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Abstract. We discuss two parallelization schemes for
MagIC, an open-source, high-performance, pseudo-spectral
code for the numerical solution of the magnetohydrody-
namics equations in a rotating spherical shell. MagIC cal-
culates the non-linear terms on a numerical grid in spheri-
cal coordinates, while the time step updates are performed
on radial grid points with a spherical harmonic representa-
tion of the lateral directions. Several transforms are required
to switch between the different representations. The estab-
lished hybrid parallelization of MagIC uses message-passing
interface (MPI) distribution in radius and relies on exist-
ing fast spherical transforms using OpenMP. Our new two-
dimensional MPI decomposition implementation also dis-
tributes the latitudes or the azimuthal wavenumbers across
the available MPI tasks and compute cores. We discuss sev-
eral non-trivial algorithmic optimizations and the different
data distribution layouts employed by our scheme. In par-
ticular, the two-dimensional distribution data layout yields a
code that strongly scales well beyond the limit of the cur-
rent one-dimensional distribution. We also show that the
two-dimensional distribution implementation, although not
yet fully optimized, can already be faster than the exist-
ing finely optimized hybrid parallelization when using many
thousands of CPU cores. Our analysis indicates that the two-
dimensional distribution variant can be further optimized to
also surpass the performance of the one-dimensional distri-
bution for a few thousand cores.

1 Introduction

The dynamics in many astrophysical objects like stars, plan-
ets, or moons are aptly modelled by the fluid flow and mag-
netic field generation in a rotating sphere or spherical shell.
Since the pioneering work by Glatzmaier (1984), several nu-
merical codes have been developed over the years to model
the problem. Typically, they all solve for convection and
magnetic field induction in a co-rotating reference frame.
The solutions are formulated as disturbances about a hy-
drostatic, well-mixed, and adiabatic reference state. The so-
called Boussinesq approximation assumes a homogeneous
background state and yields a particularly simple formula-
tion. Meanwhile, the anelastic approximation (e.g. Lantz and
Fan, 1999; Jones et al., 2011) allows the incorporation of ra-
dial variation of the background reference state and transport
properties. While the Boussinesq approximation seems ap-
propriate for modelling the liquid cores of terrestrial planets,
the anelastic approximation is more relevant for gas planets
or stars for which the density contrasts are very large.

MagIC (2021), the open-source code extensively dis-
cussed here, allows for the choice of either Boussinesq
or anelastic approximation. The initial implementation by
Glatzmaier (1984), originally geared towards modelling the
solar convective zone, split into two separate codes in the
1990s. One code version was used to model the first numeri-
cal geodynamo (Glatzmaier and Roberts, 1995) and was later
adopted and modified by Olson et al. (1999) to a Boussinesq
code named MAG (2021). This modified code formed the
basis for an earlier version of MagIC (Wicht, 2002). Stel-
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lar dynamo models were carried out using a more efficient
version of the original Glatzmaier (1984) code named ASH
(anelastic spherical harmonic; see Clune et al., 1999), which
more recently led to the open-source code Rayleigh (2021)
(Featherstone, 2018).

MagIC still mostly follows the original algorithm laid
down by Glatzmaier (1984). It is a pseudo-spectral code
written in modern Fortran. Pseudo-spectral algorithms use
a spectral representation to compute accurate derivatives
and a grid representation for calculating non-linear terms.
In MagIC, the angular representation switches between a
longitude–latitude grid and a spherical harmonic represen-
tation. Chebyshev polynomials are used for the spectral rep-
resentation in radius, but MagIC also offers to employ finite
differences instead. Different implicit–explicit time-stepping
schemes (IMEX) are available, wherein the non-linear terms
and the Coriolis force are treated explicitly, while the stiff
linear terms are handled implicitly.

Over the last 20 years several aspects of the original algo-
rithm by Glatzmaier (1984) have been tested against alterna-
tive ideas. Among them are radial discretization algorithms
based on finite differences (Dormy et al., 1998), compact fi-
nite differences (Takahashi, 2012), and a sparse Chebyshev
formulation (Marti et al., 2016). Various different implicit–
explicit strategies for the time stepping have also been stud-
ied (e.g. Livermore, 2007; Garcia et al., 2010; Marti et al.,
2016).

For the last 20 years, MagIC simulations have
resulted in more than 120 peer-reviewed publica-
tions (See https://ui.adsabs.harvard.edu/user/libraries/
LVt1vdaKQsC5P09In2iloA, last access: 20 October 2020).
They cover a broad range of scientific fields, including
fundamental fluid dynamics in spherical geometry (e.g.
Wicht, 2014; Barik et al., 2018), numerical modelling
of the geodynamo (e.g. Wicht, 2002), and modelling of
planetary (e.g. Gastine and Wicht, 2012; Heimpel et al.,
2016) and stellar (e.g. Gastine et al., 2014; Raynaud et al.,
2020) internal dynamics. The code has been tested and
validated by community-driven comparison benchmarks for
Boussinesq convection (Christensen et al., 2001), anelastic
convection (Jones et al., 2011), double-diffusive convection
(Breuer et al., 2010), and convection in full spheres (Marti
et al., 2014). Several publications concern the study of the
solid Earth and its magnetic field. For instance, MagIC was
used to study the “top-heavy” regime of double-diffusive
convection when thermal and compositional background
gradients are destabilizing (Tassin et al., 2021). In a recent
paper, MagIC has been used to study magnetic boundary
layers with heterogeneous outer boundary heat flux, with
results suggesting a significant deviation from classical
estimates of the diffusion time and the magnetic Reynolds
number (Terra-Nova and Amit, 2020). In another paper, the
dynamics of a possible stable stratification layer atop Earth’s
core were explored (e.g. Gastine et al., 2020), leading to the

conclusion that such a layer would lead to strong magnetic
skin effects incompatible with current observations.

Achieving an efficient use of the available computer re-
sources by a given numerical implementation often proves
challenging, in particular when moving to petascale archi-
tectures. There are two main reasons. First, the large number
of physical compute cores requires a large enough workload
that can be fairly partitioned and distributed across these pro-
cessing units. This typically puts an upper bound on the num-
ber of cores that can usefully be employed and often results
in poor strong scaling. A second complication arises from
the different layers of memory access and of communication
between the physical cores (i.e. non-uniform memory access
– NUMA – domains, sockets, nodes). Ideally, one would at-
tempt to keep all data “local” for quick access. However, op-
timizing a code for properly distributing the workload while
keeping a reasonable data locality can be difficult and often
requires compromising one aspect in favour of another.

Until recently, MagIC only offered a one-dimensional
distribution of the data implemented using MPI+OpenMP
(hereafter referred to as “1d-hybrid” implementation). For
calculating the non-linear terms in grid space, this code uses
MPI to distribute the spherical shells between the available
NUMA domains and the inherent OpenMP scheme of the
open-source spherical harmonics transform library SHTns
(2021) (Schaeffer, 2013) for computations within a NUMA
domain. Since MagIC is not optimized for multithreading
between NUMA domains, this configures a limitation on
the maximum number of the radial grid points. This limi-
tation could be quite severe. High-performance computing
(HPC) clusters typically offer two NUMA domains per com-
pute node, but the current trend in hardware development
might lead into a further subdivision into multiple physi-
cal units (e.g. AMD EPYC and Intel CascadeLake-AP) or
logical NUMA domains (e.g. sub-NUMA clustering in In-
tel Xeon). Effectively, the computing power per NUMA do-
main has stagnated and it may even decrease in the future.
This would simply prevent MagIC from taking advantage
of performance gains in the foreseeable evolution of proces-
sor technology. In addition, numerical experiments in Matsui
et al. (2016) suggest that two- or three-dimensional paral-
lelization might be necessary for dynamo codes to achieve
petascale capabilities with current hardware architecture.

The first two-dimensional MPI domain decomposition in
pseudo-spectral codes in spherical geometry was considered
in the ASH code by Clune et al. (1999). The layout was nev-
ertheless still not completely two-dimensional in the sense
that the maximum number of MPI ranks was still bounded by
the maximum spherical harmonic degree. This limitation was
released in more recent implementations by Marti and Jack-
son (2016) in the context of modelling full spheres, by Mat-
sui et al. (2014) in the geodynamo code Calypso (2021), and
in the Rayleigh code. The performance benchmark by Mat-
sui et al. (2016), however, revealed an important overhead
for these codes compared to pseudo-spectral codes which
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avoid global communications such as the open-source code
XSHELLS (2021) (e.g. Schaeffer et al., 2017).

