in order for the two polygons to 
intersect is given by Adler and Thoreft [1999]: 

1 PpAp (2) . 
For anisotropic orientation distributions, different val- 
ues of V• are obtained by a proper statistical averaging. 
It should be emphasized, however, that the definition of 
the excluded volume is meaningful only if the object lo- 
cations are uniformly distributed in space. 

Now suppose that the number of objects per unit vol- 
ume, i.e., the volumetric density, is denoted by p. It is 
natural to use V• as a reference volume, and we may 
define the dimensionless density p' as the number of 
objects per volume V•: 

p'= p (3) 

In addition, from the definition of V•, p' is also the av- 
erage number of intersections per object if they are ran- 
domly located according to a Poisson process. There- 
fore, given the shape of the object and its orientation 
distribution (•nd thus V•), definition (3)incorporates 
both volumetric and topological aspects. 

The real network considered in this paper does not 
belong to the general class investigated by Huseby et 
al. [1997], since the fractures are not plane nor isotrop- 
ically oriented, and possibly not uniformly distributed 
in space. Furthermore, the fracture sizes and shapes 
are very dispersed. Thus the density p should be ex- 
pressed as a function of the fracture orientation, size, 
and shape, and V• should be obtained by a complex 
averaging procedure. The number of fractures in the 
network is too limited and the truncations by the sam- 
ple boundaries too frequent to allow an accurate esti- 
mation of these quantities. However, the number of 
intersections per fracture directly provides an estimate 
of p'. Hence the topological properties of the real net- 
work can be compared with theoretical and numerical 
predictions for isotropic networks with the same con- 
nectivity. 

The reduced density p', based on the excluded vol- 
ume, proved very successful for unifying the description 
of random isotropic networks of plane fractures. Huseby 
et al. [1997] showed that a percolation threshold takes 
place for P'c - 2.26 4-0.04 and that many topological 
properties such as the cyclomatic number or the den- 
sity of finite blocks are functions of p' only. 

A connected component of a fracture network is a set 
of fractures which are connected one to another. The 

number of such connected components for a network is 
denoted by 

This definition is necessary for the introduction of the 
first Betti number, also called the cyclomatic number or 
genus, which is the number of independent cycles in the 
network [Barvet and Yust, 1970]; it may be expressed 
as 
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- + Z0, (4) 

where N! and Ni are the numbers of fractures and frac- 
ture intersections, respectively. 

An intrinsic volumetric cyclomatic number, •, and 
the corresponding number of cycles per volume Vex, •, 
are defined by 

11- & - 
By definition, •he number fi0 of connected components 
is small compared •o N I in well-connected networks; 
hence fi0 can be neglected in (4), and one obtains 

P' - ' P'-1)p' (6) •--•• l•p •1- (• ß 
In addition, Huseby et al. [1997] and Adler and Thoreft 
[1999] showed that the density p• of closed blocks can 
be fitted by a power law of pt. 

p[ - 5.7 10 -5 pt4.46. (7) 

Finally, let us introduce the following notations. The 
area of fracture i is denoted as Ai, i = 1,...,N!. Its 
number of intersections with other fractures is hi, with 
•-•-i ni = 2ZI, since each intersection involves two frac- 
tures. The length of the intersection line of fractures 
i and j, if any, is denoted as lij; the total intersection 
length for fracture i is Li -- •-]j lij. 
2.2. Flow 

The following applies equally well to electrical con- 
duction and fluid permeability. Since applications deal 
mainly with permeability, the flow language was pre- 
ferred. 

The solid matrix containing the fractures is assumed 
to be impervious. The flow of a Newtonian fluid at 
low Reynolds number is governed by the Stokes equa- 
tions within a fracture, i.e., at a local scale characterized 
by a typical aperture b0, which is assumed to be much 
smaller than the typical lateral extent Do of the frac- 
ture. Because of the classical Poiseuille law the typical 
permeability a0 of a fracture is expected to be of the 
order of 

•r0 = 12' (8) 
At a scale œt, which is intermediate between b0 and Do, 
the flow is governed by the Darcy equation 

ß t _ 1__ O.t $ _ .•-•t, (9) 

where jt and •pp are the locally averaged flow rate per 
unit width [L • T -•] and pressure gradient and •t [L 3] 
is the fracture permeability tensor; dimensional quan- 
tities are indicated by a prime. The mass conservation 
equation becomes 

V•./t - 0. (10) 

where V'• is the 2-D gradient operator in the mean frac- 
ture plane. The dependence of e• t on the fracture char-. 
acteristics was studied by Mourzenko et al. [1995, and 
references therein]. 

Note that if electrical conductivity is addressed, the 
shape of (9) and (10) remains the same; pt should be 
replaced by the electric potential •bt; e• t would be the 
fracture conductivity tensor. These equations must be 
supplemented with no-flux conditions at the fracture 
edges and conservation (for the flux) and continuity (for 
pressure) equations along the fracture intersections. 

Any standard overall boundary condition can be ap- 
plied to the network. For instance, pressures or fluxes 
could be applied along inlet and outlet lines drawn on 
fractures of the network. In the particular case where 
the fracture networks are statistically homogeneous at 
the field scale, which is assumed to be large with re- 
spect to the lateral dimensions Do of the fractures, a 

l 

macroscopic pressure gradient V'p induces an average 
flux _-_t which is related to the pressure gradient by Vr•, 

Darcy's law recalled by Adler [1992], 

•,• - -1K[.V'pt. (11) 

K[ is the network permeability tensor [L2]. For isotropic 
networks it is a spherical tensor 

K'•- K• I. (12) 

It is convenient to introduce a dimensionless perme- 
ability tensor K•, 

K•- Ko K,• Ko = •, (13) 
where R is a typical lateral size of the fractures. 

