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1.  Introduction
In August 2020, a significant increase of seismic activity was reported in the Bransfield Basin, south of the South 
Shetland islands, Antarctica (Figure 1). Between 29 August 2020 and June 2021, the United State Geological 
Survey (USGS, 2020) reported 128 earthquakes with magnitudes larger than 4.0 (Figure 1). The seismicity was 
not characterized by any large mainshock (Figure S1 in Supporting Information S1) that could potentially have 
triggered the prolific occurrence of earthquakes in the region. Similar observations were recently reported by 
Olivet et al., (2021).

The central Bransfield Basin is a ridge separating the Antarctic plate to the South, from the South Shetland 
microplate (Almendros et al., 2020; Olivet et al., 2021; Taylor et al., 2008 and reference therein, Figure 1). The 
NW-SE extension of the ridge results from the combination of slab rollback from the past subduction of the Phoe-
nix microplate under the South Shetland microplate, and transtensional motion between the Scotia and Antarctic 
plates (Almendros et al., 2020; Gràcia et al., 1996; Taylor et al., 2008). The basin is also characterized by exten-
sive volcanism (Almendros et al., 2020; Taylor et al., 2008), occurring in several submarine structures, such as the 
Orca volcano, that is located ∼20 km southwest of the seismic swarm (Figure 1, Almendros et al., 2020; Olivet 
et al., 2021). The Orca Volcano consists of a large caldera surrounded by shallow magma reservoirs (Almendros 
et al., 2020). The Orca volcano magmatism is mostly basaltic with mid-ocean ridge characteristics (Barker & 
Austin, 1998) and significant hydrothermal activity is also observed in the area (Bohrmann et al., 1998). The vol-
cano's caldera and shallow magmatic bodies produce a positive magnetic anomaly extending along the axis ridge 
(Almendros et al., 2020). The 2020–2021 swarm overlaps with the shallow magnetic anomaly located northeast 
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of the Orca volcano (Almendros et al., 2020; Olivet et al., 2021). Several other swarms connected with volcanic 
activity have also been observed along the Bransfield Ridge (Almendros et al., 2018; Dziak et al., 2010), but are 
mostly located in the western part of the ridge. No significant earthquakes have occurred in the central Bransfield 
basin since 1970 (Figure 1).

The Bransfield Ridge is of major geological interest as it represents a back-arc basin at the transition from rifting 
to ocean spreading (Almendros et al., 2020). Detailed analysis of the 2020–2021 earthquake sequence therefore 
provides new insights about short term processes associated with the evolution from rifting to spreading, and 
attempts to distinguish if this swarm, and the related geodetic deformation, is the result of extensional tectonics or 
volcanic process (Bergman & Solomon, 1990; Buck, 2004; Reiss et al., 2021). To address this question, we make 
use of the limited, but significant data available from the region (Figure 1). One seismic station (JUBA, network 
AI) located at the Carlini Base (King George Island, ∼20 km from the swarm, Figure 1) is used to improve the 
detection of earthquakes using template matching (Gibbons & Ringdal, 2006) and to characterize the waveforms 
associated which each detected event. We also analyzed data from the nearby GNSS stations (Figure 1), to assess 
any deformation associated with the seismic activity. Despite the limited data available, we were able to char-
acterize the early phase and development of the largest swarm ever observed in the Bransfield Ridge area. Our 
observations to support the hypothesis of a volcanic origin of this earthquake sequence.

Figure 1.  Orange inverted triangles indicate GNSS stations and the green inverted triangle shows the location of the JUBA broad-band station. Pink stars represent 
historical seismicity with magnitudes equal or larger than 5.5 from the ISC (International Seismological Centre, 2021) occurred after the eruption of Deception Island 
(12 August 1970). Red arrows represent velocities of the stations (see text for details about GPS processing). Right inset: Focal mechanisms (colored compressional 
quadrants) reported by the USGS since 28 August 2020 and the location of the Orca volcano. Date dd/mm and magnitude are also indicated. The cyan focal mechanism 
is for the largest event (Mw5.9) also indicated in Figures 4 and S4 in Supporting Information S1. The estimated NW displacement for UYBA with respect to the 
Antarctic plate is indicated with a black arrow (see text for details about GNSS processing).



