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This article provides an explanation for the instability of toric focal conic domains and the stability of parabolic
focal conic domains in the twist-bend nematic (NTB) phase, by reason of the presence (the Þrst case) or absence
(the second case) of defect densities attached to the conics, which are disclinations. This result is obtained after
a reminder of the theory of attached defects (the extended Volterra process) and is followed by its usage in other
cases (dislocations, disclinations, dispirations, double helices) in theNTB phase. The notion of spin disclination
is introduced.
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I. INTRODUCTION

The twist-bend nematic (NTB) phase has been actively
studied in the past few years for its fundamentally signiÞcant,
and often challenging, properties. The heliconical structure of
the NTB phase, with its associated spontaneous ßexoelectric
polarization, was Þrst envisaged by Meyer [1]. Much later,
its possible occurrence in nematogens of achiral molecules
with negative bend elastic constant was foreseen by Dozov
[2]. Indeed, the molecules in theNTB phase assemble into
chiral structures, left or right with equal probability and it is
this chirality that is at the origin of its ßexoelectric properties
[3,4]. Optically, theNTB phase reveals itself in spontaneously
developed periodic patterns, not fully understood, such as
brought out by Panovet al. [5], which have led to a more
deÞnitive identiÞcation of the phase with its nanometric pitch.
See also Refs. [6Ð8] and the bibliography therein.

A most striking feature is the instability of toric focal conic
domains (TFCDs, eccentricitye = 0) such as in Fig.1, which
nucleate in the homeotropicNTB state derived electrically
from the homeotropic N state. TFCDs are unstable and gradu-
ally transform into parabolic focal conic domains (PFCDs) or
into double helices (DHs). A classic arrangement of resulting
PFCDs [9] is illustrated in Fig.2(b); the DHs are shown in
Figs. 3(b)Ð3(d); see Ref. [10] for the TFCD instability at the
N � NTB transition under an electric Þeld.

PFCDs (eccentricitye = 1) occur easily in theNTB phase
under dilative strains [4]; they generally form sets of parallel
parabolas which are stable [Fig.2(a)] or as isolated defects.
However, usual focal conic domains (FCDs, 0< e < 1) are
most often observed as belonging to tilt boundaries, i.e., sets
of parallel ellipses with equal eccentricitiese. Double helices
(DHs), Þrst observed in layered media by Williams [11], are
frequent; see Fig.3.

* kleman@ipgp.fr
• murthyksk@cens.res.in

A. Experimental methods

The optical textures of defect states of theNTB phase
presented in this paper are from our experimental stud-
ies on the dimeric mesogen 1Ó,7Ó-bis(4-cyanobiphenyl-4Õ-
yl)heptane (CB7CB) and its 1:1 (by weight) mixture with
n-heptyloxy cyanobiphenyl (7OCB). CB7CB was synthesized
by two of the authors (M.B.K. and C.V.Y.) [10]; the synthetic
procedure followed is described in the Supplemental Material
of Ref. [12]. The phase sequence of CB7CB determined from
polarization microscopy was: isotropic (116� C) N (103� C)
NTB. The phase behavior of various mixtures of CB7CB
and 7OCB is discussed in Ref. [12]. The particular mixture
used here had the following transitional sequence: isotropic
(82.0� C) N (35� C) NTB. Optical textures were studied using a
Carl-Zeiss Axio Imager.M1m polarizing microscope with an
AxioCam MRc5 digital camera. The sample cells, designed
for either planar or 90� -twisted nematic conÞguration, were
supplied by M/s AWAT, Poland. Sample temperature, accurate
to ± 0.1� C, was maintained using an Instec HCS402 hot-stage
connected to a STC200 temperature controller. In electric
Þeld experiments, the driving voltage was from a Stanford
Research Systems function generator (DS345) coupled to a
FLC Electronics voltage ampliÞer (model A800). The Þeld
frequency and rms voltage were measured with a Keithley-
2002 multimeter.