Koudina et al. [1998] developed general numerical 
tools to solve the local flow equations in fracture net- 
works described by a 3-D triangular mesh, and they sys- 
tematically investigated the flow properties of the same 
class of random networks of plane fractures as Huseby 
et al. [1997]. They showed that the permeability varies 
as 

K• - 0.0455 (p'- p'c) •'57 (3.5 < p' 5 20). (14) 

Snow [1969] considered networks where all the frac- 
tures are infinite plane channels with an arbitrary ori- 
entation distribution. This is equivalent to assuming 
that the whole surface of all the fractures in the net- 

work may contribute to the flow and can be valid only 
in the limit of very dense networks. 

For an isotropic network the permeability tensor is 
given by 

KilO'_ 2•o.,,. q I, (15) 
where $ is the volumetric surface area of fractures. This 

result is easily generalized for anisotropic networks by 
introducing the fracture orientation distribution, which 
yields a nonspherical tensor K•, 
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(16) -•* V 1 •v, ____ ! 

i=1 i=1 

where fl is the unit sphere and $(n)d2n is the volumet- 
ric surface area of fractures with normal vector in the 

solid angle d2n around n, with permeability 
For finite polygons, $ can be expressed in terms of 

the surface Ap and perimeter Pp of the polygons. Hence 
the dimensionless permeability in Snow's [1969] model 
network with the same surface density is 

Kiso 4 R p•, 

where R/Pp is a shape factor, equal, for instance, to 
V•/8, 1/6, and 1/2•r for square, hexagonal, and circu- 
lar fractures, respectively. The numerical calculations 
of Koudina eta!. [1998] showed that (17) is indeed a 
possible asymptote for networks of finite fractures with 
very large densities. 

2.3. Solute Transport 

2.3.1. Physical description. Most of the under- 
standing of solute transport phenomena in rock and 
soils has been gained in the context of porous media. 
Surprisingly, few contributions discuss the important 
case of fracture network transports, although fractures 
are likely to dominate transport if they are present in 
otherwise porous media. If the porosity is small, as in 
igneous rocks, or if the pore space is disconnected, as 
in chalk reservoirs, transport processes may completely 
depend upon the presence of a connected fracture net- 
work. 

Consider a solute which is released in a (possibly 
curvilinear) surface embedded in a 3-D space, and define 
a surface concentration C•(r•,t•). The concentration 
evolves in time and space according to a convection- 
dispersion equation 

OC I 

c9t • --+v'.V'kC'-V'k.(D'.V'kC') - 

where v • is the velocity of the convecting fluid, r t is 
the solute position at time t •, and the Dirac distribu- 
tions describe the initial source term, when the solute is 
released at location r•, at time t•; D • is the local disper- 
sion tensor. This dispersion tensor should be viewed as 
the average quantity obtained in the first upscaling from 
the microscopic molecular level. The dispersion tensor 
D • is therefore a function of the microscopic fracture ge- 
ometry and of the interstitial fluid velocity v,•, as well 
as of the molecular diffusivity d,•, and this function is 
assumed to be known. 

The macroscopic P•clet number Pen can be defined 
as 

v n 

Pe.= d•' (19) 
where • is the magnitude of the average interstitial 
velocity •, which can be expressed as 

where j• is the flow rate in each triangle i with area $i. 
A particularly simple value of D • is obtained when 

.! 

the local Pdclet number Pet - $i/dm is small enough, 
since then D • reduces to the molecular diffusion coef- 

ficient. The computations in the following were run in 
this simple case. Hence the results apply as long as the 
macroscopic Pdclet number Pen does not exceed the 
ratio 

Dimensionless quantities (without primes) may be in- 
troduced by 

r • R r , v • d,• D• t• R 2 - - v -d.• D - t 
R ' ' • 

(21) 
With these notations, the dimensionless velocity V• is 
simply equal to Pe,. 

2.3.2. Numerical simulation by the random 
walk method. The random walk method, which does 
not require the assumption of spatially periodic medium, 
is well suited to study dispersion in the natural network 
considered here (cf. O. Huseby et al., manuscript in 
preparation, 2000). The random walk algorithm can be 
described in the few following steps [Sall•s et al., 1993]. 
Release a large number Np of particles numbered by 
the index i (i- 1, 2, .., Np), at locations ri(t0). In the 
following simulations it was convenient to release the 
particles in some inlet triangles; alternatively, they may 
all be released in one point. 

Convect and diffuse each particle in time steps dr. 
The location at time t + 5t is given as 

ri(t + Jr) = ri(t) + v(ri)Jt + Jr) (22) 

where r•(t) is the location at time t, v(r•) the velocity 
at location ri(t), and 5o a random diffusive step, whose 
magnitude is deduced from the local dispersion tensor, 
with a random direction. 

The velocity field used in the random walk algorithm 
is uniform inside each triangle. When a triangle edge is 
encountered, the movement is continued with the same 
velocity, except if the triangle edge coincides with a frac- 
ture edge or an intersection. It is therefore important 
that each step is not too large compared to the triangle 
sizes. 

When a particle encounters a fracture edge, it stops 
and the elapsed time to arrive at the edge is recorded. 
The remaining time is used in the subsequent step. 
Hence all the particles are kept at the same times, which 
is required for the calculation of the moments. 

