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Modeling and scale‑bridging 
using machine learning: 
nanoconfinement effects in porous 
media
Nicholas Lubbers1*, Animesh Agarwal2, Yu Chen3, Soyoun Son4,5, Mohamed Mehana3, 
Qinjun Kang3, Satish Karra3, Christoph Junghans6, Timothy C. Germann7 & 
Hari S. Viswanathan3*

Fine-scale models that represent first-principles physics are challenging to represent at larger scales 
of interest in many application areas. In nanoporous media such as tight-shale formations, where the 
typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. 
At these scales, fluids are under confinement, affecting key properties such as density, viscosity, 
adsorption, etc. Pore-scale Lattice Boltzmann Methods (LBM) can simulate flow in complex pore 
structures relevant to predicting hydrocarbon production, but must be corrected to account for 
confinement effects. Molecular dynamics (MD) can model confinement effects but is computationally 
expensive in comparison. The hurdle to bridging MD with LBM is the computational expense of MD 
simulations needed to perform this correction. Here, we build a Machine Learning (ML) surrogate 
model that captures adsorption effects across a wide range of parameter space and bridges the MD 
and LBM scales using a relatively small number of MD calculations. The model computes upscaled 
adsorption parameters across varying density, temperature, and pore width. The ML model is 7 orders 
of magnitude faster than brute force MD. This workflow is agnostic to the physical system and could 
be generalized to further scale-bridging applications.

Multi-scale physics problems are found in all scientific disciplines. Prominent examples can be found in material 
science1–3, biology4, chemistry 5–9, and geosciences10–12. Typically, information from computationally intensive 
fine-scale models have to be translated or upscaled into faster coarse-scale models to solve the problem at the 
scale of interest. A problem of great scientific and economic interest is the flow of hydrocarbon in nanoporous 
shale. Traditional porous media approaches such as the LBM allow for complex pore geometries but need to 
be provided with effective properties that account for nanoconfinement effects in order to accurately simulate 
mass transport at the continuum scale13. Atomistic simulations such as Molecular Dynamics (MD) capture 
nanoconfinement effects accurately, but are limited to a few pores as they are computationally intractable to 
simulate for mesoscopic pore geometries. There is a need for approaches that efficiently bridge these two scales 
without compromising accuracy.

Recently, Machine Learning (ML) has shown great promise in accelerating physics-based models that makes 
it feasible to build a scale-bridging framework14–16. The applications include fracture propagation in brittle 
materials17, computational fluid dynamics18 and molecular dynamics19. On another dimension, Machine Learning 
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(ML) techniques have found their way into petroleum engineering and studies of porous media. For instance, Ful-
ford et al. 20 used ML to tackle the challenges for predicting well performance in shale reservoirs, and similarly, Li 
et al. 21 used an ensemble of ML techniques to construct the expensive-to-acquire logs which provided a reliable 
way to estimate the in-situ geomechanical properties of shale reservoirs. Kamrava et al. 22 used ML to generate 
synthetic 3D micropore structures in shale. Additionally, Kamrava et al. 23 estimated permeability of structures. 
Combining both accelerated computation and porous media, Santos et al. 24 modeled complex fluid flow through 
3D porous media geometries. In this work, we describe and implement an ML framework to bridge the molecular 
and continuum scales in order to accurately simulate hydrocarbon adsorption in nanoporous media.

The physics of nanoconfined hydrocarbons has come to the forefront due to the recent unconventional boom. 
Hydrocarbon-rich tight formations (low-permeable shale, sandstone, and carbonate rock formations) have very 
small pores ranging in size from a few to a few hundred nanometers. Hydrocarbons are either stored as free oil/
gas in the pore space or adsorbed on the pore walls. Because of the small pores and the resulting low permeability 
( 10−16 to 10−20 m2)25, the enclosed hydrocarbon resources are very difficult to access. Hydraulic fracturing and 
horizontal drilling allow access to the free oil/gas in the fracture network and adjacent damaged zones but the 
hydrocarbons in the matrix are still untapped26, 27. If the mass transport from the matrix can be accelerated and 
later-stage production can therefore be improved, then the petroleum industry may find it profitable to continue 
production from existing wells before drilling new ones, leading to enhanced recovery while minimizing the 
environmental impact.

However, since hydrocarbon in shale matrix is under nanoconfinement, due to the small pore sizes (e.g., less 
than 50 nm), it prevents traditional reservoir simulators from accurately predicting mass transport from the 
shale matrix into the fractures. Specifically, properties such as density, viscosity, phase transition, and adsorption 
deviate from macroscopic behavior under nanoconfinement due to the increased importance of boundary layer 
effects, greatly affecting mass transport rates28–39.

Adsorption, the accumulation of hydrocarbon molecules onto the pore walls, is one of the most critical 
nanoconfinement processes that affects the extraction of hydrocarbons out of nanopores40. It is estimated that 
a large portion (20–80%) of the total shale gas in a reservoir is in the absorbed form40, 41. Methane adsorption 
under nanoconfinement and its effect on transport in shale matrix have been investigated through off-line 
MD and LBM35. In that study, equilibrium MD simulations are conducted to study methane adsorption on the 
organic and inorganic walls of nanopores in shale matrix with different pore sizes and pressures. Density and 
pressure distributions within the adsorbed layer, as well as the pressure-dependent thickness of adsorbed layer, 
are obtained from the MD simulations. This information is then implemented in the LBM simulations, through 
which the effect of adsorption on transport is considered. However, in this approach, it is implicitly assumed 
that there is a clear separation of scales. This is not a generally valid assumption, since confinement effects in the 
pore affect flow through the nanoporous medium and vice-versa.