B. Content

This article is devoted to a physical description of
these characteristics on the theoretical basis of the
extended Volterra process; see Ref. [13], where it is
shown that the analysis of the shape, mobility, and relaxation
properties of a disclinationL in a liquid crystal can be
expressed in terms of densities of continuous dislocations,
disclinations, and dispirations attached to it, thus providing,
can we say, a qualitative description of the stresses and
strains. The previously mentioned textural features of theNTB
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FIG. 1. Imperfect toric focal conic formations in theNTB phase
of a 20-µm-thick CB7CB layer in a 90� -twist cell. (a) 8.1 V, 10
kHz and (b) after switch off from 15 V, 1 kHz. Defect regions
are encircled. The appearance of these defects is a Þrst step in
the transformation of TFCDs into PFCDs. Notice the small grainy
defects all along circles. Crossed polarizers with their axes along
(x, y). Scale bar: 10µm.

phase constitute a set of most interesting observations of the
role of these attached defects, in particular in the instability
of TFCDs, the stability of PFCDs, their modiÞcations under
the action of stresses. We start by a reminder of the theory of
attached defects.

II. THE THEORY OF ATTACHED DEFECTS

A. The Volterra process and the matching condition

The classic Volterra process [13] states that a line defect
in an ordered material results from a thought experiment con-
sisting of the following steps: (1) a relative rigid displacement
d(M ) of the lips� + and� Š of a cut surface� bordered by
the lineL , (2) the introduction of a piece of perfectly ordered
material in the void thus created (or the removal of doubly
covered material), (3) the elastic relaxation of the whole.

Being a rigid displacement,d(M ) is the sum of a transla-
tion b and a rotationf × OM:

d(M ) = b + f × OM,

FIG. 2. Focal conics in theNTB phase of CB7CB, close to its
setting point: (a) PFCDs and FCDs (see later for eccentricities of
the numbered conics here), (b) electrically generated (8 V, 1 kHz)
PFCDs, arranged along the substrate rubbing direction. The precur-
sor N was: (a) aligned alongx, (b) homeotropic. Single polarizer
along x in (a), crossed polarizers alongx and y in (b). Scale bar:
20µm. Sample thickness= 20µm.

FIG. 3. (a) Single-helical (SH) and double-helical (DH) defects
formed in theNTB phase of the mixture of CB7CB and 7OCB (1:1
by weight) held in a 90� -twist cell at 31� C. The dark rails parallel to
the DHs of the right upper part are bunches of screw dislocations
of small Burgers vectors, whose total Burgers vector is probably
of the same order as the giant Burgers vector of the DHs. The
central diagonal region is oppositely twisted relative to outer regions.
The disclinations separating the oppositely twisted regions in the
precursorN phase develop into SH defects in theNTB phase. The
DHs run in the direction of midplane nematic director. The helices
also form by coalescence of drifting TFCDs that evolve during the
transition from electric homeotropic Freedericksz state to the planar
state (b)Ð(d). Scale: 5µm each small div. Double arrows represent
polarizers. Sample thickness: (a) 5µm, (b) 20µm.

whereb is the Burgers vector of thedislocationpart of the
displacement andf = 2 sin� / 2 � (see Ref. [13] for the proof
of this formula) the Frank vector of thedisclinationpart (� is
the angle of rotation,� is a unit vector along the rotation
axis,O being the origin along this axis). Observe that|� | =
2� disclinations cannot be represented by the expressionf =
2 sin� / 2 � ; in the Volterra process ak = 1 defect is the sum
of two k = 1/ 2 defects in contact. The notationk stands for
an angle of rotation� = 2�k .

In order that the molecular structure of the added material
matches perfectly to the lip molecular structure,b and f ×
OM have to be symmetry elements of the ordered material
(matching condition). These areperfectdislocations (discli-
nations). If this condition is not achieved, astacking fault
which carries extra energy takes place along the cut surface
in the relaxed material; one speaks of animperfectdislocation
(disclination).

The symmetry elements we have in mind can be quantized
symmetry elements as well as continuous ones (as they exist
in liquid crystals).