The fracture intersections are handled like the frac- 

ture edges. If a particle reaches a fracture intersection, 
it stops and the remaining time is again recorded and 
used in the subsequent step. From an intersection the 
particle may enter any of the four adjacent triangles, 
chosen at random with equal probabilities 1/4. A new 
directed step is calculated from the velocity in the cho- 
sen triangle and a random diffusive displacement; this 



GONZALEZ-GARCIA ET AL.: CHARACTERIZATION OF A FRACTURED GRANITE 21,$91 

new step may point into or out of the triangle; if it 
points out of the triangle, the particle did not leave the 
intersection and the procedure is resumed until the par- 
ticle stays in the chosen triangle. This procedure yields 
the same results as the perfect mixing model, i.e., so- 
lute fluxes proportional to the outgoing fluid flow rates. 
Other mixing rules were investigated by O. Huseby et 
al. (manuscript in preparation, 2000). 

The dispersion of the solute can be evaluated either 
by investigating the spatial distribution of particle lo- 
cations ri at fixed times t or by investigating the distri- 
bution of times ti used to travel a fixed distance r. 

In the first approach, the global moments of the spa- 
tial distribution of particles can be determined by the 
summation 

i Np 

= /•• [r,(t) - r,(t0)] '• (23) Mm Np .= ' 
After long times, the three first moments of the particle 
distribution in space converge to 

M0 = const, (24a) 
M1 = V't, (245) 
M2 - M1M1 + 2D't, (24c) 

The dispersion tensor can be evaluated from M• and 
M• as 

D* 1 d - • •(M• - M• M•). (25) 
In the second approach, the global moments •m of 

the travel time distribution for fixed displacements r 
can be determined by the summation 

-- - to) Tm = Nr .= 
In this case, we have [Sahimi et al., 1986] 

To = const, (27a) 

r• 

T• = V--•, (27b) 

T• - T•(!+ r-•), (27c) 
where • is the direction of the applied pressure gradient. 

If the dispersion is diffusive, that is, if both the spa- 
tial particle distribution at fixed times and the travel 
time distribution at fixed locations are Gaussian, both 
approaches yield the same dispersion coefficient. How- 
ever, as we shall see in section 7.2, the dispersion process 
in the natural network is non-Gaussian, at least over the 
limited investigated spatial domain. Therefore the dis- 
persion coefficient was determined both from (27b) and 
(27c) and from the following definition based on the 
spatial spread [Sahimi et al., 1986]: 

D* - (r - V*ti)(r - V*ti) V* - (•/). (28) 2ti ' 

This expression is similar to (25), except that the in- 

stantaneous centered second-moment M2- M•M• is 
replaced by the quadratic mean deviation of the particle 
positions from the expected displacement V*ti deduced 
from the mean solute velocity V* and from the arrival 
time ti. Note that the mean solute velocity V* can differ 
from the mean fluid velocity •, as discussed in section 
7. 

3. Primary Data 
The present study was conducted on a block of dark 

grey Hercynian granite from La Peyratte, Deux-S•vres, 
France. It is fine-grained (1 to 2 mm long crystals) and 
is crosscut by numerous fractures and veins surrounded 
by discolored alteration halos. The primary acquisition 
was undertaken by Led•sert et al. [1993]. The granite 
block (about 52 x 35 x 36 crn 3) was sawed into 9 parallel 
plates, 4 cm in thickness. Trace maps were drawn from 
the nine sections by visual examination of the alteration 
zones due to the circulation of hydrothermal fluids (Fig- 
ure 1). The fracture pattern appeared to be composed 
of two main families A and B, at about +300 inclination 
angle from the vertical axis in Figure 1. These two sets 
are associated with one horizontal fracture (fracture 16 
in Figure 1). 

The fracture traces in each section were labeled, and 
the traces of a same fracture in successive sections were 

given identical labels. The rock sample contained 0•240 
fractures. About 150 of them could be seen in a single 
plane. Their trace lengths ranged between 1 and 12 
cm. The other 90 fractures could be followed through 
at least two planes, with trace lengths between 2.5 and 
47 cm. Only six fractures could be traced through the 
nine sections. 

The total surface area of fractures was estimated to 
be 2.6 m 2, and the block volume was estimated to be 
0.066 m 3. Led•sert et al. [1993] also quantified the total 
volume of altered rock and performed a fractal analysis 
of the fracture pattern based on scan line surveys on 
the 2-D maps. 

4. Three-Dimensional Reconstruction 

The three-dimensional reconstruction was performed 
by triangulating the fracture surfaces. As shown in 
Figure 1, the fracture traces in each section are often 
curved, and the fracture are also often twisted between 
successive sections. This feature introduces technical 

difficulties, with the consequence that the numerical 
tools devised by Huseby et al. [1997] and Koudina et al. 
[1998] for networks of plane polygons are not directly 
applicable here. 

The triangulation procedure comprises three main 
steps. In the first step, mesh points are distributed 
along each fracture trace. This operation is partly man- 
ual but is computer-aided. The human operator selects 
points on a digitized image of the trace map on a com- 
puter screen and indicates whether a point is a stan- 
dard point, a trace termination, or a trace intersection. 
In the second step, each fracture is separately trian- 
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Figure 1. The nine successive trace maps. The traces of two fractures (1 and 16) are indicated 
in each section. Two fractures from families A and B are marked in the first section. (Reprinted 
with permission from Led4sert et al. [1993].) 

gulated by joining the points that belong to its suc- 
cessive traces. For convenience, four artificial fractures 
are added to the network. Together with the upper 
and lower planes, they represent the outer surface of 
the rock sample. They are only intended to provide an 
easy way to introduce boundary conditions for the sim- 
ulations of transport processes. These two conceptually 
simple steps are sufficient to allow 3-D visualizations of 
the network. Gertsch [1995] proceeded along these lines 
and stopped at this point. 

Two potential biases should be mentioned here. First, 
the fractures are triangulated only between the observed 
traces, which is an approximation since there is no rea- 
son to assume that a fracture does not extend any fur- 
ther. Other rules were possible, such as prolongating 
the fracture halfway to the two surrounding planes; this 
would have raised the question as to the fracture trace 
length in thesesintermediate planes. These issues were 
ignored, because of lack of information and in order to 
keep things amenable. 