We demonstrate our ML-based scale-bridging framework to capture adsorption under nanoconfinement 
where there is no clear separation of scales. We incorporate atomistic adsorption effects that occur within a 
nanoconfined pore as simulated accurately by MD into a continuum LBM that is capable of simulating larger 
scales. We show that our ML framework is accurate and much more efficient than direct MD, allowing up to 7 
orders of magnitude speedup making it ideal for a robust scale-bridging framework. Moreover, the workflow is 
not dependent on the physical characteristics of adsorption phenomena; the workflow is agnostic to the physical 
system at hand and could be generalized to further surrogate modeling and scale-bridging applications.

Results
In order to bridge the scales between MD and LBM, we take advantage of the recent advances in ML, where 
Neural Network based emulators can be used to replace physics-based models. Our goal is for LBM to accu-
rately model adsorption under nanoconfinement, requiring that it be informed by MD. To achieve this, we aim 
at building an upscaler that maps MD inputs to LBM inputs. Both models require pore width, overall density 
and temperature as inputs to capture adsorption behavior. However, since LBM is a continuum model, an addi-
tional adsorption coefficient is needed to capture the fluid-wall interaction in the LBM method. This parameter 
cannot be directly measured, rather, it is a model parameter that must be calibrated. Since both MD and LBM 
can be computationally expensive to span the entire input parameter space, in order to build the upscaler, first 
we build emulators that mimic MD and LBM behavior. Specifically, we utilize Deep Neural Networks (DNNs) 
as our emulators. We train the emulators using apriori MD and LBM simulations over their respective input 
parameter spaces (Fig. 1A,B). Our emulators also ensure conservation of mass to prevent unphysical density 
profiles, and ensure that our emulators produce smooth, symmetric profiles. This is done through engineering 
the architecture of the NN via constraining the activation functions of the neurons. The spatial density profile 
is used as the output for both MD and LBM and is representative of the adsorption of the fluid to the pore wall. 
Having trained two emulators, we train a DNN-based upscaler (Fig. 1C) that maps MD inputs into LBM inputs. 
The goal of the upscaler is to match the spatial density profiles between the MD and LBM emulators. This is done 
by finding the optimal density, temperature and the adsorption coefficient that minimize the error between the 
spatial density profiles from the two emulators (Fig. 1D).

The choice of DNN models is an important one, motivated by the availability of fast Automatic Differentiation 
algorithms for computing gradients 42 that are already implemented in DNN libraries 43. Training the upscaler 
requires gradient information about changes in LBM profiles with respect to LBM inputs. These gradients are 
easy to compute from the DNN-LBM emulator, and allow us to use the emulated profile behavior to train an 
upscaler with less computational effort and human time than would be necessary otherwise. In contrast, it 
would be far more expensive to calculate numerical finite-difference gradients from discrete LBM simulations, 
which requires many LBM simulations for any given state point to determine the sensitivity of the profile with 
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respect to the input parameters. Similarly, using automatic gradients is far less laborious than deriving, coding, 
and testing the gradient of LBM profiles with respect to LBM input combinations within an existing LBM code. 
In addition, the LBM emulator is about 4 orders of magnitude cheaper than direct LBM (see “Computational 
costs”), making it more tractable for training the upscaler.

Next we summarize the gaps with traditional scale-bridging methods and the advantages to our approach: 

(1)	 Sequentially approaching adsorption one input parameter at a time will require a separate set of MD cal-
culations for each parameter to consider, which is computationally laborious. Ours is a holistic method 
over the entire multivariable parameter space and requires few MD simulations to perform upscaling.

(2)	 Because the framework operates over a multivariable parameter space rather than optimizing upscaled 
parameters on a point-by-point basis, it is suited for the simultaneous modeling of multiple upscaled 
parameters, because it incorporates the properties of many simulations simultaneously.

(3)	 Upscaled functions are often assumed to obey some sort of relationship such as a linear or exponential 
dependence in order to simplify the procedure. Our approach makes no assumptions about the form of 
upscaling functions from fine-scale (MD) inputs to coarse-scale (LBM) parameters, except that these func-
tions can be generated by a neural network.

(4)	 Our framework is extensible to other forms of upscaling such as flow conditions, nanoscale modifications 
to equation of state, and phase transition characteristics.

(5)	 In this work we focus on 1D pores; however, the overall workflow does not depend on the dimensionality 
of the system, and can be generalized to two and three dimensional porous geometries.

(6)	 The method enables extreme throughput for upscaled parameters. Once trained, calls to the upscaler are 
very cheap, and can easily be evaluated millions of times at negligible computational cost. This is highly 

Figure 1.   Our machine learning based scale-bridging framework. DNN emulators are constructed for both 
fine (MD) scale processes (A) and coarse (LBM) scale processes (B) by modeling the entire pore profile based 
on datasets which span a range of pore conditions.The differentiability of the emulators is exploited to train the 
DNN upscaler (C) by training it to match the density profiles between MD and LBM profiles (D) across the 
parameter domain. The resulting upscaler finds the effective parameters (in this case effective density, effective 
temperature and adsorption parameter) for the coarse scale model informed by the fine scale data.
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advantageous in comparison to direct scale-bridging methods, which require continual calls to fine-scale 
simulations to advance the coarse-scale simulation.