Geophysical Research Letters

POLI ET AL.

10.1029/2021GL095447

3 of 9

2.  Data and Methodology
2.1.  Earthquakes Detection and Characterization

We use a seismic station located ∼20 km NW from the swarm centroid (Figure 1) to systematically detect and 
characterize seismic events in the study area. We first downloaded 1 year (1 June 2020, to 1 June 2021) of con-
tinuous three-component waveforms recorded at station JUBA (Istituto Nazionale di Oceanografia e di Geofi-
sica Sperimentale, 1992) at 100 Hz sampling rate. The traces are first band-pass filtered between 1 and 9 Hz to 
enhance high frequency signals from the local seismicity and resampled at 50 Hz. Then, we extracted the events 
corresponding to the USGS catalog (Figure 1) within a 12s window (starting 2 s before P-wave arrival), ensuring 
the presence of both P- and S-waves associated with the swarm events. We visually controlled the quality of 
each seismogram and manually picked the P- and S-waves on good quality seismograms exhibiting phases well 
identifiable on the three components. This process yielded 114 earthquakes, the waveforms of which represent 
the templates to scan the continuous data. We then performed the detection of new events with template matching 
(Gibbons & Ringdal, 2006) and a single station approach (Bell et al., 2021; Poli, 2017; Van der Elst et al., 2013). 
Because the use of a single station can reduce the detection sensitivity and increase the presence of unwanted sig-
nals, we combined visual inspection and detection with fake templates (e.g., waveforms flipped in time, Cabrera 
et al., 2020), to define an optimal detection threshold (3-components average correlation coefficient greater than 
0.5). The correlation threshold was set after an extensive visual inspection of the detected waveforms, to exclude 
false events from our final catalog. At this stage several detections can results from multiple templates over the 
time window of a template (12 s). To remove multiple detections, we keep the event with the largest correlation 
coefficient as the final detection.

The template matching identified 36,241 earthquakes, ∼300 times more than the initial catalog (Figure 1). Figure 
S2 in Supporting Information S1 shows examples of detected waveforms.

We estimated the magnitude of each newly detected event by computing the mean S-wave amplitude ratio be-
tween the template events and our detections over the three components. Using the template event's catalog 
magnitude as a reference, the detection magnitude can then be determined assuming a ratio of 10 corresponds to 
a variation of one-unit magnitude (e.g., Kato et al., 2016; Sanchez-Reyez et al., 2021). The average mean error 
between the estimated magnitudes and the USGS ones for our template is 0.2.

Figure 2a shows the temporal variations of the seismicity rate. Unlike what can be observed from the initial cata-
log, in which the first event occurs on 29 August 2020, the swarm begins on 7 August 2020, with an acceleration 
leading to the 1,200 events/day recorded on August 29th (Figure 2a). The rate of seismicity then decreases with a 
log-like behavior similar to an Omori law (Omori, 1894), as is often observed for aftershock sequences although 
no mainshock was observed at the beginning of the sequence. Indeed, the largest event (M = 5.9) occurred on 6 
November 2020 (Figure S1 in Supporting Information S1). After this event, the seismicity dropped rapidly (Fig-
ures 2 and S1 in Supporting Information S1).

