Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Scientific Reports Année : 2020

Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media

Nicholas Lubbers
  • Fonction : Auteur
Animesh Agarwal
  • Fonction : Auteur
Yu Chen
  • Fonction : Auteur
Mohamed Mehana
  • Fonction : Auteur
Qinjun Kang
  • Fonction : Auteur
Satish Karra
  • Fonction : Auteur
Christoph Junghans
  • Fonction : Auteur
Timothy C. Germann
  • Fonction : Auteur
Hari S. Viswanathan
  • Fonction : Auteur

Résumé

Fine-scale models that represent first-principles physics are challenging to represent at larger scales of interest in many application areas. In nanoporous media such as tight-shale formations, where the typical pore size is less than 50 nm, confinement effects play a significant role in how fluids behave. At these scales, fluids are under confinement, affecting key properties such as density, viscosity, adsorption, etc. Pore-scale Lattice Boltzmann Methods (LBM) can simulate flow in complex pore structures relevant to predicting hydrocarbon production, but must be corrected to account for confinement effects. Molecular dynamics (MD) can model confinement effects but is computationally expensive in comparison. The hurdle to bridging MD with LBM is the computational expense of MD simulations needed to perform this correction. Here, we build a Machine Learning (ML) surrogate model that captures adsorption effects across a wide range of parameter space and bridges the MD and LBM scales using a relatively small number of MD calculations. The model computes upscaled adsorption parameters across varying density, temperature, and pore width. The ML model is 7 orders of magnitude faster than brute force MD. This workflow is agnostic to the physical system and could be generalized to further scale-bridging applications.
Fichier principal
Vignette du fichier
s41598-020-69661-0.pdf (1.9 Mo) Télécharger le fichier
Origine : Fichiers éditeurs autorisés sur une archive ouverte

Dates et versions

insu-03594491 , version 1 (02-03-2022)

Licence

Paternité

Identifiants

Citer

Nicholas Lubbers, Animesh Agarwal, Yu Chen, Soyoun Son, Mohamed Mehana, et al.. Modeling and scale-bridging using machine learning: nanoconfinement effects in porous media. Scientific Reports, 2020, 10, pp.1617-1641. ⟨10.1038/s41598-020-69661-0⟩. ⟨insu-03594491⟩
33 Consultations
15 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More