In the 1D pore scenario studied here, the inputs to an MD simulation are width, overall methane density, and 
temperature, denoted w, ρo , T. LBM simulations use the same width w, and take density ρ′

0 and temperature T ′ , 
as well as the additional adsorption parameter, denoted a′ . The role of the upscaler is to take any set of inputs w, 
ρ0 , and T, and determine matching effective parameters ρ′

0 , T ′ , and a′ such that adsorption effects in the LBM 
physics match those in MD.

We use datasets of 1,010 simulations for MD and 8,074 for LBM (for details, see “Methods” below). The 
parameter ranges for MD are: 3–300 kg/m3 for density, 300–400 K for temperature and 2.4–22 nm for pore width. 
For LBM, the parameter ranges are (in lattice units, l.u.): 0.25–1.5 l.u. for density, 0.8–2 l.u. for temperature, 
3–13 nm for pore width, and 1–10 for the (dimensionless) adsorption parameter. The MD and LBM emula-
tors were then trained on these simulations. The training for the MD and LBM emulators shows good overall 
profile density, and the upscaler network produces good models of the bulk density, as shown in Fig. 2, which 
compares the true and predicted values on held-out test fractions of the datasets. We note that the MD plot 
compares the collected (True) and emulated (Predicted) profiles across each point and shows very little scatter. 
The LBM plots the same quantity for LBM simulations. While there are a few outlier points, the vast majority 
of the predicted points fall very close to the to true points. The upscaler is trained to construct LBM inputs that 
generate the correct bulk density, and so the resulting plot only has one point per profile. For the upscaler, the 
fit visually near perfect.

Extracted physical quantities.  The trained emulators and upscaler can be used to extract physical infor-
mation about the pore. Figure 3 shows our approach in comparing profiles to a uniform profile with the same 
bulk density, where bulk density is defined as the density in the center of the pore. Blue regions show excess 
density compared to the bulk. The excess density represents the nanoconfinement adsorption effect from MD 
that needs to be captured in LBM through the adsorption parameter. The excess density is calculated as fol-
lows. The purple region shows the intersection of the MD profile with the adsorption-free fluid profile, the blue 
regions are the excess compared to the adsorption-free fluid profile, and the red regions are deficits compared 
to the bulk (central) density. The excess density is then given as the total area of the MD profile (purple plus 
blue) minus the total area of the bulk profile (purple plus red). Interestingly, as the methane density increases, 
the width of the emulated adsorption layer decreases. Although multiple adsorption layers form in MD, as the 
density is increased further, a deficit forms (red region in Fig. 3) between the first and second layers, which, 
overall, mitigates the excess density in the second adsorption layer. This signals an increase of structure in the 
adsorbed particles. This phenomenon naturally arises from the microscopic nature of MD which is captured in 
our workflow without apriori conceptualization.

Figure 4 compares the excess density across the input space, and indicates that measurements from the MD 
and upscaled LBM emulators are in good agreement. As seen in Fig. 4A, for low densities, the excess density is 
approximately linear with the total density. When the density is near 150 kg/m3 , a turning point is approached, 
and excess density begins to decrease with increasing total density. This corresponds to a saturation of the 
adsorbed particles near the wall; any new particle added to the system is more likely to equilibrate into the bulk 
than to the adsorbed layer. At extremely low densities below ≈ 5 kg/m3 , there is a small mismatch between the 
MD emulator and the LBM upscaler—we will remark on this further at the end of this section. The multiple 
curves for various temperatures indicate that this effect is present for all temperatures, but the saturation effect 
occurs at larger densities for higher temperatures. Figure 4A also shows that excess density is inversely related 
to temperature. This demonstrates that as temperature increases, methane preferentially desorbs from the wall 
into the bulk. This effect is captured in the upscaling scheme.

Figure 4B shows the fraction of excess methane density compared to total density. We found that the nano-
confinement allows the nanopores to pack more methane compared to the bulk-based estimates. Quantitatively, 
one can expect at least 15% more methane in 4 nm pores compared to the bulk-based estimates, which is 

Figure 2.   Left: MD emulator performance for all profile points in the test dataset, Middle: LBM emulator 
performance for all profile points in the test dataset. Right: Upscaler performance for bulk density in the test 
dataset. Each plot is a two dimensional histogram; the corresponding color bar indicates the number of points in 
each bin.



5

Vol.:(0123456789)

Scientific Reports |        (2020) 10:13312  | https://doi.org/10.1038/s41598-020-69661-0

www.nature.com/scientificreports/

consistent with prior suggestions44. This better packing is more pronounced at lower densities and smaller pores. 
Note that what we report as the fraction of the excess density is different than the fraction of the adsorbed phase. 

Figure 3.   Emulated and upscaled profiles for T = 350K and pore width w = 4 nm . From top to bottom, panels 
show input densities of ρ0 = 25, 100, 250 kg/m3 , respectively. The black curve shows the emulated MD profile, 
and the dashed grey curve shows the corresponding upscaled profile. Colored regions show how to compute the 
MD excess density compared to an adsorption-free fluid with the same bulk density: the purple region shows 
the coincidence of the MD profile with the adsorption-free fluid, the blue region shows excesses compared to 
the adsorption-free fluid, and the red regions show deficits compared to the adsorption-free fluid.