Motivated by the aforementioned points, we propose in
this work a two-dimensional data distribution layout for
MagIC with communication-avoiding features. This required
a major rethinking of data structures and communication
algorithms, and it demands a re-implementation and thor-
ough optimization of a large portion of the existing 1d-hybrid
code. Due to the high complexity of the required refactoring
tasks, OpenMP parallelism was dropped from the current im-
plementation for the time being. Since the two-dimensional
distribution implementation presented here relies on pure
MPI communication, we refer to it as the “2d-MPI” imple-
mentation or version. Implications and incentives to eventu-
ally re-introduce OpenMP into the new version will be dis-
cussed along the way.

This paper is organized as follows. In Sect. 2 we provide
an overview of the mathematical formulation and the numer-
ical techniques used in MagIC. In Sect. 3 we detail the pseu-
docodes for the sequential algorithm for the 1d-hybrid and
the 2d-MPI implementations. We also describe the under-
lying data structures and the key differences between each
approach. In Sect. 4 we thoroughly compare the different
parts of 1d-hybrid and 2d-MPI implementations. We focus
our discussion on the strong scaling of both algorithms, but
we also discuss the raw performance in different regimes. In
Sect. 4.5 we show the performance and parallel efficiency of
both implementations. In Sect. 4.6 we focus on analysing the
main bottleneck of the 2d-MPI implementation and discuss
the viability of further performance improvements and their
expected impact. Finally, in Sect. 5 we summarize our find-
ings.

2 Magnetohydrodynamics equations and numerical
formulation

In this section we introduce aspects of the numerical for-
mulation which are relevant for the understanding of this
work. Since the implementation of the magnetohydrody-
namic (or MHD for short) equations implemented in MagIC
still closely follows the original work by Glatzmaier (1984),
we refer to this publication and to more recent reviews (e.g.
Tilgner, 1999; Hollerbach, 2000; Christensen and Wicht,
2015) for a more comprehensive description of the algorithm.

2.1 Dynamo model

We consider a spherical shell of inner radius ri and outer ra-
dius ro rotating about the z axis with a constant frequency�.
Convective motions are driven by a fixed temperature con-
trast 1T between the two boundaries. We adopt a dimen-
sionless formulation of the MHD equations using the shell
gap d = ro− ri as the reference length scale and the viscous
diffusion time d2/ν as a time unit. Velocity is dimension-

lessly represented in units ν/d, temperature in units1T , and
the magnetic field in units

√
ρµλ�, where µ is the magnetic

permeability, ν the kinematic viscosity, and λ the magnetic
diffusivity. The dimensionless equations that control the time
evolution of the velocity u, the magnetic fieldB, and the tem-
perature T under the Boussinesq approximation read

∇ · u= 0 , ∇ ·B = 0 , (1)
∂u

∂t
+ u · ∇u+

2
E
ez× u=−∇p+

Ra

Pr
g T er

+
1

EPm
(∇ ×B)×B +∇2u, (2)

∂B

∂t
=∇ × (u×B)+

1
Pm
∇

2B , (3)

∂T

∂t
+ u · ∇T =

1
Pr
∇

2T , (4)

where p is the non-hydrostatic pressure, er and ez are the
unit vectors along the radial and axial directions, respec-
tively, and g = r/ro is the dimensionless self-gravity. This
set of equations is controlled by four dimensionless param-
eters, the Rayleigh number Ra, the Ekman number E, the
magnetic Prandtl number Pm, and the Prandtl number Pr:

E =
ν

�d2 , Ra =
αgod

31T

νκ
, P r =

ν

κ
, Pm=

ν

λ
, (5)

where α is the thermal expansivity, go is the gravity at
the outer boundary, and κ is the thermal diffusivity. Equa-
tions (1)–(4) need to be complemented by appropriate bound-
ary conditions for temperature, velocity, and magnetic field
as well as an initial state.

2.2 Spatial discretization

To ensure the solenoidal nature of u and B, Eqs. (2)–(4) are
solved in the spherical coordinates (r,θ,φ) by expanding the
velocity and the magnetic fields into poloidal and toroidal
potentials following

u=∇ × (∇ ×W er)+∇ ×Zer ,

B =∇ × (∇ ×Ger)+∇ ×H er .

This formulation yields the six time-dependent scalar quanti-
ties W , Z, G, H , T , and p. These six variables are expanded
in spherical harmonic functions up to a degree and order `max
in the angular directions (θ,φ). Since the spherical harmon-
ics are the set of eigenfunctions of the Laplace operator on
the unit sphere, they are an especially attractive basis for rep-
resenting functions in spherical coordinates. They are defined
by

Y`m(θ,φ)= P`m(cosθ)eimφ, (6)

where P`m represents the normalized associated Legendre
polynomials (see Abramowitz and Stegun, 1964). Any func-
tion f (r,θ,φ, t) at the radius r and instant t can be expanded
by a truncated spherical harmonic decomposition:

https://doi.org/10.5194/gmd-14-7477-2021 Geosci. Model Dev., 14, 7477–7495, 2021



7480 R. Lago et al.: MagIC v5.10

f (r,θ,φ, t)≈

`max∑
`=0

∑̀
m=−`

f`m(r, t)Y`m(θ,φ) . (7)

Letting ? denote the complex conjugate, it holds that
f`,−m(r, t)= f

?
`m(r, t) for all real functions f . This effec-

tively halves the cost of computing and storing the spherical
harmonic coefficients.

Reordering the terms in Eq. (7) and using the definition of
the spherical harmonics from Eq. (6) we obtain

f (r,θ,φ, t)≈

`max∑
m=−`max

fm(r,θ, t) e
imφ

(Fourier transform), (8)

fm(r,θ, t)≈

`max∑
`=|m|

f`m(r, t)P`m(cosθ)

(Legendre transform), (9)

which is known as the inverse spherical harmonics transform.
By integrating f`mY`m over the spherical coordinates using
the Gauss–Legendre quadrature we obtain the forward trans-
form:

fm(r,θ, t)=
1

2π

2π∫
0

f (r,θ,φ, t)e−imφ dφ

≈
1
Nφ

Nφ∑
k=1

f (r,θ,φk, t)e
−imφk

(Fourier transform), (10)

f`m(r, t)=
1
π

π∫
0

fm(r,θ,φ, t)P`m(cosθ)sinθ dθ

≈
1
Nθ

Nθ∑
j=1

wjfm(r,θj , t)P`m(cosθj )

(Legendre transform), (11)

where θj and wj are respectively the Gauss nodes and
weights for the Nθ collocation points in the latitudinal direc-
tion, and φk = 2kπ/Nφ represents the Nφ regularly spaced
grid points in the azimuthal direction.

The formulation discussed in Eqs. (8)–(11) provides a
two-step algorithm for computing the spherical harmonics
transforms (hereafter SHTs) corresponding to a Legendre
transform and a Fourier transform. The latter can be handled
by finely optimized implementations of the fast Fourier trans-
form (FFT for short) such as the FFTW library (Frigo and
Johnson, 2005), which costs O(Nφ logNφ) operations. There
is no fast transform for Eq. (11), and the complexity of an
individual Legendre transform scales as O(N2

θ ) operations.

In MagIC, we use the open-source library SHTns (2021) for
SHTs and Legendre transforms (Schaeffer, 2013), which re-
lies on the recurrence relation by Ishioka (2018). Addition-
ally, in the context of practical numerical implementation,
a transposition is required between the two transforms; this
will be covered further in Sect. 3.

The quadrature shown in Eq. (11) is exact for Nθ > `max
(Schaeffer, 2013), but in practice, we set `max = d2Nθ/3e
in order to prevent aliasing errors (e.g. Orszag, 1971; Boyd,
2001). In fact, we also set Nφ = 2Nθ for the number of lon-
gitudinal points, which guarantees isotropic resolution in the
equatorial regions (Glatzmaier, 2013).

During the initialization stage, MagIC allows the choice
between finite differences or a spectral expansion using
Chebyshev polynomials to handle the radial discretization
strategy. Finite-difference methods allow the use of faster
point-to-point communications, but they also require a larger
number of nodal points to ensure a proper convergence of the
solution. In this work, we explicitly chose to focus solely on
the spectral approach to handle the radial discretization, but
we encourage the interested reader to consult Matsui et al.
(2016) for an extensive comparison between several differ-
ent numerical implementations.