The second bias could be more important. For the 
same reason as above, the 150 fractures that are visi- 
ble in a single section were ignored in the triangulation. 
This may have two consequences. First, together with 
the first bias mentioned above, it leads to a lower den- 
sity of fractures. This effect is probably not very serious 
since the total area of the triangulated fractures was 

found equal to 2.05 m 2 as compared with the estimate 
2.6 m 2of Led4sert et al. [1993], obtained by simply mul- 
tiplying the total trace length by the section interspace 
divided by the dip angle cosine. The second effect might 
a priori be more significant. One may wonder whether 
these fractures yield a single trace because their orien- 
tations are close to the section direction. For instance, a 
third family of fractures could exist, approximately par- 
allel to the planes of the trace maps, which would be 
overlooked in this data set. There are three reasons to 

explain why this possibility is unlikely. First, this third 
set would yield traces visible on the sides of the rock 
sample, which were not detected. Second, the typical 
size of the single traces is much smaller than the other 
traces (1 --• 12 cm versus 2.5 --• 47 cm); therefore these 
fractures probably yield a single trace simply because 
they are of lesser extension. Finally, the orientations of 
the fractures with two traces do not differ significantly 
from the orientations of the larger ones. Consequently, 
it is likely that the effect of these two approximations is 
to slightly underestimate the surface area of the large 
fractures and to filter out many small fractures, with a 
combined reduction in the total surface area of • 20%, 
but without biasing the orientation distribution. 

The third step in the triangulation is the derivation of 
the fracture intersections, and the combination of their 
2-D triangulations around their intersection lines. It 
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Figure 2. Visualization of the whole fracture network. 

very often happens that three fractures intersect mu- 
tually; these situations are dealt with by considering 
fracture-pair intersections iteratively until all triangle 
intersections reduce to triangle edges or vertices. 

Finally, the triangulation of the fracture network is 
cast into a list of •03000 mesh points defined by their co- 
ordinates and a list of •09000 triangles defined by their 
three vertices. The triangulated network is displayed 
in Figure 2. Fractures that do not intersect the side 
boundaries of the rock sample are called "internal" frac- 
tures. These fractures cannot be detected without ac- 

tually dismantling the block, even though some of them 
are quite extensive. 

whole sample. This dispersion is probably underesti- 
mated, since larger fractures are more likely to be cut 
by the sample boundaries and since the smallest frac- 
tures (which left a single trace in the serial sections) 
have been ignored. The same histogram restricted to 
the internal fractures (Figure 4b) does indeed show a 
larger proportion of very small fractures and a lesser 
proportion of large fractures. The cumulated distribu- 
tion functions are compared in Figure 4c. 

The histogram of the number ni of intersections per 
fracture is shown in Figure 4d. The vast majority of 
fractures (84%) has 0 to 9 intersections with others. 
The remaining ones have 10 to 18 intersections, except 
for fracture 16 which crosses 36 fractures. Fractures 

of set A mainly cross fractures from set B, and vice 
versa. An interesting point here is the existence of a 
distribution with a relatively long tail. 
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5. Geometrical Characterization 

A great deal of geometrical information can be ob- 
tained from the 3-D description of the network. Some 
is described in Figures 3 to 6. 

The orientation distribution is characterized in Fig- 
ure 3. The distributions of the normal vector to the 
triangles are given with or without weighting by the tri- 
angle areas. The mean overall orientations of the whole 
fractures are also given in Figure 3b. It was determined 
from the surface average of the normal vectors to the 
triangles in each fracture. These plots, which are based 
on the trace maps, are simply another representation of 
the data set presented in Figure 1. The two families A 
and B at 4-30 ø with respect to the x axis are clearly 
visible, as well as fracture 16, whose normal vector is 
perpendicular to the x axis. It is also apparent that all 
fractures are roughly parallel to the z axis, i.e., normal 
to the cross sections in Figure 1. 

The histogram of the fracture surface areas Ai, dis- 
played in Figure 4a, shows that 60% of the fractures 
have areas smaller than 100 cm 2 and 85% smaller than 
400 cm 2, whereas a few fractures have areas larger than 
1000 cm 2, i.e., comparable with the cross section of the 

90 (Y)I b 

•o o (x) 

240 300 

270 

Figure 3. Distributions of the unit vectors normal to 
the triangles, (a)in numbers •nd (b) weighted by the 
areas, in projection onto the (x, y) plane. The origin of 
the azimuthal angle is aligned with the x axis. Fami- 
lies A and B and fracture 16 are marked in Figure 3a. 
The solid dots in Figure 3b correspond to the surface- 
averaged normal vectors of the whole fractures. 
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Figure 4. Histograms (a and b) of the fracture surface 
areas Ai, in m 2 and (d and e) of the number ni of in- 
tersections per fracture. Figures 4a and 4d are relative 
to all the fractures in the network, while the fractures 
which intersect the lateral boundaries of the sample are 
removed in Figures 4b and 4c. The solid line in (d,e) is 
the Poisson distribution with the same average. (c and 
f) The cumulated distribution functions corresponding 
to Figures 4a and 4b and to Figures 4d and 4e, re- 
spectively. The solid (dashed) line corresponds to the 
complete (filtered) network. 

The average number of intersections per fracture is 
p'=4.76, and the variance is equal to 26.6 . Huseby 
et al. [1997] systematically investigated the topologi- 
cal properties of random networks of randomly oriented 
plane polygonal fractures and showed that a continuous 
path across these networks exists for p' greater than a 
percolation threshold p'• m 2.3. Moreover, for p' >_4, 
more than 98% of the fractures are connected to the 

percolating cluster [Koudina et al., 1998]. Hence the 
present network is fairly well connected, and indeed, 
only six fractures, out of a total number of 90, are not 
connected to the large cluster formed by the others. 
Hence the simple isotropic model provides reasonable 
orders of magnitude. 