Figure 4.   Excess density for a variety of pore conditions. Solid lines show the results of the MD emulator, and 
dashed lines show the results of the Upscaled LBM emulator. Left: Excess density as a function of temperature 
and total density ρ0 for a fixed width of 4 nm for pore, for temperatures ranging from T = 300 K to T = 400 K. 
Right: Fractional excess density as a function of pore width and total density ρ0 at T = 350 K, for widths ranging 
from w = 3 nm to w = 13 nm.
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The excess density reports the ratio of the excess mass, the total mass minus the uniform bulk mass, to the total 
mass, a quantity which can easily be obtained from an MD profile. The total adsorbed density represents the ratio 
between the mass of the adsorbed phase to the total mass in the pore. Performing such a measurement requires 
separating the methane density into separate adsorbed and bulk phase components, and such a distinction cannot 
be physically made from an MD density profile. Because of the difference in the nature of these two quantities, 
our reports of excess density differ significantly from the total adsorbed mass reported in the literature 45. We 
note that for extremely low total densities below ≈ 5 kg/m3 , the fraction of excess density exhibits observable 
disagreement between MD and LBM emulators.

Figure 5 shows the adsorption coefficient predicted by the upscaler, that is used by LBM to model adsorption 
under confinement, for a wide range of temperatures and total densities, at pore widths of 4 nm and 12 nm. As 
seen in the figure, the relationship between the adsorption coefficient, total density, and temperature is smooth 
but complex. This demonstrates that scale-bridging is necessary for informing the LBM adsorption coefficient 
under confinement. The adsorption coefficient is strongly increasing as the total density decreases, but varies less 
for large densities. The adsorption coefficient shows a weaker monotonically increasing dependence on tempera-
ture. For the 4 nm pore the density dependence is monotonic—this may be a region where nano-confinement 
induces a supercritical phase46. On the other hand, in a 12 nm pore, the non-monotonic trend of adsorption with 
density may be indicative of a sub-critical phase. We reiterate that this functional form for the LBM adsorption 
coefficient was not selected a priori, but was generated by training the upscaler through the fusion of informa-
tion from MD and LBM simulations.

Finally, we discuss the performance of the MD and upscaled LBM emulators for very low density systems 
(below ≈ 5 kg/m3 ), where there is some disagreement between the two systems. This discrepancy is small in 
absolute terms (Fig. 4A) and noticeable in relative terms (Fig. 4B). There are several possible sources of this 
discrepancy, each with accompanying remedies: 

(1)	 The mismatch may stem from the differences between MD and LBM formulations. The discrete nature of 
MD allows the accumulations of molecules near the surface with no presence of molecules in the center 
of the pore, that is, the system consistents entirely of adsorbed particles, with essentially zero in the bulk. 
On the other hand, in LBM simulations, there must be a continuum between the bulk fluid and the the 
adsorbed fluid; the LBM formulation may not be able to treat such low densities. If this is the case, upscal-
ing cannot be performed for extremely low densities simply because the physics of the fine scale cannot be 
represented at the coarse scale.

(2)	 It may arise because the cost function for the upscaler has units of density (see “Methods”). This explains 
why the mismatch is not large in absolute terms but magnified in relative terms. The solution in this case 
is to specify the cost function in terms of the physical observables of interest; if the variable of interest is 
fractional pore adsorption, then the accompanying cost function should be dimensionless.

(3)	 It may be due to the large adsorption coefficients computed by the upscaler for low densities. The LBM 
dataset was limited to adsorption coefficients less than 10, but for low densities the upscaler drives the 
emulator out of this range (Fig. 5). One might address this case by extending the range of LBM simulations 
to larger adsorption values.

We expect that some mixture of these effects accounts for the situation. It is worth noting that the common res-
ervoir conditions in shale formations are unlikely to probe such low densities; as such we expect it to be largely 

Figure 5.   Upscaled LBM adsorption coefficient as a function of temperature and density for a fixed pore-width 
of 4 nm (A) and 12 nm (B). Each 3D surface is colored by the value of the the adsorption coefficient.
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irrelevant to applications. Despite this, we present this discussion as it entails several considerations for future 
research into ML-based upscaling: One is to keep in mind that it is important to consider the range of physics 
accessible at the coarse scale. Second, one must carefully consider which properties are intended to be probed 
and how they give rise to a natural cost function to optimize; small mismatches in one metric may imply larger 
mismatches under another metric. The last is to consider the range of data sampled: While ML is designed 
to generalize to new data that is similar to training data, no purely data-driven method could be expected to 
extrapolate to conditions far outside of the range of data sampled.

Computational costs.  The aim of scale-bridging techniques is to alleviate computational costs associated 
with brute-force fine-scale simulation while retaining the important aspects of the fine-scale physics, and so 
in this section we review the computational cost of our methods. MD and LBM calculations were performed 
on various commericially available HPC hardware with CPU-based implementations. Neural networks were 
treated with a 12-core Intel i9 CPU on a commercially available laptop.

First, we cover the data-collection and model-building phases. Collecting the 1,010 MD simulations required 
approximately 800 core-h of computation ( ≈ 1 core-h/MD-call). It is worth noting that this is comparable to the 
number of fine-scale calls needed in a single time-step in scale-bridging applications 1–3, 6. The matching 8,074 
LBM simulations are far simpler, taking ≈20 core-h total, or ≈5 core-s/LBM-call. Training the MD emulator, 
LBM emulator, and upscaler took approximately 24 core-h each, resulting in ≈ 72 core-h of training time. The 
dominant cost is thus MD simulation.