Each spectral coefficient f`m(r, t) is expanded in truncated
Chebyshev series up to the degree Nc− 1:

f`m(rk, t)≈ c

Nc−1∑
n=0

′′f`mn(t)Cn[x(rk)] , (12)

where c =
√

2/Nr − 1 is a normalization factor and the dou-
ble quotes mean that the first and last terms need to be multi-
plied by one-half. In the above expression, Cn(x) is the nth-
order first-kind Chebyshev polynomial defined by

Cn(xk)= cos[narccos(xk)], xk ∈ [−1,1] ⊂ R,

with

xk = cos
(k− 1)π
Nr − 1

, k ∈ [1,Nr ],

the kth nodal point of a Gauss–Lobatto grid defined with Nr
collocation points. The discrete radius rk defined between ri
and ro is mapped onto xk using the following affine mapping:

rk =
ro− ri

2
xk +

ro+ ri

2
,k ∈ [1,Nr ] .

Conversely, the Chebyshev spectral coefficients of the func-
tions f`m(r, t) read

f`mn(t)≈ c

Nr∑
k=1

′′f`m(rk, t)Cn(xk) . (13)

With the particular choice of Gauss–Lobatto collocation
points, Eqs. (12) and (13) can also be efficiently computed
using fast discrete cosine transforms (DCTs) of the first kind
(Press et al., 2007, Sect. 12.4.2).
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2.3 Time discretization

With the spatial discretization fully specified, we can proceed
with the time discretization. For an easier understanding, we
will derive the main steps using the equation for the time evo-
lution of the magnetic poloidal potential G as an illustrative
example. We refer the interested reader to e.g. Christensen
and Wicht (2015) or the online documentation of MagIC for
the derivation of the other equations.

The equation for G is obtained by considering the radial
component of the induction equation (see Eq. 3). Using the
spherical harmonics decomposition and the Chebyshev col-
location method described above we obtain

`(`+ 1)
r2
k

c

Nc−1∑
n=0

[(
d
dt
+

1
Pm

`(`+ 1)
r2
k

)
Cn(xk)

−
1
Pm

C′′n(xk)

]
G`mn(t)=∫

[er · ∇ × (u×B)]Y
?
`m dS, (14)

where C′′n is the second radial derivative of the nth Cheby-
shev polynomial and dS = sinθ dθdφ is the spherical surface
element.

Equation (14) can be rewritten in the following matrix
form:

A`
dG`m(t)

dt
−L`G`m(t)=N`m[u,B] , (15)

where the matrices A` and L` ∈ RNr×Nr contain primarily
the coefficients of Cn(xk) and C′′n(xk), are dense, and depend
on ` but not on m. Equation (15) forms a set of ordinary
differential equations that depend on time and contain a non-
linear term, namely N`m(t) ∈ CNr , and a stiff linear diffusion
operator.

In order to mitigate the time step constraints associated
with an explicit treatment of the diffusion terms, MagIC
adopts an implicit–explicit (IMEX) time-stepping approach.
Non-linear and Coriolis terms are handled using the explicit
part of the time integrator, while the remaining linear terms
are treated implicitly. Currently, IMEX multisteps (e.g. As-
cher et al., 1995) or IMEX diagonally implicit Runge–Kutta
(DIRK; e.g. Ascher et al., 1997) are available.

Let δt denote the time step size. A general k step IMEX
multistep method applied to Eq. (15) reads

(A`− δt bI0 L`)Gi+1
`m =

k∑
j=1

ajA`G
i+1−j
`m

+ δt

k∑
j=1

(
bEj N

i+1−j
`m + bIj L`G

i+1−j
`m

)
, (16)

where the exponent notations correspond to the time dis-
cretization with t i = t0+ iδt and aj , bEj , and bIj corresponds

to the weights of the IMEX multistep scheme. In practice,
multistep schemes present stability domains that decrease
with their order of convergence and require knowledge of
past states to continue the time integration. As such, they
are not self-starting and need to be initiated with a lower or-
der scheme. MagIC implements DIRK schemes to overcome
these limitations, but here we discuss only a simple two-step
IMEX scheme. Setting the IMEX weights to a = (1,0), bE =
(3/2,−1/2) and bI = (1/2,1/2,0), Eq. (16) reduces to the
popular IMEX scheme assembled from a Crank–Nicolson
and a second-order Adams–Bashforth scheme (Glatzmaier,
1984) and can simply be written as(

A`−
δt

2
L`
)

︸ ︷︷ ︸
Mδt
`

Gi+1
`m =

(
A`+

δt

2
L`
)
Gi`m+

δt

2

(
3N i

`m−N i−1
`m

)
︸ ︷︷ ︸

Bi`m

, (17)

with Mδt
` ∈ R

Nr×Nr and Gi+1
`m ,B

i
`m ∈ C

Nr respectively de-
fined by the underbraces on the left- and right-hand side
of Eq. (17). Assuming suitable initial and boundaries con-
ditions, all terms needed to compute Bi`m are known from
the previous iterations. The matrices Mδt

` contain the Cheby-
shev coefficients and are dense but real-valued and of mod-
erate size (realistic values of Nr range from 33 to 1025). As
such, the linear system in Eq. (17) typically requires O(N2

r )

operations to be inverted (Boyd, 2001) and can be easily
solved using LU decomposition and backward substitution
from standard libraries such as LAPACK (Anderson et al.,
1999). From here on, we generalize the notation and use
Eq. (17) when discussing the time stepping for any fields,
i.e. not only the magnetic poloidal potential G.

3 Implementation

MagIC is a highly optimized hybrid MPI+OpenMP code un-
der active development. The 1d-hybrid version uses MPI to
distribute the Nr spherical shells amongst different comput-
ing nodes, while employing OpenMP for fully using the local
cores within an individual NUMA domain. Although MagIC
is finely optimized, multithreading across NUMA domains is
not implemented. Therefore, simulations require at least one
spherical shell per NUMA domain. This restricts the maxi-
mum number of NUMA domains to Nr − 1, which severely
limits the computational resources that can be employed for
a given radial resolution. This disadvantage could increase in
the future since the current trend in HPC architecture is to
further subdivide the computing units into physical or even
logical NUMA domains.

The purpose of this section is to first familiarize the reader
with the established 1d-hybrid implementation and then in-
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troduce the new 2d-MPI implementation. By adding MPI
parallelism in a second direction, the extension also allows
distributing the computations within a shell over the NUMA
domains, sockets, or even nodes of a computer cluster.

Due to the high complexity of this re-implementation, our
2d-MPI version lacks any use of OpenMP. The main pur-
pose of this work is to provide a thorough assessment of the
prospects and merits of a two-dimensional data distribution,
to pinpoint shortcomings, and to discuss the overall viability
of a possible fully optimized and fine-tuned two-dimensional
distribution implemented using OpenMP+MPI.

In this section we first present the pseudocode for the se-
quential algorithm for MagIC in Sect. 3.1 and then discuss
the distribution of the data for both the 1d-hybrid and 2d-
MPI versions in Sect. 3.2. A more detailed description of the
two main parts of the code is discussed in Sect. 3.3 and 3.4.

3.1 Sequential algorithm

For the sake of simplicity, we discuss only the second or-
der time-stepping scheme described in Sect. 2.3, Eq. (17).
The resulting pseudocode is shown in Algorithm 1. For each
time step, the code can be divided into two stages, the “radial
loop” and the “` loop”.

The radial loop (lines 2–10). It computes the non-linear
terms in grid space (θ,φ,r) and thus requires forward and
inverse SHTs. The radial levels are completely decoupled in
this stage and can thus be efficiently distributed without any
need for communication between them. The directions (`,m)
and (θ,φ) are coupled. Notice that the FFTs on lines 6 and
9 take place on the second, slowest dimension. This requires
the Fourier transform to “stride” the data in memory. This
is not ideal, but modern FFT libraries are able to efficiently
handle strided transforms.