Figure 2.  (a) Number of events as function time with respect to 8 August 2020, with the vertical red dashed line highlighting the occurrence of the largest event in the 
sequence. (b) Distribution of inter-event waiting time (dt) for the detected events. The red line shows the fit of this data with Equation 1 and 𝐴𝐴 𝐴𝐴 = 0.6 . (c) Cumulative 
magnitude-frequency distribution for the detected earthquakes. The red dashed line shows the regression for magnitudes ranging from 3 to 6. The corresponding b-value 
is 1.6.
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We study in more detail the time evolution of the sequence by calculating the distribution of waiting time (dt) in 
between events (e.g., Duverger et al., 2018, Figure 2b). We fit the waiting time with a gamma distribution:
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where A is a constant (Hainzl et al., 2006). The fitting results provides 𝐴𝐴 𝐴𝐴 = 0.6 , a value which differs from main-
shock-aftershocks style of seismicity (𝐴𝐴 𝐴𝐴𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 = 0 ). Our result implies a clustered seismicity, but little interac-
tion in between events (Duverger et al., 2018; Hainzl et al., 2006). We can thus rule out static and dynamic events 
interaction as a driver for this sequence (e.g., events triggered by mainshocks), as discussed in previous works 
(Duverger et al., 2018; Hainzl et al., 2006). The seismicity must therefore be driven by an external forcing (e.g., 
Bourouis & Bernard, 2007; Duverger et al., 2018; Hainzl et al., 2006; Perfettini & Avouac, 2004) likely to be a 
magmatic process occurring in the ridge. Similar observations (no clear mainshock, slow decay of the seismicity) 
were observed for the 2014–2015 Deception Island volcanic swarm, in the western part of the Bransfield Basin 
(Almendros et al., 2018).

To gain more insights about the possible origins of this swarm we also assessed the b-value (Gutenberg & Rich-
ter, 1941). For regular earthquake sequence, b-value is usually around 1 (Frohlich & Davis, 1993), and deviation 
from this average can provide information about stress and/or physical properties of the rock volume (Farrell 
et al., 2009; Mogi, 1962; Schorlemmer et al., 2005). We use the magnitude frequency distribution of Figure 2c 
to estimate a b-value of 1.6 ± 0.1, using a least squares method and considering a magnitude completeness of 
2.9, estimated from maximum curvature method (Wiemer, 2001). We further study how the errors in magnitude 
estimation affect the estimation of the b-value, by simulating 1,000 catalogs with randomly perturbed magnitude 
up to 0.2 magnitude units. With this approach, we obtained a final average b-value of 1.6 with standard deviation 
of 0.06.

The estimated b-value is remarkably higher respect with values characterizing regular earthquake sequences (Far-
rell et al., 2009; Frohlich & Davis, 1993). It is also remarkably different than previous studies in this area (Olivet 
et al., 2021), which found a b-value of ∼1.2. Our detection of events with much smaller magnitudes allowed us 
to better resolve the b-value for this swarm. Such a high b-value coincides with other values observed in volcanic 
areas (e.g., Farrell et al., 2009; Roberts et al., 2015; Wilks et al., 2017).

No clear spatial migration of the seismicity can be observed from the USGS earthquake locations (Figure S3 in 
Supporting Information S1). However, teleseismic events are usually characterized by significant uncertainties, 
which could bias this kind of observation. While we could not locate the microseismic events detected, due to 
small events being visible only at JUBA (Figure 1), we attempted to discern any spatiotemporal patterns from S-P 
time analysis, using a single station approach. We first analyzed if any general migration was visible, by plotting 
the S-P time picked at station JUBA (Figure 1) when selecting templates (Figure 3a). No clear global spatial mi-
gration was observed but rather some time-limited migration episodes and a shift of the seismicity farther from 
JUBA starting mid-October 2020 (Figure 3a). Despite the scarce information about the velocity structure in the 
area, we can get some insights about the extent of the swarm from the S-P time. We assume a Vp = 6 km/s and 
Vp/Vs = 𝐴𝐴

√

3 . Using the mentioned Vp and Vs the spatial difference for the average S-P time of 2.6s is ∼21 km.

We also evaluated the relative P- and S-wave travel times for all events detected by a single template (a family of 
events). For some of the biggest families we used the templates as reference waveforms, and estimated the delay 
with respect to the reference events, by cross correlating 1 s of signal around P and S arrivals. For this analysis, 
the original sampling rate (100 Hz) at JUBA station was used.