Having trained our models, the neural networks can be evaluated very quickly. The emulator must treat the 
density across the entire pore, and on average takes ≈1 core-ms/emulator-call. We remark that generating Fig. 4 
requires assessing the profile of ≈ 3200 sets of densities and temperatures for a fixed-width pore; this is consid-
erably larger than the number of MD calculations performed in total over all pores. The emulators can generate 
this data in seconds on a single machine. The upscaler does not need to be evaluated for each point in the profile, 
and so it can be evaluated in ≈200 core-µs/upscaler-call in serial evaluation. If batched to a sufficient number 
of combined calls, this can be lowered to ≈10 core-µs/upscaler-call. If we take the serial mode as a conservative 
estimate, calling to the upscaler is 107 times cheaper than a single MD simulation.

There are many practical considerations necessary to contexturalize the 107 speedup factor, which can be 
regarded as an asymptotic speedup possible when other effects do not dominate. First, we mention potential 
limitations. One is that acheiving this speedup factor requires an application where the number of upscaling 
calls required is 107 times larger than the number of training MD simulations. While this is large, current super-
computers exceed 105 total cores 47, 48, and atomistic applications have utilized computation at this scale 49–52. 
Another factor is the expense of coarse-scale operations; the speedup factor of our method compared to direct 
MD is limited by the ratio of computation spent in the coarse model compared to MD. Lastly, implementation 
details may give rise to overheads associated with communication of data, etc. that affect final performance.

We also consider the practical advantages of the workflow. For one, the training MD simulations that con-
stitute the bulk of the cost can be massively parallelized to take advantage of large HPC environments; in direct 
scale-bridging, parallelization is limited to the number of MD calls needed in a given time-step. Second, with 
such a large asymptotic speedup factor, larger coarse-scale simulations can be designed to take advantage of 
the throughput available with the ML-based upscaler. Third, given that 800 core-h for MD with a united-atom 
force field can be performed on a small cluster, far more accurate potentials could be afforded. In this case, the 
speedup factor would be proportionately larger; changing the nature of the MD simulation will not affect the cost 
of ML. Lastly, all three core algorithms (MD, LBM, and DNN) are good applications to accelerate via GPGPU 
computation 53.

Conclusions and future prospects
In this work, we have described and demonstrated an ML framework to bridge the molecular and continuum 
scales in order to accurately simulate hydrocarbon properties in nanoporous media. We incorporate atomistic 
adsorption effects that occur within a nanoconfined pore as simulated by MD into a continuum LBM that can 
simulate larger scales with more complex geoemetries. We demonstrated that our ML framework is accurate 
and much more efficient than direct MD allowing up to 7 orders of magnitude speedup making it ideal for a 
robust scale-bridging framework that could be deployed even on modest computer clusters. Our approach is not 
dependent on the physical characteristics of adsorption phenomena. Therefore we expect to be able to extend 
it to other nanoconfinement effects such as slip and phase transition effects that also affect hydrocarbon flow, 
but have thus far been neglected in traditional continuum reservoir simulators. Our framework is flexible and 
extensible to other forms of upscaling. In addition, we expect the flexibility of the upscaling form to provide addi-
tional physical insights into how discrete molecular effects manifest themselves in complex 3D pore structures 
at the continuum scale. If an unexpected upscaling function emerges during our analysis, it could illuminate 
new physics within a nanoconfined pore. For example, as methane density increases, the adsorption thickness 
actually increases due to the formation of multiple adsorption layers. This was not explicitly parameterized in 
our framework but was discovered in the data analyis.

The advantages of our approach were demonstrated for an adsorption application. Our method simultane-
ously captures adsorption for a wide range of temperatures, pore widths and densities. Prior approaches require 
re-fitting of upscaling parameter; for example, a change in temperature or pore width implied the need to re-
establish the adsorption as a function of total density. In contrast, the ML approach captures the data in one-shot 
across the full parameter space. While prior approaches modeled adsorption purely as a relationship between bulk 
and total density, our approach models the entire density profile and calculates the optimal adsorption parameter 
in the upscaler. This enables validation by ensuring that the estimated profiles are physically realistic. We also 
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constructed our emulators such that they ensure symmetry and conservation of mass to prevent unphysical 
density profiles. This is done through engineering the architecture of the emulators via engineering the activa-
tion functions of the neurons. DNNs prove useful in this regard because their engineerable architectures lend 
themselves to applying physics informed constraints to the model.

Analyzing the resulting models shows that it captures many physical effects present in MD by dynamically 
adjusting the parameters of LBM. The performance degrades slightly near the edge of the input space when 
density becomes very low. Computationally, calls to the trained upscaler are essentially free, and the dominant 
cost is in producing MD training data. While the cost is not large, it is dominant in the workflow, and would 
increase when studying systems that require more complex potentials, such as biomolecules or metals with 
long-range forces. Minimizing the computational cost of acquring data is a good candidate for future work. It 
is a complex endeavor, involving both continuum and molecular simulation methods, model hyperparameters, 
and the choices of learning objective. One method to tackle challenge would be Active Learning 54, in which an 
algorithm is applied to automatically select new training data in order to improve the performance of a model; 
in a computational context such an approach is quite attractive because data could be generated without human 
intervention, and could even lead to better models with fewer fine-scale computations.