The ` loop (lines 13–18). It performs the actual time step.
Most of the computational effort goes into solving the lin-
ear systems from Eq. (17) and into updating the right-hand-
side Bi`m. After updating each Bi`m, the factors of Mδt

` are
computed using LAPACK’s real-valued LU decomposition
dgetrf routines for dense matrices. Next, the solution of
each linear system from Eq. (17) needs to be computed. In
practice, all right-hand sides are “packed” in a real matrix
Bi` ∈ R

Nr×(2`+2):

Bi` =
[
<(Bi`0),<(B

i
`1), . . .<(B

i
``),=(B

i
`0),

=(Bi`1), . . .=(B
i
``)
]
. (18)

where < and = respectively represent the real and imaginary
parts of the vector. The system is then solved for all right-
hand sides as

Mδt
` X= Bi`, (19)

with a single call to LAPACK’s dgetrs. The matrix Bi` is
computed and stored as (r,m,`) for faster memory access

during the LAPACK call. Therefore, the intermediate solu-
tion X is also obtained as (r,m,`). The final solution Gi+1

`m

is reconstructed from X by reordering the data back into the
(`,m,r) format, while adding the real and imaginary parts
back together. Also notice that the decomposed factors of
Mδt
` are kept for all subsequent time steps and are only re-

computed when δt changes.

3.2 Data distribution

In this section we discuss how the simulation is distributed
across MPI ranks for the 1d-hybrid and the 2d-MPI imple-
mentations. For all purposes, MPI Cartesian grid topology is
used. The φ direction is numerically periodic, but this prop-
erty is never explicitly used by the underlying algorithms.
The remaining directions are non-periodic. We denote by5r
the number of MPI ranks used in the radial direction. Simi-
larly, 5θ represents the number of ranks in the θ or ` direc-
tion.

Let N` = `max+ 1 denote the total number of ` modes,
Nm the number of m modes, and N`m the number of (`,m)
tuples. We simply use the − superscript to denote the number
of local points in some MPI rank. For instance, N−r denotes
the number of local radial points stored in a given rank.

1d-hybrid distribution. In the radial loop, the data distri-
bution for the 1d-hybrid approach follows intuitively from
Algorithm 1. The radial shells are distributed evenly among
the MPI ranks, ideally N−r =Nr/5r for each rank. During
the computation of the non-linear terms, each rank stores
Nφ ×Nθ ×N

−
r points. During the computation of the mis-

cellaneous terms, each rank stores N`m×N−r points.
This changes for the execution of the ` loop. For efficiently

computing line 17 of Algorithm 1, all Nr radial points must
be local. This is achieved by the so-called ` transposition,
which changes the data distribution toNr×N−`m local points.
Special care is needed when choosing the distribution of the
N−`m points. The computational effort per ` mode is given
by the LU decomposition of the matrix and the solve step
for `+ 1 right-hand-side vectors for this matrix. To balance
the computation among the5r processes, we distribute the `
modes in a “snake-like” fashion. Starting with the largest `,
which has the highest computational effort, we distribute the
`modes over the processors until5r is reached. The next ` is
also placed on this last processor, and then we reverse the or-
der until reaching the first processor again. The procedure is
repeated until all modes have been distributed. See Fig. 1 for
an illustration withN` = 21 and5r = 6. This snake-like dis-
tribution guarantees that the largest possible imbalance be-
tween two MPI ranks is 5r − 1 tuples. Furthermore, each
matrix Bi` can be fully stored locally, which is not the case
for the 2d-MPI code, as we discuss below. At the end of the `
loop, another ` transposition takes place, converting the data
layout back to N`m×N−r local points.

2d-MPI distribution. Like in the 1d-hybrid implementa-
tion, the radial points are split evenly between the 5r ranks
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Figure 1. Illustration of the “snake ordering” of the (`,m) tuples for
the 1d-hybrid distribution with N` = 21 and 5r = 6. The top row
shows the processor number in boldface, and the remaining num-
bers indicate the ` modes; `+ 1 solution steps are associated with
each ` value. The arrows illustrate the snake-like winding pattern of
this ordering.

in the radial loop. Additionally, the Nθ points are distributed
evenly and contiguously between the 5θ ranks (see Fig. 2a).
At line 7, each rank is responsible for the computation of
N−θ ×Nφ×N

−
r points. After the FFT at line 9 of Algorithm 1,

N−θ ×Nm×N
−
r points are stored locally, but the computation

of the Legendre transform at line 10 requires all θ angles for
a given spherical harmonic order m to be available locally.
This is guaranteed by the so-called θ transposition, which
gathers the values for all Nθ θ angles while distributing the
m modes, resulting in Nθ ×N−m ×N

−
r local points.

The distribution of the m modes is more involved than
the distribution of the θ angles because there are (N`−m)
different spherical harmonic degrees ` for each order m.
Once again, we employ the snake-like distribution depicted
in Fig. 1, which guarantees that the largest imbalance be-

tween any two MPI ranks is 5θ −1 tuples. See Fig. 2c–d for
a graphical representation of this step.

Just like in the 1d-hybrid implementation, an ` transposi-
tion is required before the ` loop in order to locally gather all
Nr radial points. This once again involves a complex redis-
tribution of data points. Because of Eq. (17), we would like
to distribute only the ` modes while keeping all radial points
and m modes local. This would incur an unfeasible volume
of data transfer.

We opted for a compromise that exploits a special regular-
ity of the current data structure and leaves themmodes local.
Only the 5θ ranks having a common m mode then need to
communicate in the radial direction. Figure 2d–e visualize
how the respective communication works. Only the magenta
and red ranks need to share their radial information since they
represent the same m modes. They then also have the same
number of ` modes and can thus split the number of modes.
The snake-like distribution leads to a good balancing for both
ranks. The resulting distribution is visualized in Fig. 2e.

The figure also illustrates a drawback of this distribution:
the m modes for one l mode can be found on different ranks.
This means that the Bi` matrices have their columns dis-
tributed between MPI ranks and that the time-stepping ma-
trices Mδt

` and their respective decomposition need to be du-
plicated in 5θ ranks. However, our numerical experiments
show that the communication cost far outweighs the cost as-
sociated with solving Eq. (17), thus justifying our choice.
This will be further discussed in Sect. 4. Finally, we would
like to mention that a similar data layout was employed by
Marti and Jackson (2016) in their two-dimensional MPI de-
composition of their pseudo-spectral code in spherical geom-
etry.
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Figure 2. Illustration of the 2d-MPI distribution of the points with 5r = 2, 5θ = 4, Nr = 8, and Nφ =Nθ =N` = 20 (a more realistic
proportion would have beenNφ = 2Nθ = 3N`/2). Continuous stripes represent continuous memory segments, and different colours represent
distinct MPI ranks. The images show which MPI rank would store and process each data segment during (a) computation of non-linear terms,
(b–d) forward SHT, and (e) the beginning of the ` loop.

3.3 Radial loop implementation

The spherical harmonics transform (SHT) takes a sub-
stantial portion of the runtime. MagIC relies heavily on
SHTns (Schaeffer, 2013), a highly optimized library dedi-
cated to computing the spherical harmonics transform using
OpenMP, advanced SIMD vectorization, and cache-hitting
strategies (Ishioka, 2018). SHTns has been developed to
compute the steps synthesized in lines 8–10 and lines 4–6:
that is, independent of the radial level r . It can handle scalar
fields and is also optimized for general vector fields and vec-
tor fields with a poloidal–toroidal decomposition. SHTns is
written in C but has a Fortran interface with a dedicated data
layout for MagIC. Although SHTns is flexible and modu-
lar, it does not have an MPI-distributed interface. However,
it offers an interface for computing the Legendre transform
(lines 5 and 10 of Algorithm 1) only for an individual (m,r)
pair, which is the use case in our 2d-MPI implementation.
The transposition and FFT computations are then handled
separately by MagIC.

Next we describe how both the 1d-hybrid and 2d-MPI ver-
sion of the code use SHTns for computing the SHT.

1d-hybrid radial loop. The spherical harmonics transforms
are delegated directly to SHTns (see the pseudocode in Algo-
rithm 2). For instance, for the temperature scalar field on the
numerical grid, T (θ,φ,rk), a single call to spat_to_SH
returns the fully transformed T`m(rk) for a given radial level
rk . This is only possible because all (θ,φ) points are local
in the 1d-hybrid version of the code. No explicit optimiza-
tion or multithreading is required, as SHTns handles this in-
ternally. The number of vector transforms needed per radial
loop depends on the set of equations. Dynamo models under
the Boussinesq approximation of the Navier–Stokes equa-
tions considered here (Eqs. 1–4) involve four vector trans-
forms and one scalar transform for the backward SHTs and
three vector transforms for the forward SHTs.