B. Continuous defects

The above considerations implicitly assume that the dis-
placementd(M ) is small and the relaxation linear outside the
core of the line defect. This condition is easy to achieve if the
displacement is restricted to a small translation; in most cases
b is empirically equal to a very few lattice parameters.

This condition of a small displacement cannot be achieved
in the case of a generic disclination, although straight wedge
disclination lines are possible in liquid crystals because the
axis of rotation is along the lineL ; the large displacements
at a distance fromL are viscously relaxed. IfL is curved, the
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FIG. 4. Attached inÞnitesimal defects (dislocations, disclina-
tions) along a disclination lineL . The Frank vectorf varies along
the line in direction.P andP� are close points.

rotation axis, which in the Volterra process is Þxed in position,
is no longer all over along the line. The solution is to let the
Frank vectorf vary alongL , which requires the introduction
of attached dislocations and disclinations. This is theextended
Volterra process[13]. Consider indeed two close pointsP and
P� = P + tdson the line (Fig.4). The displacement of a point
M � � , seen fromP, is dP(M ) = f × PM; seen fromP� it is
dP� (M ) = f � × P�M. These two displacements are obviously
not equal; the difference

dP� (M ) Š dP(M ) = Š f × tds+ df × PM (1)

is the sum of a dislocation (the Burgers vectordb = Š f × tds
does not depend onM) and a disclination of Frank vectordf ,
both attached toL betweenP andP�.

By the same reason as above, viz. the preference for a
perfect matching, one expects thatdb anddf are symmetry
elements of the material, in so far as such symmetries exist.
In crystalline solids, continuous symmetries do not exist and
this relaxation processof the stresses around a disclination is
absent. This is not so in liquid crystals. Continuous defects are
prominent in the relaxation of quantized defects in nematics
N and cholestericsN*, see [14]. They have the property to
disperse away while remaining attached to the main lineL ,
which is the process by which they relax the stresses carried
by the line. Thus, they are not visible. But they provide a qual-
itative description of these stresses. If continuous defects play
a role in the relaxation properties of the quantized defects,
they also place limits on the relaxation processes since they
are restricted somehow by the matching condition.

C. ClassiÞcation of defects, theNTB phase

Perfect line defects are classiÞed by the symmetry ele-
ments of the material, according to the matching condition. In
the following, we adopt the classic notations of the cholesteric
phase [13] for NTB, to which they are well adapted:� denotes
either the axis of helicity of the directorn with pitch p (the
� axis) or the plane perpendicular to it (the� plane), �
denotes a direction normal to the local director in the� plane,
� = � × � is along the projection ofn on the� plane.

The symmetry elements of theNTB phase are:
Š quantized translationsmultiple of the pitchp, along the

� axis
Š binary axesin � planes, normal to the directorn, i.e., a

� rotation along the� axis,
Š continuous translationsin the� planes, denoteddu,

Š continuous helical rotationsalong the� axis, i.e., the
product of a rotationd� � and a translation (p/ 2� )d� � .

The corresponding line defects are, in the same order:
Š quantized dislocationsof Burgers vectornp, n � Z ,
Š quantized disclinations of Frank vector (� +

2m� )� , m � Z ,
Š continuous dislocations, Burgers vectorsdu,
Š continuous dispirations, Frank vectordf = d� � and

Burgers vectordb = (p/ 2� )d� � .
The above notations are the same as those classically used

for theN* phase. The only difference is that inN* n is in the
� plane, along a� direction. Thus, there isN* another set of
binary axesin the� planes, along the� axis. The classiÞcation
of line defects in aN* phase contains the same defects as in a
NTB phase plus a set ofquantized disclinationsof Frank vector
(� + 2m� )� , m � Z .