We expect this method to be fully extensible to 2D or 3D geometries, but this would need to be verified. 
This would require methods such as Convolutional Neural Networks that work well for 2D and 3D systems. In 
addition, more data management will be required to assemble the many fine-scale and coarse-scale simulations 
as a training database for the ML approach and to apply the ML model within an LBM simulation. Exploring 
these tasks is left to future research.

To conclude, we have demonstrated that an ML upscaler can be used to account for discrete molecular effects 
in larger scale continuum models. This is accomplished by training ML emulators for the fine- and coarse-scale 
models, and training the ML upscaler to find a mapping between the input spaces of the fine- and coarse-scale 
models such that their output spaces agree. While we have demonstrated this concept on a simple nanocon-
finement example, it is a general framework for scale-bridging that takes advantage of recent advances in ML.

Methods
Molecular dynamics simulations.  We performed Molecular Dynamics (MD) simulations of methane 
in a channel pore under equilibrium conditions. We simulated different conditions to construct a robust train-
ing data set for our machine learning framework. Given that our main objective is to develop a scale-bridging 
machine-learning-based workflow, we assumed that pore walls are composed of frozen methane molecules for 
the sake of simplicity. The simulation domain comprises bulk methane molecules bounded in the z-direction by 
pore walls as shown in Fig. 1, left side. The x and y dimensions of the simulation box are 42.5 nm and 4.25 nm, 
similar to the previous work by Li. 55. We generated 1000 simulations varying the pore width from 3 to 13 nm, 
the bulk density from 3 to 250 kg/m3 and the temperature from 298 to 398 K; randomly choosing the values for 
pore width, bulk density, and temperature for each simulation.

We performed all the simulations using LAMMPS molecular dynamics package 56. We use the “fix setforce” 
command in LAMMPS so that the wall particles do not move during the course of the simulation. Our simula-
tion started with an energy minimization stage to avoid the overlap of molecules, then an equilibration for 0.5 
ns and sampling phase for 0.5 ns, both under under NVT (canonical) ensemble. Periodic boundary conditions 
are employed in the x and y directions. We use a time step of 1 femto-second and a Nosé-Hoover thermostat57, 
with a temperature damping parameter of 10 time units. During the sampling phase, we collected the density 
profile along the z-direction using a bin size of 0.1 nm. We used a pairwise-additive potential, TraPPE-UA58, 
force field to describe the bulk density from interactions between the methane molecules. The TraPPE force field 
was developed to describe the bulk properties of the adsorbed gases and has a high degree of accuracy in the 
prediction of properties at different state points59.

Lattice Boltzmann simulations.  A brief introduction of the Lattice Boltzmann method.  The lattice 
Boltzmann method60, 61 (LBM) is among the most popular direct numerical simulation methods to study com-
plex flow in porous media, thanks to its ability to efficiently implement boundary conditions for complex ge-
ometries and to account for interfacial dynamics between different fluids. Furthermore, the LBM is well suited 
for modern manycore processors/co-processors, such as GPUs (Graphics Processing Units), which greatly boost 
the computing power but also require a higher degree of explicit parallelism. A highly-optimized LBM code is 
critical to efficiently provide large number of LBM simulation data to ML training process and also to simulate 
real rock sample with representative elementary volume (REV). In this work, we implemented the LBM adsorp-
tion model on a existing in-house developed high-performance LBM code, ‘MF-LBM’, which is able to simulate 
complex flow in large 3D complex geometries using manycore processors/co-processors62, 63.

The primitive variables in the LBM are the particle distribution functions (PDFs), fi , where i represents the 
ith lattice direction e. The popular D3Q19 lattice model64 is employed in this work. The evolution equations of 
the PDFs are as follow,

where the LBM single-relaxation-time (SRT) collision model64, 65 is employed. Here f eqi  are the equilibrium 
PDFs, Fi represents a general forcing term and the relaxation rate τ is related to fluid viscosity. For more detailed 
description of the general LBM, readers may refer to Chen and Doolean60.

(1)fi(x + eiδt, t + δt) = fi(x, t)−
fi(x, t)− f

eq
i (x, t)

τ
+ Fiδt,
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The Shan–Chen type Lattice Boltzmann model.  To model methane adsorption in nanopores in LBM simula-
tions, the Shan-Chen single-component-multiphase LBM66 is utilized, which generates non-local interactions 
between fluid-fluid particles and fluid-solid particles. The interactive force between fluid particles can be written 
as

where g is a parameter that controls the interaction strength, ψ is a function of the local fluid density ρ(x) and 
�i is the weight factor of ei direction in the D3Q19 lattice. The fluid-solid interactive force can be formed in the 
same way as shown in Eq. (2), by using the fictitious density method. We assign fictitious values of fluid density 
on the solid nodes, meaning that the values of ψ on the solid nodes are known. Equation (2) is then applied to all 
the fluid nodes, including the fluid boundary nodes. Thus, F(x,t) on the fluid boundary nodes can be obtained 
and show repulsive or attractive depending on the fictitious density assigned on the neighboring solid nodes. 
This fictitious density method was originally designed to control wettability67 on the solid surface, but can also 
be used to control the adsorption in the present work.