Geosci. Model Dev., 14, 7477–7495, 2021 https://doi.org/10.5194/gmd-14-7477-2021



R. Lago et al.: MagIC v5.10 7485

2d-MPI radial loop. The pseudocode for our implementa-
tion is shown in Algorithm 3. Since shtns_ml is called for
single modes only, the implementation cannot benefit from
the efficient internal OpenMP parallelization of SHTns. The
computation time for only a single mode is too small to jus-
tify the initialization and termination of a multithreading con-
text. In addition, the larger number of SHTns calls causes
some overhead. Some speed-up could possibly be gained
with an OpenMP parallelization of the SHTns calls (lines 3–
5 in Algorithm 3) or directly at the radial loop level (line 1
in Algorithm 3). Some preliminary tests showed promising
results for the former. However, here we shall continue dis-
cussing only the pure MPI version.

The so-called θ transposition happens in line 8 of Algo-
rithm 3 and involves MPI communication. Pointers to the
input fields hi and output fields fi are ordered in a queue.
Upon calling finish_queue, each hi is effectively trans-
posed. After receiving the data, a complex-to-real FFT (e.g.
using Intel MKL, 2021) is performed and saved into the out-
put fields fi . The queue has a limited size. Once the limit
is reached, finish_queue is called, immediately trigger-
ing the data transfer and the FFT computation. Additionally,
upon exiting the loop, finish_queue is called one last
time to treat any remaining field in the queue.

The θ transposition is implemented using the following
algorithms.

– P2P: each θ rank performs one call to mpi_isend and
mpi_irecv for each other θ rank (i.e. 5θ − 1) for all
queued fields, followed by an mpi_waitall call. MPI
types are used to stride the data when needed. The ad-
vantage of this algorithm is that it does not require any
particular packing and/or reordering of the data.

– A2AW: a single call to mpi_alltoallw is performed
for all queued fields using the same MPI types used for
the P2P algorithm.

– A2AV: a single call to mpi_alltoallv is performed
for all queued fields. No MPI types are needed, but the
data need to be reordered in a buffer prior to the call.

Two parameters need to be determined, namely which MPI
algorithm to use and the length of the queue. The choice of

the MPI algorithm depends on the MPI implementation, the
hardware, and the number of resources. We compare the per-
formance of each variant in Sect. 4.1.

As for the length of the θ -transposition queue, several
factors must be taken into account. Longer queues allow
more scalar fields to be packed per call, thus allowing larger
message size and decreasing the impact of the latencies
of the MPI calls. On the other hand, longer queues re-
quire larger send and receive buffers. The benefit of having
larger message sizes may be not relevant for all configura-
tions, especially if all θ ranks are located within the same
NUMA domain (for instance, the Intel implementation of
mpi_alltoallv automatically uses shared-memory oper-
ations in this regime). Furthermore, larger queue sizes do not
guarantee full usage of the buffers. We discuss this in more
detail in Sect. 4.1.

3.4 The `-loop implementation

As discussed in Sect. 3.2, the data need to be redistributed
with the so-called ` transposition prior to the execution of
this part of the code. The distribution of the ` modes and
their respective m modes to the MPI processes has already
been discussed in Sect. 3.2.

Most of the wall time of the ` loop is spent in the ` transpo-
sition and in the backward substitution for solving the linear
systems from Eq. (17). Depending on how often δt changes,
the cost for computing the LU decomposition for each dense
matrix Mδt

` might become a bottleneck, but in the scenario
investigated during our benchmarks, this was not the case.
Nevertheless, a frequent change in δt indicates that the algo-
rithm should be run with a generally smaller time step.

Next we describe the `-loop implementations of both
MagIC versions.
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1d-hybrid ` loop. The pseudocode is shown in Algo-
rithm 4. The ` transposition itself takes place in lines 1 and 20
of Algorithm 4. Inside one MPI rank, the work is parallelized
with OpenMP. We have a two-level loop structure, with an
outer loop over the different ` degrees on the MPI rank and
for each ` a loop over all possible m≤ `. A single OpenMP
parallelization of the outer loop would directly compete with
the MPI parallelization and would also lead to a strong load
imbalance as the different harmonic degrees have different
numbers of m. To avoid nested OpenMP regions (for the
outer and inner loop) we use the OpenMP tasking approach
instead to balance the work and to combine the parallelism
of the outer and inner loop. We create an OpenMP task for
each outer loop iteration which contains the LU decomposi-
tion of the matrix and a task creation loop for the inner m
loop. To minimize the overhead for OpenMP task creation,
we use chunks of several m together in one task.

2d-MPI ` loop. The pseudocode for the ` loop in the se-
quential and the 2d-MPI implementations (see Algorithm 5)
differs only in the ` transpositions and the number of ` andm
modes stored locally (which consequently affects the number
of linear systems and right-hand sides in each rank). The dis-
tribution of the (`,m) tuples has already been discussed in
Sect. 3.2. While the difference in the number of modes has
an impact on the computation of the solution of Eq. (17), this
pales in comparison with the time spent in communication.

In both the 1d-hybrid and 2d-MPI implementations the
` transposition might be performed using the P2P, A2AV,
and A2AW algorithms discussed previously. Additionally,
the following algorithm has been implemented.

– A2AP: a single call to mpi_alltoall per scalar field
is performed with padding to accommodate the largest
message. No MPI types are needed, but the data need
to be reordered in a buffer. Due to the intrinsic imbal-
ance in the distribution of the data, considerably larger
buffers are required. Some MPI libraries implement
faster algorithms for mpi_alltoall, which can in
some cases be advantageous.

In the 1d-hybrid implementation of MagIC an auto-tuning
routine always selects the optimal transposition strategy dur-
ing the initialization stage of the code. For the 2d-MPI ver-
sion, the algorithm still must be selected manually via the

parameter file. We discuss the performance of the different
strategies in Sect. 4.4.

4 Benchmark

In this section we compare the performance of the 1d-hybrid
and 2d-MPI implementations in a practical, realistic setting.
We also profile some crucial sections of the code in order to
highlight the advantages and shortcomings of the different
implementations.

Following Matsui et al. (2016), we adopt the dynamo
benchmark “BM1” from Christensen et al. (2001) to assess
the performance of the code. The benchmark uses a Rayleigh
number of 105, a magnetic Prandtl number of 5, and a Prandtl
number of 1. Both boundaries are assumed to be rigid, elec-
trically non-conducting, and held at a fixed temperature. For
each radial point there are 13 scalar fields (four vector fields
and one scalar field) to be θ -transposed during the backward
SHT and nine scalar fields (three vector fields) during the for-
ward SHT. For all tests, we set Nφ = 2Nθ and N` = 2Nθ/3,
meaning that the geometry is completely described by Nθ
and Nr .

All tests were performed on the Cobra cluster at the Max
Planck Computing and Data Facility (MPCDF). Each node
of this machine possesses two Intel Xeon Gold 6148 pro-
cessors and 192 GB of main memory. Each processor has a
single NUMA domain with 20 cores. The nodes are inter-
connected with a 100 GBs−1 Omnipath interconnect and a
non-blocking fat-tree topology. The workload is managed by
Slurm, and hyperthreading is always disabled. The pinning is
done automatically by Slurm and packs all θ ranks within a
single NUMA domain whenever 1<5θ ≤ 20. We compiled
all software using the Intel Fortran Compiler 2021.2.0 with
Intel MPI 2021.2.0 and Intel MKL 2020.4. The kernels of
SHTns were compiled using GCC 10.2.0 for higher perfor-
mance.

The runtime of each crucial section was measured for each
MPI rank independently using perflib, a lightweight profil-
ing library developed in-house. Our figures show the average
over all ranks as a solid line. A coloured background shows
the spread between the fastest and slowest ranks and visual-
izes the imbalance of the times measured.

4.1 The θ -transpose benchmark

The performance of this code section is of special interest.
This is because the θ transposition is required only for the
2d-MPI implementation, thus adding unavoidable extra cost
for handling the two-dimensional distribution of the data.