Figures 3b and 3c shows the results for the two largest families, for P and S delays with correlation coefficients 
larger than 0.7. The seismicity is clustered within a small area, similar to previous volcanic swarms observed in 
this region (Almendros et al., 2018, Figure 3). The time delays show short times of coherent delays associated 
with bursts of seismic events. A possible diffuse migration toward the station can be observed at the beginning 
of the sequence (Figure 3b). From the analysis of the delay time, we also observed migration of the seismicity 
farther from JUBA station (Figure 3c), in late October and early November 2020, also inferred from S-P time 
differences (Figure 3a).
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2.2.  Geodetic Observations

We use GNSS observations from 2017 to June 2021, from a set of stations located around the area (Figure 1). All 
observations were processed in a network array including several IGS regional stations, applying the differential 
approach strategy with the Bernese GNSS Software V5.2 (Báez et al., 2018). We stack all daily solutions to 
generate time series of deformation with respect to the Antarctic plate (Figure 4). More details about processing 
of GNSS data can be found in Supporting Information S1, together with the estimated velocities (Table S1 and 
Figures S4, S5 in Supporting Information S1).

The detrended GNSS time series located on the northern zone of Antarctica (UYBA, OHI2, MBIO and SPRZ) 
show residual deformation consistent with extensional process prior to 29 August 2020 (Figures 4a and 4b). How-
ever, no GNSS time series show a clear increase of velocity during the seismicity rate acceleration between 7 and 
28 August 2020 (Figures 2a, 3c–3e). The most important velocity change with a clear centimetric displacement 
(Figures 1 and 4) is observed from August 28th to June 2021 (when our analysis ends) on both the north and east 

Figure 3.  S-P time from manual picking performed on 114 templates (a) and from delay estimated from cross-correlation of earthquakes detected (b–c).
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Figure 4.  GPS displacement at stations reported in Figure 1 for the east (a) and north (b) components. (c and d) are zooms during the swarm time for station UYBA 
(see Figure 1). (e) Cumulative number of events as function of time in red, and recurrence time of events in black dots.
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components of station UYBA. The displacement vector is orthogonal to the Bransfield rift axis and is consistent 
with previous observations from the interseismic period (Taylor et al., 2008). This relative geometry agrees with 
rift opening dynamics (Almendros et  al., 2020; Taylor et  al., 2008). The evolution of GNSS displacement at 
station UYBA during the swarm (Figures 4c and 4d), closely follows the log-like decrease in cumulative events 
(Figure 3) for the first part of the sequence, suggesting that both seismicity and surface displacements are driven 
by the same process (either slow tectonic deformation or volcanic activity). In addition, after the occurrence of a 
Mw5.9 event on 6 November 2020, we further observe that the seismicity rate starts to decay along with GNSS 
velocities (Figure 3).

3.  Discussion and Conclusions
Despite a scarce geophysical instrumentation, we were able to document and characterize the largest earthquake 
swarm ever recorded in the Bransfield Basin (Almendros et al., 2018; Dziak et al., 2010). We detected a long-
lived swarm of more than 36,000 earthquakes that began on 7 August 2020, and accelerated on 29 August 2020, 
challenging previous findings from Olivet et al. (2021). The seismicity rate decreases following a log-like be-
havior, although no mainshock was observed at the beginning of the swarm (Figure 2). The detailed analysis of 
recurrence time (Figure 2b) allows us to rule out the mainshock-aftershock mechanism as the mechanism driving 
the occurrence of the large number of recorded events, and observed GNSS deformation (Figure 4). The cumula-
tive number of earthquakes closely follows the deformation observed at the GNSS station on King George Island 
(Figures 1 and 4). Despite the noise in GNSS time series (Figures S6–S13 in Supporting Information S1), prob-
able from response to ice load changes, the orientation of the deformation is orthogonal to the ridge (Figure 1) 
and suggests that the ridge spreading is responsible for the 8 cm displacement (Figures 1 and 4). The deformation 
on King George Island could occur either in response to a dike intrusion (Heimisson & Segall, 2020) or could be 
associated with a large slow slip event with extensional geometry.