Notice that the Volterra classiÞcation, here and in other
phases, is independent of the values of the elastic constants.
However, the defect (meta)stability, and the presence of tex-
tures involving long distance interactions between defects,
are dependent on those constants; it is thereby no surprise
that the defects and textures observed inNTB are vastly
different from those in aN* phase, although the symmetries
are much similar. The elastic constants of theNTB phase are
indeed anomalous (in particular, a negativeK33 constant).
How these unusual elastic constants affect the existence and
(meta)stability of defects, this important question goes well
beyond the scope of this paper.

D. Examples of relaxation mechanisms

We may clarify the relaxation mechanisms in aNTB phase
with two examples:

(1) Let du be the inÞnitesimal Burgers vector of a disloca-
tion attached to a disclination of Frank vector along� , such
that [Eq. (1)]

du = Š 2� × ds,

whereds is a line element of the disclination (in this equation,
the factor 2 stands for the Frank vector modulus 2 sin� / 2,
� = � .) By implication the relevantduÕs have to be taken
in a plane perpendicular to� , thereby along the� direction.
Thus, ds is in a plane perpendicular to� . Consequently,
the disclination relaxes in such a plane; the tangentt to the
disclination line is locally normal to a� direction.

(2) Consider a wedge loopk = 1/ 2, f = 2� , all along
the loop. According to Eq. (1) there are attached continuous
disclinations with Frank vectors along the (radial)� direction,
without attached continuous disclinations. These disclinations
constitute a part of possible continuous dispirations, but the
dislocation part is lacking; the continuous defects attached to
the loop are imperfect. In fact, wedge loops in aNTB phase
are unstable. See later.

III. DEFECTS ATTACHED TO FOCAL CONIC
DOMAINS AND DOUBLE HELICES

Let us now analyze theoretically the defects attached to
FCDs and DHs.
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FIG. 5. Cut through twok = 1/ 2 wedge disclination lines A and
B. The attached inÞnitesimal disclinations are restricted to the ribbon
between A and B, which ribbon can be made to vanish, AB= 0,
yielding ak = 1 wedge line without attached defects.

A. Toric focal conic domains

As just stated a wedge loopk = 1/ 2 carries a set of
imperfect attached defects. The singular circle of a TFCD is
such a wedge loop. It is a simple calculation to get

� = [Š sin�, cos� ],
d�
ds

= Š
1
�

[cos�, sin� ],

� the circle radius. Hence,|d� /ds|, a measure of the density
of attached disclinations:

�
�
�
�
d�
ds

�
�
�
� =

1
�

.

The instability of TFCDs in theNTB phase has to be searched
in these imperfect disclination densities, not only because of
their presence, but also because in a TFCD the disclinations
attached to the circle cannot terminate on the axis, which
does not accept attached defects as shown immediately below.
Because of this impossibility the area of the stacking fault is
not restricted; the attached defects spread with no preferred
endings.

The other TFCD singularity is a straightk = 1 wedge line
whose Frank vector is along� . This is possible since any axis
in space is a 2� rotation axis. There are no attached defects
to this k = 1 line, even if one may consider that there are
attached defects to each half-line of strengthk = 1/ 2. The
defect densities emanating from each half-line, if oriented
in the same direction, are of opposite strength; their sum
vanishes outside the ribbon bordered by the twok = 1/ 2
disclinations (Fig.5).

B. Focal conic domains, 0< e < 1

The situation is partly similar; the disclination along the
hyperbola is ak = 1 wedge line, with� axis all along. For
the same reason as above it carries no attached defects. The
ellipse singularity is more complex than the circle singularity
in a TFCD; it is a mixed wedge-twistk = 1/ 2 disclination
whose� direction appears as the rotation axis when� is in
the plane of the ellipse (Fig.6); but � rotates helically about
the normal to the quasilayers.