For the tests we fixed the size of a scalar field in grid space
to 240 KiB per rank per radial level. This can be achieved by
using the formula Nθ = 48

√
105θ to determine the number

of latitudinal points.
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We expect the performance of the θ transposition to
strongly depend on the distribution of the θ ranks across the
computing nodes. To explore this behaviour, we defined three
communication regimes with the following parameters.

– intranuma: θ communication is constrained within a
single NUMA domain; 5θ = 10,5r = 4, Nθ = 480,
and Nr = 128.

– intranode: θ communication is constrained within
a single node but between NUMA domains; 5θ =
40,5r = 1, Nθ = 960, and Nr = 32.

– internode: θ points are communicated between
nodes. We set 5θ = 40,5r = 2, Nθ = 960, and Nr =
64, and we force half-θ ranks to communicate
across two nodes by pinning the MPI ranks with
-cpu-bind=map_cpu option.

We measure the performance of the θ transposition in
these three different regimes and determine for which algo-
rithm (A2AV, P2P, or A2AW, discussed in Sect. 3) and for
which queue length (for Algorithm 3) they perform best. No-
tice that larger queue lengths do not guarantee full usage of
the larger buffers. As an example, suppose that qmax is the
queue length and that q fields are queued for transposition. If
three new fields are added to the queue (i.e. a vector field) but
the q + 3> qmax, the algorithm transposes the first q fields,
clears the queue, and then adds the three fields into a new
queue. This could be improved to enforce full buffer usage
in future versions, but our benchmarks demonstrate that the
benefits would be marginal. Table 1 shows the effective usage
of the transposition buffers for queue lengths from 3 to 13, as
well as the “queue-free” version denoted by queue length 1.

Figure 3 shows the times for 50 time steps for the three dif-
ferent communication regimes. The inferior performance of
the A2AV implementation is attributed to the time spent re-
ordering the send and receive buffers. Both A2AW and P2P
use the same MPI types to avoid this reordering and there-
fore perform very similar. Concerning the queue length, the
intranuma and intranode regimes perform best with smaller
queues, while the opposite is true for the internodes regime.

Since the A2AW implementation for the θ transposition
seems to perform best, we stick to this scheme for the follow-
ing test wherein we address the impact of the queue length.

4.2 2d-MPI SHT benchmark

In this subsection we continue the comparison between in-
tranuma, internuma, and internode regimes but now bring the
whole spherical harmonics transform into perspective. Since
this constitutes one of the largest portions of the computa-
tion, it is particularly interesting to determine the behaviour
in the different communication regimes.

Figure 4 shows the θ -transposition time as well as the
computation time spent inside the FFT and Legendre trans-
form calls. Although the computation time itself should not

Table 1. Effective usage of θ -transposition buffers (for a single ra-
dial point and time step) for the A2AW algorithm. Each number
represents how many scalar fields were packed in an individual call
to mpi_alltoallw for a single time step and radial point. The
average message size was computed assuming 240KiB per scalar
field in each rank.

Queue θ transpose Avg. Avg.

length backward forward usage message size

1 13× 1 9× 1 1.0 240 KiB
3 1,3,3,3,3 3,3,3 2.8 660 KiB
4 4,3,3,3 3,3,3 3.1 754 KiB
5 4,3,3,3 3,3,3 3.1 754 KiB
6 4,6,3 6,3 4.4 1056 KiB
7 7,6 6,3 5.5 1320 KiB
8 7,6 6,3 5.5 1320 KiB
9 7,6 9 7.3 1760 KiB
10 10,3 9 7.3 1760 KiB
11 10,3 9 7.3 1760 KiB
12 410,3 9 7.3 1760 KiB
13 13 9 11.0 2640 KiB

depend on the queue length, Fig. 4 shows a small but consis-
tent influence. We assume that this is linked to the change in
data access pattern caused by queuing and buffering data for
the θ transposition.

Even for the intranuma case shown in Fig. 4a, where a
queue length of 3 provides a small performance boost for the
θ transposition, the performance of the SHT is optimal for a
queue length of 1. In the following test we therefore fix the
queue length to 1 for intranuma and intranode regimes and to
13 for the internode regime.

4.3 The `-transpose strong scaling benchmark

In this subsection we compare the performance of the four
different `-transposition implementations for the 2d-MPI
version. We would like to recall that the 1d-hybrid imple-
mentation uses an auto-tuning routine which automatically
selects the best algorithm during the initialization. Moreover,
the main difference between 1d-hybrid and 2d-MPI imple-
mentations in the ` loop is the distribution of the (`,m) tu-
ples, as already discussed in Sect. 3.2. The communication
pattern therefore differs significantly for the two implemen-
tations.

The problem we chose for this and subsequent subsections
is the dynamo benchmark with Nr = 301 and Nθ = 960. We
compute 100 time steps for several values of 5r and 5θ ,
as well as for core counts ranging from 120 to 24 000 (3 to
600 nodes, respectively). For the 1d-hybrid implementation,
we use 10 OpenMP threads per MPI task for tests with up
to 1000 cores (25 nodes) and 20 threads for larger runs (this
configuration resulted in the best total time). The 1d-hybrid
version of the code can use at most 6000 cores (150 nodes)
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Figure 3. Runtime for the θ transpose in the intranuma (a), intranode (b), and internode (c) regimes for varying queue length and 50 time
steps.

with one radial point per socket (5r = 300 and 20 threads
per MPI task).

For the 2d-MPI scheme, we fix the θ -transposition im-
plementation to A2AW (as discussed in Sect. 4.1) and the
queue lengths to 1 for 5θ =10, 20, or 40 and 13 otherwise.
This new version of MagIC admits more combinations of5θ
and 5r and allows the use 24 000 cores (600 nodes). For
some core counts, multiple values of 5θ and 5r were al-
lowed. For example, for 6000 cores one may choose5θ = 20
or 5θ = 40 with 5r = 300 or 5r = 150. We tested both
and kept the configuration with the best total time. For the
reader’s convenience, all plots show the value of 5θ for the
2d-MPI version at the top horizontal axis. We also set the ex-
periments such that Nr − 1 is divisible by 5r and assign the
last radial point to the last radial MPI rank. This is currently
a limitation of MagIC. In principle, this should cause imbal-
ance in some cases; e.g. with 5r = 300 the last radial MPI
rank will store and solve twice the number of radial levels as
the other ranks. However, the last radial MPI rank receives
fewer (`,m) tuples, which diminishes the impact of the im-
balance. Since both codes suffer from the same imbalance,
we opt for simplifying the analysis to the average runtime
only.

In Fig. 5 we can see that, except for the A2AP variant, the
2d-MPI implementation is always significantly faster than

the 1d-hybrid implementation. This is a direct consequence
of the communication-avoiding pattern of the 2d-MPI distri-
bution.

The 1d-hybrid version shows a good strong scalabil-
ity, which, however, starts to degrade after 1000 cores (25
nodes). At this core count the 1d-hybrid version transitions
from 10 to 20 threads. OpenMP efficiency is typically diffi-
cult to maintain for large thread counts, and this is likely the
reason for the performance degradation.

The 2d-MPI implementation, especially for the A2AW
variant, scales remarkably well up to 6000 cores (150 nodes),
at which point the performance starts to degrade. However,
the losses remain acceptable up to the largest number of cores
we could test: 24 000. The A2AV variant performs similarly
to A2AW, and beyond 12 000 cores all variants show nearly
identical timings. This test suggests preferring A2AW, which
will be kept in the following. However, as the behaviour
may be different on other architectures and for other MPI
libraries, an auto-tuning routine that selects the fastest option
in the initialization phase of a simulation seems a good idea
for the future.

4.4 The `-loop strong scaling

In this subsection we take a deeper look into the different
parts of the ` loop. We are especially interested in the impact

Geosci. Model Dev., 14, 7477–7495, 2021 https://doi.org/10.5194/gmd-14-7477-2021



R. Lago et al.: MagIC v5.10 7489

Figure 4. Runtime for the different components of the SHT in the intranuma (a), intranode (b), and internode (c) regimes. Data are for 50
time steps using the A2AW implementation.

Figure 5. Strong scalability of ` transposition for 100 time steps of
the dynamo benchmark (Nr = 301 and Nθ = 960).

of the 2d-MPI data distribution on the LU decomposition and
on the backward substitution. For these tests we use the same
setting as in the previous subsection (100 time steps, Nr =
301, and Nθ = 960) and stick to the A2AW implementation
of the transpositions.