As a comparison, the Poisson distribution with the 
same average, which is expected if the fractures are ran- 
domly located and if the truncation effects are ignored, 
is also plotted in Figure 4d and obviously deviates from 
the data. Figure 4e is the counterpart of Figure 4d 

for internal fractures. Although the average number of 
intersections per fracture is smaller, p'=3.36, the two 
distributions are not dramatically different, as shown 
in Figure 4f. 

The crack surface area and intersections can be ob- 

tained directly from the serial sections without any 3-D 
reconstruction. However, other geometrical terms such 
as the lengths lij of the fracture/fracture intersection 
lines can only be obtained from a 3-D description; they 
have been evaluated, and their histogram is plotted in 
Figure 5a. Their distribution is very broad. The value 
of li• ranges from •,2 mm, which is close to the res- 
olution of the data, to •,400 ram, which is compara- 
ble with the overall sample size. The median value is 
•,100 mm but obviously cannot be considered as a typi- 
cal value of the intersection length. Therefore although 
each fracture crosses about five other fractures on av- 

erage, which makes the network well connected from a 
topological point of view, these intersections may have 
very different weights for transport processes; indeed, 
only the long intersections will play an important role 
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Figure 5. Histograms (a and b) of the intersection 
lengths l•;, in millimeters and (d and e) of the total in- 
tersection length per fracture and per unit area Li/Ai, 
in m/m 2. Figures 5a and 5d are relative to all the frac- 
tures in the network, while the fractures which intersect 
the lateral boundaries of the sample are removed in Fig- 
ures 5b and 5e. (c and f) The cumulated distribution 
functions corresponding to Figures 5a and 5b and to 
Figures 5d and 5e, respectively. The solid (dashed) line 
corresponds to the complete (filtered) network. 
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in these processes, while the short ones will probably 
play a minor role. This last comment only applies to 
well-connected networks such as the one presented here; 
for networks close to the percolation threshold these 
short intersections could still be crucial for transport 
processes. 

Again, the same statistics for the internal fractures 
are presented in Figure 5b and compared to the whole 
network in Figure 5c. Although the overall range of in- 
tersection lengths are identical, shorter intersections are 
observed, on average, in the internal fractures, proba- 
bly because of their smaller size. This is confirmed by 
the histogram of the total intersection length per frac- 
ture and per unit area Li/Ai shown in Figure 5d. For 
most fractures (94%), Li/Ai ranges between 0 and 40 
m -1 and for a few it reaches 55 m -1 The distribu- 

tion is still broad, considering that it is normalized by 
the fracture areas, but less than the individual intersec- 
tion lengths in Figure 5a; the distribution is remarkably 
uniform between 0 and 40 min. Thus it is reasonable 

to define a typical areal density of intersection, roughly 
equal to 20 m -1 (•:100%). The results in Figure 5d are 
not subject to truncation bias, since truncation by the 
sample boundaries simultaneously affect the apparent 
fracture area Ai and the total intersection length Li. 
Indeed, the same histogram evaluated over the inter- 
nal fractures (Figure 5e) is very similar to the previous 
one, as shown by the comparison of the cumulated dis- 
tribution functions in Figure 5f. The same comments as 
before could be made about the consequences on trans- 
port properties. 

The finite block identification algorithm described by 
Huseby et al. [1997] has been run on this data set. It 
is obviously not devoid of a truncation bias, since most 
fractures intercept the sample boundaries. A single fi- 
nite block was found (Figure 6), with a volume 33.8 

z 

120, 

100• 

80,, _ -- 

113- __• 
123 • 

153 390 

163 440 430 420 

Figure 6. Finite block bounded by the four fractures 
16, 18, 20, and 39. Graduations are in millimeters, and 
the block volume is 33.8 cm s. 

cm s. This small number of blocks is not surprising con- 
sidering that the network is made up of the fracture sets 
A and B and of fracture 16, which tesselate the space 
into prismatic columns with axes normal to the planes 
of Figure 1. Fractures parallel to these planes are lack- 
ing, and so these columns are not partitioned into finite 
blocks. 

These observations can be compared with the theo- 
retical and numerical results presented in section 2.1. In 
the following, superscripts mes and iso refer to the mea- 
surements and to the results (equations (6) and (7)) for 
isotropic networks, respectively. The volumetric frac- 
ture density was deduced from the number Nf-90 of 
fractures and the sample volume V-0.066 m s' 

P_ N! = 1364 m -s (29) V ' 

The reduced density pt can be obtained from the total 
number of intersections N•=214: 

pt_ 2N• _ 4.76. (30) 
Using (29), (30), and (3), an apparent mean excluded 
volume is evaluated as 

Vex - -- - 3.49 x 10 -s m -s. (31) 
P 

Since six fractures are isolated and all others form a 

single connected cluster, /3o=7. The total cyclomatic 
number is obtained from (4)' 

/3[ nes -- N•- N! q-/3o - 131. (32) 

Hence the volumetric cyclomatic numbers/31 and/3• are 

__ 1 : 1985 m -3 ]•tmes -•mesv, •mes •mes i -- V , I -- [Jl ex -- 6.93. 

These results compare well to the prediction from equa- 
tion (6) 

•iso ]•tiso _ 6.57. (33b) I - 1882 m -a, 1 

Note that the fit (7) for isotropic random networks yields 
p[iSo _ 0.0603, i.e., N}Sø=l.14, in excellent agreement 
with the experimental value. 