In a coarse-grained version of the NTB phase, in which
the helical geometry of the directorn is replaced by the normal
to the quasilayers (the optical axis), the symmetry that has
to be taken into account is that of the SmA (or the SmA*)
[15], and this is indeed what happens empirically for most
of the FCDs present in a sample: the defects attached to the
ellipse are quantized dislocations (in Ref. [13], p. 110, the
ellipse is discussed as ak = 1/ 2 disclination.) To each layer
of thicknessp traversing the FCD (see Fig.6) is attached

FIG. 6. Along the ellipse of a FCD. Intersections of two cyclides
at a distance multiple ofp. It is assumed that there is a� direction
along these intersections;� rotates helically about the normal� to
these cyclides.

a dislocation of Burgers vector 2p outside the FCD (not
represented in Fig.6), and an inÞnitesimal disclination of
Frank vector along� � Š � normal to the layer.

The quantized dislocations attached to ellipses in a SmA
sample generally cover surface areas between neighboring
ellipses and connect them [16]. The same situation occurs in
theNTB phase. These quantized dislocations are singularities
of the order parameter, whereas the order parameter is contin-
uous inside the ellipses, which results in striking differences in
the appearance of the inside and outside regions of an ellipse,
with a net discontinuity at the ellipse itself; see Fig.7.

If the coarse-grained model is not physically achieved,
the imperfections are at a nanoscopic scale smaller thanp.
A distribution of continuous defects attached to the ellipses
in place of the quantized dislocations (a fact not possible in
the SmA, possible in theNTB), does not carry singularities
of the order parameter, other than those of the ellipse itself.
Thus, one would expect continuous variations of the observed

FIG. 7. Quasiparallel FCDs in a 20-µm-thick layer of CB7CB in
a planar cell at 0.6� C below the setting point and subjected to a 30
V, 1 kHz Þeld. The FCD ellipses are connected by a set of attached
quantized dislocations approximately parallel to the minor axes. P
and A denote polarizer and analyzer.
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aspect from one side of the ellipse to the other. This is
observed for eccentricities close to 1, where the notion of
PFCD comes under consideration; see Fig.2(a) commented
hereunder. But in no case can the ellipse arcs be relaxed by
continuous dispirations. We discuss later the speciÞc nature
of disclination lines that are relaxed by (perfect) continuous
dispirations; they are very special, and certainly not conics.

One cannot exclude the possibility that along an ellipse
some arcs are relaxed by quantized dislocations, other by
continuous defects. Various boundary conditions, or thermal
ßuctuations, can be at the origin of the choice, which is
made possible in aNTB because, structurally, the quantized
dislocation picture is coexistent with a continuous defect
picture at a smaller scale.

C. Parabolic focal conic domains

PFCDs are very peculiar, compared to the other focal
conic domains withe �= 1. If one thinks of a PFCD as the
geometrical limit of a FCD whene � 1, the limit of the
ellipse is a parabola carrying ak = 1/ 2 disclination, the limit
of the hyperbola a parabola carrying ak = 1 disclination.
Suppose that the ellipse is equipped with attached quantized
dislocations whose total Burgers vector is 4c [13], i.e., 4c/2p
dislocations, 2p being the supposed Burgers vector of each
one, see above; thus, 2c/2pa = e/p dislocations per unit
length measured along the major axis. This quantity makes
sense even whene = c/a = 1, a and c inÞnite, and the
conic is a parabola. This is the largest density of quantized
dislocations possibly attached to a conic, hence the largest tilt
boundary energy density.

In fact this ÒasymmetricÓ picture of a PFCD is valid for
any value ofe inÞnitesimally close to 1, but not fore = 1.
The transition is discontinuous. Ate = 1, both parabolas carry
k = 1 disclinations: the axis of any cone with apexM on one
of the parabolas P1, whose generatrices lie on the cofocal
parabola P2, is along the tangenttM to P1; this cone is of
revolution,tM is an axis of 2� rotation symmetry along which
the local Frank vector alignsÑnot along� as in the FCD
ellipse case. As withk = 1 lines in TFCDs and FCDs, there
are no defects attached to these parabolas. This is certainly
an element of topological and energetical stability of PFCDs,
compared to the other types of FCD. A PFCD domain is
susceptible to occupy all space. The transition from a FCD
to a PFCD has to be discontinuous, physically. It is indeed
observed that the nucleation of PFCDs happens spontaneously
under stress, but neither from precursory FCDs, nor directly
from TFCDs, that are ÒdestroyedÓ before transforming into
PFCDs [10].