Figure 6. Strong scalability for the ` transposition, LU decomposi-
tion, and backward substitution for the dynamo benchmark.

In Fig. 6 we compare transposition time, LU decomposi-
tion time, and the backward substitution time (referring to
Eq. 19) for the 1d-hybrid and the 2d-MPI implementations.
In addition, the total times for the ` loop are shown, which
also include the updating of time derivatives and related op-
erations.

https://doi.org/10.5194/gmd-14-7477-2021 Geosci. Model Dev., 14, 7477–7495, 2021



7490 R. Lago et al.: MagIC v5.10

In both the 1d-hybrid and 2d-MPI implementations, the
performance is dominated by the transposition time. Here
the 2d-MPI clearly outperforms the 1d-hybrid implementa-
tion because of the reduced communication, as discussed in
Sect. 3.2.

The timing results in Fig. 6 demonstrate that decomposi-
tion and backward substitution for the linear systems do not
scale well with 5θ (upper horizontal axis). As explained in
Sect. 3.2, the data are distributed in the direction of the m
modes, but the time-stepping matrices, which need to be LU-
decomposed, are independent of m.

For a fixed 5r , the decomposition time is thus expected
to remain independent of 5θ . Likewise, the backward sub-
stitution time should just mildly be impacted by larger 5θ .
This can be clearly seen in Fig. 6: 120 and 240 cores have
5r = 12, with 5θ = 10 and 20, respectively. Their decom-
position time is roughly the same, with a slightly faster back-
ward substitution time for 240 cores. The same can be ob-
served for 200 and 400 cores as well as 3000 and 6000 cores.
There is a spike in the decomposition time for the 1d-hybrid
implementation at 1200 cores.

However, the performance gain due to the communication-
avoiding distribution of the 2d-MPI implementation far out-
weighs these shortcomings. We would like to highlight the
fact that it is only possible to reduce the communication vol-
ume due to the particular distribution pattern shown in Fig. 2;
i.e. each θ rank communicates with5r ranks in the radial di-
rection. The communication-avoiding scheme discussed here
is not possible for the 1d-hybrid implementation, since one
of these directions is missing. This specific feature of the
2d-MPI version is essential to enable a better overall perfor-
mance for large cores count, as we shall discuss in the next
subsection.

4.5 Overall performance and strong scaling
comparison

Finally we discuss the strong scaling of the MagIC time step,
i.e. of the main application without initialization, finalization,
and diagnostics. As usual, we define the parallel efficiency as

ε =
tref.× nref.

t × n
, (20)

where t is the main application time in seconds and n is the
number of cores used. We use the test with nref. = 120 as a
reference.

Following Matsui et al. (2016), we consider ε > 0.6 to be a
sufficiently good efficiency. Additionally, we define the “par-
allel cross-efficiency” ε∗ that compares the 2d-MPI timing to
the 1d-hybrid reference time tref. = 405.6s for nref. = 120 as
a baseline. The timings and parallel efficiency, along with
other information about the tests, are listed in Table 2. The
graphical visualization of these values (also discriminating
the time for the ` loop and radial loop) is shown in Fig. 7.
Since we use the same problem size and settings already dis-

Figure 7. Strong scalability for the 1d-hybrid and 2d-MPI imple-
mentations of MagIC for 100 time steps of the dynamo benchmark
using Nr = 301 and Nθ = 960.

Table 2. Parallel efficiency and cross-efficiency of the 1d-hybrid
and 2d-MPI implementations, detailing 5r and 5θ as well as the
main runtime in seconds. The bold font highlights values of interest.

1d-hybrid 2d-MPI

No. cores (5r ,5θ ) time ε (5r ,5θ ) time ε ε∗

120 (12, 10) 405.6 1.00 (12, 10) 502.1 1.00 0.81
200 (20, 10) 235.1 1.03 (20, 10) 296.6 1.02 0.82
240 – – – (12, 20) 256.8 0.98 0.79
400 – – – (20, 20) 152.4 0.99 0.80
600 (60, 10) 79.8 1.02 (30, 20) 98.2 1.02 0.83
1000 (100, 10) 46.7 1.04 (50, 20) 57.3 1.05 0.85
1200 (60, 20) 41.7 0.97 (60, 20) 48.0 1.05 0.84
2000 (100, 20) 28.4 0.86 (100, 20) 29.8 1.01 0.82
3000 (150, 20) 20.4 0.80 (150, 20) 21.0 0.95 0.77
6000 (300, 20) 12.8 0.63 (150, 40) 11.5 0.87 0.70
9000 – – – (300, 30) 9.2 0.73 0.59
12 000 – – – (300, 40) 7.2 0.70 0.57
18 000 – – – (300, 60) 7.1 0.47 0.38
24 000 – – – (300, 80) 6.4 0.39 0.32

cussed in Sect. 4.3 and 4.4 the curves for the ` loop are the
same as in Fig. 6.

In Fig. 7 it is interesting to notice that the performance
of the 1d-hybrid implementation is dominated by the `-loop
performance, whereas the performance of the 2d-MPI im-
plementation is dominated by the performance of the radial
loop. To some degree this is expected because the radial loop
of the 2d-MPI implementation requires the θ transposition in
addition to the SHT.

The radial loop for the 1d-hybrid code scales well up to
6000 cores, but the inferior scalability of the ` loop already
leads to a noticeable degradation beyond 1200 cores in Fig. 7.
This is the cause of the decrease in parallel efficiency ε ap-
parent in Table 2 for 2000 or more cores.

The 2d-MPI implementation starts suffering from a small
loss of scalability of the ` loop at 9000 cores but remains at
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an acceptable level up to 24 000 cores. The radial loop scales
remarkably well up to 12 000 cores but shows degraded per-
formance at 18 000 and 24 000 cores. This can be explained
by the problem size being too small for such numbers of
cores, which is reflected by N−r = 1 and N−` ≈ 22 for 9000
cores. Both the ` and the radial loop contribute to the loss
of overall performance at the highest core counts apparent in
Fig. 7.

The parallel cross-efficiency (see Table 2 and Fig. 7)
shows that the new 2d-MPI version is about 20 % slower than
the 1d-hybrid implementation for core counts of n < 2000.
However, the 2d-MPI variant scales better for n≥ 2000 with
ε = 0.7 for up to n= 12000. The 1d-hybrid implementation,
on the other hand, reaches ε = 0.63 for 6000 cores. The 2d-
MPI is as fast as the 1d-hybrid implementation at n= 3000
but already 10 % faster at n= 6000.

The benefits offered by the 2d-MPI implementation can
be illustrated with a simple example. Instead of performing a
simulation with the 1d-hybrid implementation on 6000 cores
a scientist could opt for using the 2d-MPI implementation
on 12 000 cores and obtain the solution in only 56 % of the
runtime. In other words, by investing only 12.5 % more CPU
hours, the 2d-MPI implementation arrives at the same solu-
tion in half the time. Furthermore, using the 2d-MPI imple-
mentation allows the user to allocate more computing nodes
and thus gives the user access to more distributed memory.

The parallel cross-efficiency also gives an idea of how
“far” the parallel efficiency of the 2d-MPI is from the 1d-
hybrid implementation. There is a significant gap for 120
to 1200 cores, but the gap closes at about 2000 cores, e.g.
ε = 0.86 for the 1d-hybrid and ε∗ = 0.82. This trend contin-
ues until 6000 cores, when the parallel cross-efficiency over-
takes the parallel efficiency of the 1d-hybrid implementation.

Finally, the main characteristics measured on our bench-
mark platform are expected to be transferable to other
flavours of HPC platforms based on contemporary x86_64
CPUs (e.g. AMD EPYC) and high-performance intercon-
nects (e.g. Mellanox Infiniband), provided the platforms are
sufficiently optimized for SHTns and MPI libraries. In gen-
eral, for good performance of the 1d-hybrid version it is
mandatory to establish the optimal number of threads per
MPI rank and to respect the placement of the threads within
the NUMA domains. The new 2d-MPI version brings the ad-
vantage of being less affected by the actual node topology,
but the performance of the application is sensitive to the MPI
library optimization of routines such as mpi_alltoallw
for shared-memory environments.