Note finally that pt was determined here by actu- 
ally measuring the number of intersections per fracture, 
which is possible only when a 3-D reconstruction of the 
network is performed. As a comparison, suppose that 
one attempts to obtain this number by assuming that 
the fractures are randomly oriented disks with radius 
R. Then the total fracture area S-2.05 m 2 is equal 
to N•rR2; R is equal to 0.085 m, the corresponding 
excluded volume is Vex - •r•R s - 6.09 10 -sm s (see 
equation (2)), and pt_ N! Vex/V=8.3. Hence the sim- 
ple isotropic model provides a correct order of magni- 
tude for pt. It overestimates it only by a factor 2, which 
is quite remarkable in view of the fact that the real net- 
work is mostly composed by two families of fractures as 
shown in Figure 3. 
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Figure 7. Artificial fractures A1-A4 which surround 
the sample volume, used to impose the hydraulic bound- 
ary conditions. Graduations are in millimeters. 

6. Flow Properties 
The numerical tools of Koudina et al. [1998] were 

applied to study the flow properties of the natural frac- 
ture network. The triangulation described in section 4 
is used to define the mesh of the finite volume method 
for the numerical solution of the flow equations. 

As already mentioned, four artificial fractures, A1- 
A4, were added to the network, to facilitate the ap- 
plication of hydraulic boundary conditions. They are 
oriented roughly normal to the x and y axes; together 
with the upper and lower sections, they entirely sur- 
round the sample volume (see Figure 7). They contain 
all the intersection lines of the fractures with the sample 
boundaries. The permeability of the artificial fractures 
is set to zero. 

The boundary conditions were chosen in the simplest 
possible way. Suppose that a pressure gradient is im- 
posed along the x direction; constant pressures are im- 
posed on the two opposite faces normal to this direc- 
tion. No additional lateral boundary condition is im- 
posed along the y and z axes, except for the standard 
no flux condition along the fracture edges. 

Because of the lateral boundary conditions the per- 
meability tensor obtained by solving the mass conser- 
vation equation (10) is reduced to its diagonal terms. 

In the absence of any information the fractures were 
arbitrarily given a constant and uniform permeability 
er0, which can be related to the constant aperture b0 by 
(8). The permeability scale Ko is given by (13), where 
the length scale R is equal to 100 mm. 

The network permeability can also be evaluated by 
means of Snow's [1969] model by adding the contribu- 
tion of each triangle to the integral in (12). We de- 
note by Knu and Ksn the dimensionless tensors de- 
rived from the numerical calculations and by Snow's 
model, respectively; they are equal to 

Ks,•,•- 1.15 KSn,yy 

- 1.89 K,zz - 2.0 (34a) 
- 

- 2.54 Ks,,z - 2.8. (34b) 

Hence the exact numerical calculations show that per- 
meability is much larger along the y and z axes, which 
corresponds to the main orientation of the fractures as 
shown in Figures 2 and 3. Snow's model provides a 
correct order of magnitude for Knu, but it smooths out 
the differences along the three axes. The prediction 
(14) which applies for isotropic networks of hexagonal 
fractures yields Kn • 0.18, which underestimates Knu 
by a factor of about 10. Conversely, the values of 
in (34a) correspond in (14) to a density p' • 12. This 
probably results from a lower proportion of stagnant 
zones in the real network than in the random ones. The 

same reason explains the success of Snow's model. 
For illustration, the computations have been repeated 

in a situation of weak disorder, where the local perme- 
abilities ert in the triangles are randomly and uniformly 
distributed between 0 and 2er0, without any spatial cor- 
relation. Since the average a t remains equal to er0, (12) 
still yields (34b). However, the full computation yields 
slightly lower permeabilities: 

Knu,• - 0.59 Knu,uu = 1.66 K•u,• - 1.9 (34c) 
(0 <_ _< 2o). 

Larger effects can be expected for broader permeability 
distributions, such as lognormal distributions. 

The flow in a fracture that is present in the nine trace 
maps of Figure i is displayed in Figure 8. The flux 

Figure 8. Fluxes in a fracture of the natural network. 
The pressure gradient is applied along (a) the y direc- 
tion, and (b) the z direction. 
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Figure 9. Histograms of the decimal logarithm of the 
flow rate jt in the triangles for a mean flow direction 
along the (a and b) x axis, (c and d) y axis, and (e and 
f) z axis. The histograms are weighted by the triangle 
areas. The local permeabilities are all equal to •r0 in 
Figures 9a, 9c, and 9e; they are uniformly distributed 
between 0 and 2•r0 in Figures 9b, 9d, and 9f. The verti- 
cal dashed line is the surface average corresponding to 
the global flux. 

from this direction. The flux distributions in Figures 
9b, 9d, and 9f for random local permeabilities are sig- 
nificantly broader than those in Figures 9a, 9c, and 9e 
for uniform local permeabilities. 

e Solute Transport 
Random Walk Simulations 

The flow fields obtained in section 2.2 by imposing 
a pressure gradient successively along the x, y, and z 
directions were used as input data for the random walk 
simulations. The four artificial fractures A1-A4 used 

to impose external pressure conditions (see Figure 7), 
were used again to define the boundary conditions for 
the dispersion problem. In x and y directions, inlet 
and outlet triangles are defined as triangles adjacent to 
the upstream and downstream surfaces with imposed 
pressures, respectively. In the z direction the upper 
and lower sections play the same role. 

