Skip to Main content Skip to Navigation
Journal articles

Understanding the Role of Rainfall and Hydrology in Determining Fluvial Erosion Efficiency

Abstract : Due to the challenges in upscaling daily climatic forcing to geological time, physically realistic models describing how rainfall drives fluvial erosion are lacking. To bridge this gap between short-term hydrology and long-term geomorphology, we derive a theoretical framework for long-term fluvial erosion rates driven by realistic climate by integrating an established stochastic-mechanistic model of hydrology into a threshold-stochastic formulation of stream power. The hydrological theory provides equations for the daily streamflow probability distribution as a function of climatic boundary conditions. The new parameters introduced are rooted firmly in established climatic and hydrological theory. This allows us to account for how fluvial erosion rates respond to changes in rainfall intensity, frequency, evapotranspiration rates, and soil moisture dynamics in a way that is consistent with existing theories. We use this framework to demonstrate how hydroclimatic conditions and erosion threshold magnitude control the degree of nonlinearity between steepness index and erosion rate. We find that hydrological processes can have a significant influence on how erosive a particular climatic forcing will be. By accounting for the influence of hydrology on fluvial erosion, we conclude that climate is an important control on erosion rates and long-term landscape evolution.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Thursday, March 3, 2022 - 2:34:12 PM
Last modification on : Saturday, March 5, 2022 - 3:32:33 AM
Long-term archiving on: : Saturday, June 4, 2022 - 7:19:09 PM


JGR Earth Surface - 2018 - Dea...
Publisher files allowed on an open archive






E. Deal, J. Braun, G. Botter. Understanding the Role of Rainfall and Hydrology in Determining Fluvial Erosion Efficiency. Journal of Geophysical Research: Earth Surface, American Geophysical Union/Wiley, 2018, 123, pp.744-778. ⟨10.1002/2017JF004393⟩. ⟨insu-03595912⟩



Record views


Files downloads