4.6 Analysis of the radial loop

The parallel cross-efficiency in Table 2 shows that the per-
formance of both implementations is rather close for core
counts larger than 2000. This rightfully raises the question
of whether this small gap could be bridged. Furthermore,
it has already been established in previous sections that the

main bottleneck of the 2d-MPI implementation is the radial
loop, but the θ transposition and the computation time (i.e.
mostly the SHT) of the radial loop have not yet been thor-
oughly compared. The goal of this subsection is to provide
this comparison and discuss which portions of the code could
be optimized and what impact this could have on the 2d-MPI
implementation.

For the 1d-hybrid code, let tt and tr respectively denote the
full time of the main application and the radial loop only,
both given in seconds. Analogously, for the 2d-MPI code, let
Tt denote the time of the full main application and Tr+ Tθ
denote the time of the radial loop only, where Tr is the com-
putation time only and Tθ is the θ -transposition time only (in-
cluding communication and necessary buffer copies, if any).
Table 3 shows tr, Tr, and Tθ for the same experiment from
120 to 6000 cores. Both tt and Tt have the same values shown
in the “time” columns of Table 2.

Table 3 shows that the θ -transposition times comprises on
average 17.5 % of the radial loop (except for 6000 cores,
for which it takes circa 28 % of the time of the radial loop).
The runtime of θ transposition can be further optimized e.g.
by introducing complex strategies such as communication–
computation overlap. However, from Table 3 it is evident that
the main bottleneck is indeed the computation time Tr.

The next natural question is how the computation times of
the radial loop of both implementations compare with each
other. For that we use the ratio

ρ =
Tr

tr
. (21)

Ideally, ρ would be always close to 1, in which case the com-
putational efficiency of the radial loop of both implemen-
tations would be identical. In practice, distributing the data
between more MPI ranks means that each rank has less lo-
cal data, which makes cache-hitting, vectorization, and other
fine-grained optimization techniques less efficient. In other
words, even a finely optimized implementation of the 2d-
MPI data distribution algorithm is likely to have ρ > 1.

The column ρ from Table 3 shows that the performance
gap is far from 1 in most cases and is inversely proportional
to the number of cores. This means that bridging the large
gap in performance for the lower core counts might be un-
feasible, but for larger core counts it is attainable.

We now attempt to determine how much improvement in
the 2d-MPI implementation is required for its main applica-
tion runtime (including all transposition times) to match the
runtime of the 1d-hybrid code. In practice, several portions of
the 2d-MPI code could benefit from cache-hitting strategies,
fine-tuned vectorization, and computation–communication
overlap, amongst others. We will now discuss a much sim-
pler scenario in which only the computation time of the radial
loop can be improved from Tr to κTr. Subtracting Tr from the
total time Tt and adding the “new” runtime κTr, we obtain
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Table 3. Radial loop performance comparison for the dynamo benchmark. tt (Tt) is the main application time for the 1d-hybrid (2d-MPI)
implementation. tr (Tr) is the computation time for the radial loop of the 1d-hybrid (2d-MPI) implementation, and Tθ is the time for the
θ transposition in the 2d-MPI implementation. All times are given in seconds. The columns ρ and κ are defined in Eqs. (21) and (22),
respectively.

No. cores tt tr Tt Tr Tθ ρ κ κTr

120 405.6 150.1 502.1 240.7 45.7 1.60 0.60 144.3
200 235.1 91.0 296.6 144.8 25.8 1.59 0.58 83.3
600 79.8 31.2 98.2 45.3 12.2 1.45 0.60 27.0
1000 46.7 18.4 57.3 27.0 6.8 1.47 0.61 16.4
1200 41.7 16.3 48.0 22.6 5.5 1.39 0.72 16.3
2000 28.4 9.7 29.8 13.3 3.3 1.37 0.90 11.9
3000 20.4 6.5 21.0 9.0 2.3 1.39 0.93 8.3
6000 12.8 3.3 11.5 4.0 1.6 1.23 1.31 5.3

the following equation:

Tt− Tr+ κTr = tt, κ =
tt− Tt

Tr
+ 1. (22)

which gives us the needed improvement factor κ . The values
are shown in Table 3.

Table 3 shows that, for low core counts, improvements in
Tr alone could not bridge the gap in the performance be-
tween 2d-MPI and the 1d-hybrid implementations. From 120
to 1000 cores we have tr > κTr, meaning that the 2d-MPI im-
plementation would have to compute the radial loop faster
than the already highly optimized 1d-hybrid code for both
codes to perform the same.

The last three entries in Table 3 show a much more realis-
tic improvement factor. An improvement of 10 % (7 %) in Tr
would suffice to bridge the gap between the main application
time for 2000 cores (3000 cores). For 6000 cores, Table 3
shows that Tr could be 31 % slower and both codes would
still be equivalent. This is due to the poor scalability of the
` transposition of the hybrid code, which gives the 2d-MPI
some “room” for performance loss in other portions of the
code.

5 Conclusions and future work

We described a new parallelization scheme based on a two-
dimensional, MPI-based data decomposition for MagIC, an
open-source code for three-dimensional fluid dynamics sim-
ulations in spherical geometry, with high scientific impact
in a broad range of scientific fields ranging from fundamen-
tal fluid dynamics and modelling of planetary dynamos to
stellar dynamics. MagIC uses spherical surface harmonics of
degree ` and order m for the spectral representation in longi-
tude and latitude and Chebyshev polynomials in radius. Our
newly implemented 2d-MPI scheme is compared to the pre-
viously established 1d-hybrid code version that uses MPI and
OpenMP and that has been highly optimized over years.

Thanks to a number of new concepts, the 2d-MPI version
presented here can already compete with the hybrid paral-

lelization in terms of runtime, and in addition it offers the
possibility to use a significantly larger number of cores. It
opens the possibility to employ tens of thousands of CPU
cores on modern HPC clusters and paves the way to using
the next-generation CPU architectures.

Decisive factors for its success include a communication-
avoiding data distribution of the ` and m modes for the com-
putation of the actual time step in MagIC and the optimiza-
tion of the associated communications strategies. Compared
to the existing one-dimensional data decomposition, the new
two-dimensional data distribution scheme requires an addi-
tional costly transposition in the azimuthal direction. This
leads to a performance penalty at low core counts which
might be hard to overcome. However, for the dynamo bench-
mark and the setups considered here, and starting at moder-
ate core counts of 2000, the performance of the new version
is mostly limited by the not yet fully optimized main radial
loop, which can be as much as 60 % slower than its counter-
part in the one-dimensional data distribution.

Our results showed that a mere 10 % performance gain in
the computation time of the radial loop of the 2d-MPI im-
plementation would bridge the gap between the two code
versions for 2000 cores or more, in addition to providing
an extended strong scalability regime. Other sets of equa-
tions solved by MagIC, such as the anelastic equations (Jones
et al., 2011), may present a different cost associated with the
radial loop and would require a separate investigation.

Our implementation paves the way towards a future uni-
fied hybrid variant of MagIC which combines a two dimen-
sional data distribution with the proven benefits of an addi-
tional OpenMP layer in order to further improve the com-
putational performance across an even wider range of sim-
ulation scenarios. This future 2d-hybrid version could retain
the benefits of our communication-avoiding data distribution
and its improved strong scaling behaviour, while still ben-
efiting from the performance of the finely optimized multi-
threaded libraries used within the radial loop. We expect that
the performance of the radial loop of such a 2d-hybrid imple-
mentation will be closer to the performance of the 1d-hybrid
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version, effectively eliminating the main bottleneck of the
2d-MPI version.

Looking further into the future, the hybrid MPI-OpenMP
parallelization of MagIC would be a natural starting point
for developing a GPU-accelerated version of the code. Such
a porting effort would probably start out from the 1d-hybrid
version of MagIC, mapping an entire GPU to a radial zone
(or MPI rank), and relying on the performance of the GPU
variant of SHTns on top of the very high memory band-
width and floating-point performance provided by an indi-
vidual GPU of the current or next generation. A 2d-hybrid
version of MagIC could serve as the basis for an even more
flexible, accelerated version of MagIC e.g. for applications
in which an even higher radial resolution is desired or when
the individual accelerators (possibly of a kind different than
GPU) are comparatively less powerful.
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opment and available for download from https://github.com/
magic-sph/magic (last access: 24 June 2021) under the GNU GPL
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