Dispersion was investigated in the three directions 
using Np = 2000 particles and six Pdclet numbers 
Pen - 0.01, 0.1, 1.0, 10, 100, and 1000. The initial 
positions of the Np particles are uniformly distributed 
in the inlet triangles. The particles are then transported 
according to the random walk algorithm and the times 
ti used by each particle i to travel three distances L•, 
L2, and L3 are recorded. These distances were set equal 
to L1-50 mm and L2-100 mm in all directions and to 
L3:340 mm, 225 mm, and 240 mm in the x, y, and z 
directions, respectively. The travel time distributions 
and equations (26)-(28) are used to estimate the lon- 
gitudinal dispersion coefficients D* (L• ), D* (L•, and 
D* (L3) at L1, L2, and L3. 

7.2. Results 

discontinuities observed in Figure 8 correspond to the 
exchanges between fractures. 

Finally, the histograms of the local flow rates jt in the 
triangles are given in Figure 9 for the three directions of 
the main flow and for the uniform and random perme- 
ability distributions corresponding to (34a) and (34c). 
The histograms are weighted by the triangle areas, but 
the histograms in numbers of triangles are very similar. 
The vertical dashed line corresponds to the mean flow 

-•l 

rate in the fractures j, which yields the same global 
flux in an isotropic network of infinite plane fractures 
with the same fracture density. It appears that many 
local fluxes exceed • for the flow along the x direction. 
This stems from the fact that most fractures are very 
inclined with respect to the x axis (generally i60ø; see 
Figures 2 and 3); hence the projections of the local flux 
vectors onto the main flow direction are much smaller 

than their magnitude. In other words, the flow is very 
tortuous. This feature is much less pronounced for the 
flow along the z axis, since all the fractures are close 
to vertical. An intermediate situation is observed for 

the flow along the y axis, since the fractures lie at i30 ø 

The travel time distributions at L•, L, and L3 are 
given for Pen = 0.01, 10, and 1000 in Figure 10, for 
pressure gradients imposed in the x, y, and z direc- 
tions, respectively. The mean arrival time (tti) can dif- 
fer significantly from the expected value L/•' based 
on the fluid velocity. Along the x direction, the solute 
always moves slower than the convecting fluid, whereas 
it moves faster along the z direction. In the y direc- 
tion the solute moves slightly faster than the fluid for 
Pen = 0.01 and slower for Pen • 0.1. 

These differences result in part from the injection 
conditions. The mean particle velocity is expected to be 
equal to the fluid velocity when the solute concentration 
is uniform, that is, when the sampling of the velocity 
field by the particles is equivalent to a volume averaging; 
this corresponds to injection rates at the upstream do- 
main boundary proportional to the local incoming flux. 
The spatially uniform initial distribution adopted here 
corresponds to a different sampling of the velocity field, 
and different mean velocities can be obtained, depend- 
ing on the details of the upstream flow conditions. Such 
differences should of course vanish over longer distances, 
when sensitivity to the injection conditions is damped 
out by the diffusive transverse mixing. Recall also that 
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Figure 10. Histograms of the dimensionless arrival 
times ti for a flow along the x direction at fixed distances 
Lx = 50 mm (first row),L2 = 100 mm (second row), 
and L3 -- 340 mm (third row), and for flows along the 
y and z directions, at L3 = 225 mm (fourth row) and 
L3 -- 240 mm (fifth row), respectively. The columns 
correspond to Pdclet numbers Pe,•-O.01, 1.0, and 1000, 
respectively. The vertical lines are the mean arrival time 
(t•) (solid) and the arrival time expected from the fluid 
velocity L/R•, (d•shed). 

stagnant zones, all particles are exposed to trapping, 
and the stagnant zones yield a symmetric dispersive ef- 
fect, unless the medium is inhomogenous with respect 
to the distribution of stagnant zones. Conversely, if the 
sample is too short for all particles to experience trap- 
ping in stagnant zones, arrival times of trapped parti- 
cles are large compared to travel times of the majority 
of particles, which yield asymmetric, long-tailed travel 
time distributions. A similar effect occurs for large, but 
hererogenous samples; in this case, individual particles 
are exposed to stagnant zones depending on the path 
they follow through the medium. 

The dispersion coe•cients obtained from the spatial 
spread via equation (28), and from the temporal anal- 
ysis in equation (27), are denoted by Di• a and D•t , re- 
spectively. In addition, a dispersion coe•cient Di] s has 
been directly estimated from equation (25), for a flow 
along the y direction, by recording the displacements 
Li of the particles at a fixed time T, in order to evalute 
the instantaneous moments M• and M2. The time T 
was set so that v n T- L3/2. 

The dispersion coe•cients obtained from the three 
procedures, for various Pdclet numbers, are compared 
in Figure 11. All the statistical procedures are seen to 
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the random walk simulations were stopped once the par- 
ticles reached the prescribed distance L, i.e., before they 
crossed the whole rock sample. Hence they do not expe- 
rience all the velocities that are included in the volume 

average •n. 
All the travel time distributions in Figure 10 are 

asymmetric, with long tails. Asymmetric, and there- 
fore non-Gaussian, travel time distributions are fre- 
quently observed for dispersion processes in porous me- 
dia [$ahimi, 1993, and references therein]. This can be 
explained by stagnant zones [Coats and Smith, 1964]; 
particles that are trapped in stagnant zones are retarded 
and have larger travel times compared to particles which 
escape trapping. If the sample is large compared to the 
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Figure 11. Dispersion coefficients Di] t (solid) D* 
(d•shed) •nd D* (•olid symbols) for a flow along the 

(b) u, • directions versus the sampling 
distance from the inlet L (for D•t and D* lid) or the in- 
stantaneous mean displacement (Li)(for Dill). Data 
are for Pe,•=0.01 (circles), 0.1 (crosses), 1 (squares), 10 
(stars), 100 (inverted triangles), •nd 1000 (triangles). 
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Figure 12. Dispersion D* (solid lines) and D_]_a 
(dashed lines) as functions of the Pdclet number for a 
pressure direction along the (a) x direction, (b) y di- 
rection, and (c) z direction, measured at distances L• 
(open circles), L2 (stars), and La (solid circles) from 
the inlet. The horizontal lines are the predictions of D• 
from equations (34a) and (35) for vanishing ee,•. The 
results for La (solid circles) for the three flow directions 
are compared in Figure 12d to the data of O. Huseby et 
al. (manuscript in preparation, 2000) for isotropic net- 
works of hexagonal fractures with density p' = 4 (open 
circles) and 12 (squares). 

yield consistent results, especially for Pe• >_ 0.1 and for 
the longest travel distances. Hence the non-Gaussian 
effects mentionned by $ahimi [1993] are very limited in 
the network studied here, and Di] a is very close to D•t. 