As previously mentioned, the increase in seismicity rate was not preceded by any clear mainshock (Figure S1) 
and shows a very slow decay in time (Figures 2a and 2b). Both observations suggest a swarm-like sequence 
(Mogi, 1963), with limited interaction in between events (Figure 2b). This swarm is thus likely to be driven 
by external forcing, also responsible for the deformation observed in the GNSS data (Figure 4). The estimated 
b-value is ∼1.6, a significantly larger value than previous estimates based on a smaller seismicity catalog (Olivet 
et al., 2021). We suggest that this difference arises mainly from our improved detection of events with template 
matching (36,241 events), which permits to outpace the number of events detected from a visual inspection 
approach, made by Olivet et al. (2021) (3,186 events). This large b-value can result from stress heterogeneity, 
significant thermal gradient and/or presence of magmatic fluids which has been observed in volcanic areas (Far-
rell et al., 2009). Beyond reporting a different b-value and more events than Olivet et al., (2021) we also better 
characterize their time evolution (Figures 2a and 2b) and compare it with GNSS deformation recorded during the 
seismic activity (Figure 4) which allows us to better support our conclusions.

The spatiotemporal analysis of the seismicity (Figure 3) resolved with a single station approach, reveals that the 
swarm nucleated on a small region, with rapid migrations and quick activation of small seismic bursts (Figure 3). 
No clear large-scale spatially coherent migration of the seismicity, as the one related to dyke injection discussed 
by Roman and Cashman  (2006), is observed. This behavior can reflect a strong stress heterogeneity (Farrell 
et al., 2009) also suggested by the high b-value (Figure 2). We further observe that seismicity mostly lies in a 
region of high positive magnetic anomaly (Almendros et al., 2020), interpreted as a shallow magmatic body. In 
addition, most of the large events show strike-slip mechanisms, similar to the swarm model of Hill (1977) and 
Roman and Cashman (2006). The relatively small number of extensional earthquakes (Figure 1) suggests that 
deformation related to rifting (Reiss et al., 2021) is limited during this 2020–2021 long episode.

Taken together, our observations suggest a volcanic origin for the 2020–2021 Bransfield Ridge deformation ep-
isode (Bergman & Solomon, 1990). We cannot however further discuss the detailed processes occurring during 
this swarm given the limited amount of data available in the region. We propose that the driving mechanism of the 
deformation can be either hydrothermal fluids (Reiss et al., 2021) or magma flows (e.g., shallow dike propagation 
Heimisson & Segall, 2020) at crustal level favored by the presence of conjugate faults (Hill, 1977). The seismicity 
can also result from local increment of pore fluid pressure (Sibson, 2000). This long-lasting volcanic activity is 
responsible for the significant deformation inferred from GNSS observations, while seismicity is a by-product of 
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the magmatic activity (Heimisson & Segall, 2020), mainly occurring in limited areas with brittle characteristics 
and accumulation of stress (Hill, 1977). Our study also illustrates that, beyond the continuous 7 mm/yr extension 
(Taylor et al., 2008) between the Antarctica Plate and the South Shetland microplate, rapid deformation episodes 
occurring at the ridge axial volcanic structures plays a main role in modulating the long-term extension. Finally, 
our study highlights the main role of magmatic structures in favoring the rifting process instead of tectonic defor-
mation occurring in rifting bounding border faults (Buck, 2004; Reiss et al., 2021).

Data Availability Statement
Seismological data are available through the IRIS Data Management Center (IRISDMC) at http://service.iris.
edu/fdsnws/dataselect/1/ and can be obtained using the IRIS DMC FDSNWS web service. The corrected GPS 
time series are at https://www.csn.uchile.cl/red-sismologica-nacional/red-gps/.
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