The interactive force obtained in Eq. (2) is incorporated into Eq. (1) using Guo’s forcing scheme68, which 
reduces the discrete lattice effects69. The form of ψ in Eq. (2) determines the equation of state70. The Peng-
Robinson (P-R) equation of state (EOS) has been introduced into the LBM via the following form of ψ70,

where a = 0.45724R2T2
c /pc ; b = 0.00778RTc/pc ; R is the universal gas constant; cs is the speed 

of sound, Tc and pc are the critical temperature and critical pressure of the gas, respectively; 
α(T) = [1+ (0.37464+ 1.54226ω − 0.26992ω2)× (1−

√
T/Tc))]2 ; ω = 0.011 is the acentric factor for meth-

ane; T is the temperature. Following the work of Yuan and Schaefer70, we set a = 2/49 , b = 2/21 and R = 1 in 
the simulations. The Shan-Chen multiphase model incorporated with P-R EOS shows significant improvement 
over the original model in terms of spurious currents, temperature ranges, and density ratio70.

From Eq. (3) we can see that g, the parameter to control the interaction strength in the original Shan-Chen 
model, is canceled out. Therefore, the interaction strength is now controlled by T and ρ.

Modeling adsorption in Lattice Boltzmann simulations.  As shown in Eq. (2), there are net forces on the fluid 
boundary nodes if the term 

∑18
i=1 �iψ(x + eiδt, t)ei , which approximates the gradient of ψ , does not equal 0 on 

fluid boundary nodes. Therefore, by tuning the fictitious density on the solid boundary nodes, one can alter the 
gradient of ψ on the fluid boundary nodes and therefore alter the net interactive forces on the fluid boundary 
nodes. We define an adsorption parameter,

where ρs is the fictitious density on the solid nodes and ρtotal is the total density of the fluid. In such case, there 
are net interactive forces towards the solid nodes on the fluid boundary nodes when a′ > 1 , which attract fluid 
particles to the solid surfaces. This models adsoprtion in the LBM simulation.

Matching the density profile in the adsorption layer.  The gas density profiles near the solid surface are affected 
by the adsorption coefficient, the interaction strength in Eq. (2), the choice of EOS, and the forcing scheme that 
incorporates the interactive forces into the LBM equations. Once the EOS and forcing scheme are chosen, the 
density profile is determined by the adsorption coefficient a′ and the interaction strength which is controlled by 
T and ρ when using the P-R EOS. However, to the best of our knowledge, there are no physics-based LBM that 
are able to describe the complex fluid-solid interactions inside the adsorption layer.

As described in section “Molecular dynamics simulations”, MD simulations can provide the gas density profile 
inside the adsorption layer. Therefore, one can tune the parameters, a′ , T and ρ , in the LBM simulation to form 
desired density profile inside the adsorption layer that matches best with the MD result. For convenience, we 
replace the tuning parameters T and ρ with Tr and ρr total respectively, where Tr = T/Tc is the reduced tempera-
ture and ρr total = ρtotal/ρc is the reduced total density. Here Tr and ρr total are both numerical tuning parameters 
which are decoupled from the physical temperature and density, and the EOS incorporated in the LBM is only 
used to provide fluid-solid interactions near solid surface. This is justified by the following two facts: 

(1)	 The temperature variation in the simulation length scale of this work (nanoscale) is negligible. Thus, the 
flow can be considered as isothermal flow. Tuning Tr in the simulation mostly affects the density profiles 
inside the adsorption layer.

(2)	 The inertial effects in the simulation length scale of this work (nanoscale) is negligible. Thus, one can re-
scale the mass unit conversion between the lattice space and physical space.

The above method is in contrast to a previous work35, where the physical Tr and ρr total are used in the LBM 
simulation. We found that density profiles inside the adsorption layer of the LBM simulations will be also 

(2)F(x, t) = −gψ(x, t)

18
∑

i=1

�iψ(x + eiδt, t)ei ,

(3)ψ =

√

√

√

√

2( ρRT
1−bρ − aα(T)ρ2

1+2bρ−b2ρ2
− c2s ρ)

c2s g
,

(4)a′ = ρs

ρtotal
,
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affected by grid resolution and the forcing scheme used in the Shan-Chen model. Only tuning the adsorption 
parameter a′ is not sufficient to obtain good match for a variety of channel widths and physical conditions. Thus, 
we decoupled Tr and ρr total in the simulations from the physical ones and used them as tuning parameters. With 
fast and accurate LBM emulator trained from MD data, as shown in Fig. 4, tuning a′ , Tr , and ρr total in the LBM 
simulation simultaneously for different channel widths under certain constraints to match the MD density 
profiles becomes possible.

Machine learning workflow.  Our machine learning workflow proceeds in three steps: (1) Train an MD-
emulator model that maps pore properties to reproduce profiles from MD. (2) Train an LBM-emulator to repro-
duce profiles from LBM, using an extended parameter set to cover possible adsorption conditions, and (3) Train 
an upscaler model which maps the MD inputs to effective values of LBM inputs which produce the same profile 
as estimated from the MD-emulator. We implemented the following methods using PyTorch 43.

The notion of two profiles being the same is evaluated using a cost function that compares the mean-squared 
differences between profiles, scaled by the overall density. We denote distances between an emulated profile ρA(x) 
and a target density ρB(x) using a cost function Lemulator:

where ni is the number of samples in the profile, and xi are the sample points.