The dispersion coefficients D* estimated at distances Ila 
L•, L2, and La for a flow along the x, y, and z directions 
are plotted against the Pdclet number in Figure 12. The 
transverse dispersion coefficient D]_ a evaluated by the 
same method from the tranverse displacements of the 
particles is also plotted in Figure 12. 

The same behavior is observed in all cases; for small 
Pe• D* tends to a constant limit, and for large Pe,• 

Dii a increases approximately as a power of Pe•. The 
transition between the two regimes takes place in the 
range 10 -•' < Pen _< 1. D]_a follows the same trends; it 
is generally smaller than Di• , except for the x direction, 
where the two dispersion coefficients are of the same 
magnitude. 

In the limit Pe• -• O, where dispersion is reduced to 
diffusion, the dimensionless permeability and dispersion 
tensors are related by 

D* = V K- b0 (35) 
where b - boS/V - 0.032 is the porosity. Recall that 
R=100 mm - 100 b0. The values of the longitudinal 
dispersion coefficient predicted by (35) in combination 
with (34a) are indicated by the horizontal lines in Figure 
12. A good agreement is observed with the numerical 
data. 

For large Pdclet numbers, D* II• seems to increase in 
Figure 12 as a power of Pe•, for Pe• _> 10. A least 
squares fit of the data for Pe• >_ 10 yields 

with the prefactors • and exponents a given in Table 
1. It is interesting to note the nearly linear behavior 
for Pe,• _> 10, which should be compared to results in 
stochastic fracture networks obtained by O. Huseby et 
al. (manuscript in preparation, 2000), where dispersion 
for Pe,• _> 100 can be described by the power law (36), 
with an exponent a which depends on the fracture den- 
sity p•; a tends toward 2 close to the percolation thresh- 
old and toward 1 for dense networks. For the natural 

network considered here, the density was estimated in 
section 5 to p• = 4.76, which corresponds to a fairly well 
connected network. 

For the isotropic networks of monodispersed hexag- 
onal fractures considered by O. Huseby et al. (manu- 
script in preparation, 2000), the exponent a was esti- 
mated to 1.3 for p' = 5.0, and to 1.1 for p• = 12.0. In 
view of the fact that the fractures in the natural net- 

work are by no means monodisperse hexagons, the ex- 
ponents compare fairly well. Recall also that the results 
of O. Huseby et al. (manuscript in preparation, 2000) 
are relative to infinite periodic networks, in the long 
time limit, i.e., when dispersion has reached a Gaussian 
regime, whereas the present data correspond to short- 
time measurements. 

Table 1. Exponent a, Prefactor 
n, and Regression Coefficient r of the 
Fits (36)of Di• a versus Pe,• for Pe• _> 
10 

L a n r 

Gase x 

L• = 50 mm 1.07 3.02 0.9979 
œ2 = 100 mm 0.93 $.99 0.9983 
L3 = 340 mm 0.66 35.4 0.9979 

Case y 
L• - 50 mm 1.07 6.59 0.9999 
L2 -- 100 mm 1.02 7.59 0.9999 
L3 -- 225 mm 1.01 16.1 0.9986 

Case z 

Lz - 50 mm 0.85 2.85 0.9974 
L2 = 100 mm 0.98 2.96 0.9995 
L3 - 240 mm 0.99 2.74 0.9904 
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A comparison with the data for networks of hexag- 
onal fractures with densities p•=4 and 12 is provided 
in Figure 12d. For small P•clet numbers the disper- 
sion coefficients for p•= 12 are in better agreement with 
the computed values in the real network. This is a di- 
rect consequence of (35), since the permeability of the 
present network corresponds to that of isotropic net- 
works of hexagons with p• m 12 due to a small amount 
of stagnant areas. For the same reason, the increase of 
the dispersion coefficients in the real network for large 
Pen is similar to that for p•- 12, whereas D• for p•-4 
increases faster and eventually catches up with D• for 
Pen larger than 100. In both types of hexagon net- 
works the transition from the regime described by equa- 
tion (35) to the regime described by equation (36) takes 
place for a much larger P•clet number than in the real 
network. This may result in part from the injection 
conditions and from the limited spatial and time ranges 
of the dispersion process. 

8. Concluding Remarks 
This study represents a step toward the quantification 

of geometrical properties and of transport processes in 
real fracture networks. It shows the practical difficul- 
ties of data acquisition and of their subsequent use in a 
quantitative way. 

In this paper, results have been presented on the geo- 
metrical and topological properties of the real network. 
Possibly, the most important conclusion is that a sim- 
ple model of randomly oriented monodisperse hexagons 
often yields the right order of magnitude for many prop- 
erties. It would be interesting to try to extend this work 
by the analysis of the results relative to a network com- 
posed of two families as is the real network. 

Finally, the transport properties derived here could 
not be compared to any real data obtained on the same 
block since such measurements were not performed by 
Leddsert et al. [1993] before sample dissection. It would 
be extremely useful to perform such measurements on 
another block, and this would allow more detailed sim- 
ulations and comparison. 
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