D. Double helices

DHs nucleate at theN � SmA transition in twist cells,
where they proceed from the deformation of twist discli-
nations into single helices (SHs). The same transformation
has been observed at theN � NTB transition; see Fig.3(a).
They also evolve from strings of drifting unstable TFCDs; see
Figs.3(b)Ð3(d).

DHs consist of two helicalk = 1/ 2 wedge disclinations
with the same axis and the same pitch, shifted one with

respect to the other by half a pitchP / 2, more or less distorted
compared to circular helices. Let� be the radius of these
helices; this assembly forms a screw dislocation of Burgers
vectorb = 2�� [17], i.e., a giant Burgers vector, visible by
light microscopy;b is also the pitchP of the helices,b = P =
np in a NTB phase. The same geometry has been observed
in the B7 banana phase, but in that case with no distortions
at all at the scale of light microscopy observations [17,18].
The two helices, being of a wedge type, do not carry attached
dislocations, only attached disclinations with Frank vectors
along� directions, thus imperfect attached dispirations.

The equation of a circular helix of radius� , pitch P = b,
can be written

x = � cos�, y = � sin�, z =
b

2�
�.

The tangent, which is along the� direction can be written

� =
�
� 2 +

�
b

2�

� 2� Š1/ 2�
Š � sin�, � cos�,

b
2�

�
.

Because of the relation 2�� = b, we eventually get

� = 2Š1/ 2[Š sin�, cos�, 1],

d� = 2Š1/ 2[Š cos�, Š sin�, 0]d�.

d� is along the Frank vector of an attached disclination and
along the� axis; its density measured along the helix is
|d� /ds| = �/b = 1/ (2� ); along theöz axis it is

�
�
�
�
d�
dz

�
�
�
� = 21/ 2 �

b
= 2Š1/ 2 1

�
. (2)

The horizontal line segments with Frank vectors 2d� , which
rotate helically aboutöz with pitch b, form an helicoidal
stacking faultof width 2� = b/� between the two helical
disclinations, thus limited in size. There are no other defects
attached to the DH, except possibly those related to the
differences with a geometry of perfect circular helices. Apart
from the stacking fault contribution to the energy, Þnite per
unit length of DH, one can infer from the dislocation nature of
the whole assembly that it is stable due to this very character.

IV. LIGHT MICROSCOPY OBSERVATIONS

Let us apply these considerations to some observed conics.
Figure8 represents a solitary conic, most probably in the mid-
plane of the sample, whose outside interactions are limited to
the boundaries. A parabolic polynomial Þt yields a coefÞcient

FIG. 8. Solitary PFCD in a 20-µm-thick NTB layer of CB7CB in
a planar cell. Scale: 2µm each small div. Polarizer alongx.
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TABLE I. Fits of the conics in Fig.2(a) to ellipses (the two Þrst
columns) and parabolas (the last column).R2 is the coefÞcient of
determination.

Ellipse Parabola
R2 e(± 0.005) R2

1 1 1 0.9917
2 1 1 0.9987
3 0.9999 0.964 0.7490
4 0.9999 0.965 0.9250
5 0.9999 0.962 0.9501
6 0.9998 0.967 0.9590
7 1 1 0.9972
8 0.9999 0.951 0.9359

of determinationR2 = 0.9980, whereas an elliptic Þt yields an
eccentricitye = 1, equal to the eccentricity of a parabola, with
R2 = 1! The same type of Þtting performed on the conics of
Fig. 2(a)(see Fig.9 of the Appendix for the Þtting procedure)
yields similar results for the conics numbered 1, 2, and 7
(R2 = 1, e = 1 for the elliptic Þts, equally large values ofR2

for the parabolic Þts.) The conics 3Ð6 and 8 yield elliptic Þts
with R2 andeboth� 1, slightly smaller, whereas the parabolic
Þts yield deÞnitely smaller values ofR2 (typically 0.95 or
less) [19]; see TableI and Fig.9.