Emulators.  The MD-emulator is based on a fully-connected network conditioned on the position 
within the profile, that is, the predicted profile ρ̂(x) is computed using inputs x, w, ρ0 , and T as a function 
ρ̂(x) = ρ0f (x,w, ρ0,T) , where f is a neural network. The network output across the profile is normalized to 
produce a profile density; the output density ρ̂(x) is constrained to obey 

∑

i dxρ̂(xi) = ρ0 . The input positions 
x are transformed via x → x̃ = (2x/w − 1)2 ; this ensures that x̃ is of order 1 (normalizing the feature), as well 
as ensuring that emulated profiles are symmetric. Put another way, the profile as modeled is a partially applied 
function ρ̂(x)|w,ρ0,T that is mathematically equivalent to a Convolutional Neural Network using 1× 1 kernels 
with a single system-wide layer that normalizes the profile to ensure mass conservation; in that sense, our model 
utilizes parameter-sharing across the pore geometry in the same way that a CNN does.

Our choice to rely on point-wise networks rather than Convolutional Neural Networks is due to the simplifac-
tions that arise for any 1D constant pore geometry (such as the slab analyzed here, or a cylindrical pore geom-
etry): the profile can be treated as a function of 4 variables, rather than a function of 3+ w variables associated 
with 3 thermodynamic variables and w profile bins. In a CNN-based formulation, the raw data associated with a 
1D representation of the pore geometry would be nearly trivial, as it is constant across the pore and constant in 
the walls. This plays against the advantages of CNNs, which are designed to process local correlations, and would 
need to either (1) generate the spatial characteristics of the profile using a very large total receptive field size, or 
(2) explicitly take as input long-range spatial information such as x̃ . However, to treat 2D or 3D geometries with 
more complex spatial structure of the pore walls, a CNN could be employed to represent the geometry of the 
pore, which is advantageous over parameterizing 2D or 3D functions using purely local variables; said param-
eterization could easily be accomplished for specific geometries (e.g. ellipses or rectangular cross-sections), but 
generic irregular shapes would not admit a low-dimensional parameterization.

Futhermore, implementing our model as a point-wise full-connected model is also computationally advanta-
geous over a CNN formulation because it avoids some of the difficulties associated with treating variable-sized 
inputs. Treating variable-sized inputs requires either (1) padding all data to the size of the largest sample in the 
batch, resulted in wasted computation associated with the profile inside a wall, which vanishes, or (2), calling 
the network only on batch sizes of 1, which limits the computational throughput of training by restricting paral-
lelism. In the case of a 2D or 3D geometry, these concerns would be mitigated as a result of the larger number 
of per-example input and output bins.

Networks consist of nlayers = 3 (i.e. two hidden layers and one output layer) of nneurons = 30 each using the 
softplus activation function softplus(x) = log(1+ ex) . The use of this smooth activation function ensures that 
emulated profiles are themselves smooth. Each network contains approximately 1,100 parameters in total. Net-
works are trained over nepochs = 1,000 using the Adam optimizer71. 10% of the data is held out for testing, and 
another 10% is held out for early stopping and validation. The emulator networks are trained in batches of size 
nbatch = 20 under the cost function Lemulator(ρ̂MD(x), ρMD(x)).

The LBM dataset of 8,074 calculations was obtained by filtering data obtained from a set of 10,000 calcula-
tions. 8,245 of the calculations converged within the number of steps prescribed. The data was filtered to remove 
simulations for which a unique profile is ill-defined due to the appearance of complete condensation, usually at 
low temperatures and/or large adsorption coefficients. The filtering process removed simulations for which the 
observed profile was asymmetric as well as simulations for which the bulk density was greater than the density 
near the wall. The LBM-emulator is trained in the same fashion, except that it has inputs w, ρ′

0,T
′, a′ . The densi-

ties ρ′ and temperatures T ′ are expressed in lattice units. The adsorption a′ is dimensionless.

Upscaler.  The goal of the upscaling network is to match emulated MD profiles to emulated LBM profiles 
by learning a mapping between the MD input space and the LBM input space, producing LBM predictions 
ρ̂0

′, T̂ ′, â′ from MD variables w, ρ0,T . To constrain the upscaler as a density-conserving predictor, the upscaled 
density ρ̂′ is learned using a linear factor ρ̂′

0 = βρρ0 for a single scalar parameter βρ ; the upscaler fixes the den-
sity scale matching between MD and LBM; this can likewise be rephrased as a global modification to the LBM 

(5)Lemulator(ρA(x), ρB(x)) =
1

ni

∑

i

(ρA(xi)− ρB(xi))
2,
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critical pressure. The other parameters, T̂ ′ and â′ , are generated by a fully connected multitask neural network. 
The archtecture is same as the emulators, except that the predictions are made using a linear layer (no activation 
function), the position is not an input to the upscaler, and there is no profile-wise normalization layer. Like the 
emulators, the upscaler contains approximately 1100 parameters.

Initial explorations used a similar cost function to the emulators, attempting to match the full density profile. 
However, it was soon discovered that this task is not possible within the framework of LBM examined; it can-
not reproduce, for example, the multi-layer structure observed in the MD profiles. As such, the cost function 
focuses on the primary observable effect of adsorption: The excess density ρexcess , with a small regularization 
term encouraging the upscaler to keep the MD and upscaled profiles close:

One advantage of this approach is that the set of input parameters for MD needs not be explicitly matched to 
LBM inputs; the upscaler itself solves this problem implicitly, as both emulators are defined over the space of 
inputs in the data collected. As such, we train the upscaler over a large dataset of emulated MD profiles that 
cover the space of both the MD and LBM simulations. This consists of 10,000 calculations with widths between 
2.5 and 12.5 nm, densitites between 2.5 kg/m3 and 250 kg/m3 , and temperatures between 300 and 400 K. The 
upscaler is trained for 100 epochs.
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