A remarkable fact is that the aspect of the FCDs is contin-
uous from one side of those conics to the other, in complete
opposition with what is expected for FCDs in a SmA phase.
Therefore, the deformation of the material is continuous and
the singularity is restricted to the conic. We advance two
possibilities:

1. Continuous attached defects

In continuity with the discussion above, the only attached
defects would be inÞnitesimal, thus the deformations contin-
uous except on the conics. Except for those that are PFCDs
(e = 1), this requires that the conic be ak = 1/ 2 disclination
line and the eccentricitye, according to the discussion above,
be strictly < 1. Since the density of quantized dislocations
increases withe, one might then imagine a threshold value
of e above which a continuous model is favored (in Fig.7, e
is small),

2. Stacking fault ribbons

Conic defects in layered liquid crystals are seldom Òper-
fectÓ; they might suffer deformations, which have already
been observed, in at least two cases: parabolas in Ref. [9],
ellipses in Ref. [20]Ñin that latter case, the departures from
perfect ellipses have been discussed in terms of attached
dislocations, quantized or continuous. Whereas ellipses are
of k = 1/ 2 disclinations, parabolas arek = 1 disclinations
that do not accept attached defects. But precisely according
to Fig. 5 the k = 1 disclination can be split into two close
k = 1/ 2 disclinations separated by a stacking fault ribbon
made of defects that may deform the conics.

We could in the perspective of stacking faults consider
that conics 1, 2, and 7 of Fig.2(a) and the solitary conic of
Fig. 8 are slightly deformed PFCDs, with the parabolic lines

split into two parallel lines. However, conics 3Ð6, which have
seemingly the same eccentricitye � 0.96, form a fragment
of grain boundary of angle� � = 2 arcsine � 147� ; obviously
they are not connected by attached quantized dislocations, by
reason of a continuous appearance. They are most probably
connected by continuous defects.

V. ATTACHED DISPIRATIONS AND SPIN DISCLINATIONS

There remains the question of disclination lines carrying
attached dispirations of the typed� � (Frank vector) and
p

2� d� � (Burgers vector.) According to Eq. (1), one can write

df = d� � , Šf × tds =
p

2�
d� � . (3)

The elimination ofd� � between these equations yields

df
ds

= Š
2�
p

f × t. (4)

Let us takef = 2 sin(� / 2)� = 2� for � = � , then

d�
ds

=
2�
p

t × � . (5)

The rotation rate of the Frank vector is 2� /p t, of a constant
modulus all along the line. This vector, according to Eq. (3),
is along the� direction. Thus,t, � , � form a orthonormal
frame;t is along the local� axis. The disclination is of a pure
twist character. The rate of rotation of� , which is in the plane
normal tot, contains two contributions, a rotation aboutt with
the same rate as� and a rotation about� with a rate denoted
Š1/� , � unknown. Thus,d� /ds = (2� /p )� Š (1/� )t. Also,
dt/ds = d(� × � )/ds, one eventually gets

dt
ds

=
1
�

� ,

d�
ds

=
2�
p

� Š
1
�

t,

d�
ds

= Š
2�
p

� , (6)

which are the Frenet formulas for a frame where� is the
principal normal,� the binormal,� = t the tangent to the line.
The torsion of the disclination line is the constant 2� /p ; � is
its radius of curvature. Results of a similar nature were stated
in Ref. [13] for cholesterics [21]. Disclinations whose relax-
ation is due all along their length to continuous dispirations
arecurves of constant torsion 2�/p ; � rotates about the line
(about� ) with pitch p, which is small in aNTB phase. Call
such a defect aspin disclination.

KÏnigs [ 22] has shown that open curves of constant torsion
2�/p are periodic along their length. Circular helices are of
that type. LetR be the radius of the helix,P its pitch, the
torsion 2�/p and the curvature 1/� of such an helix can be
written

1
�

=
R

R2 + P2/ 4� 2
, (7a)

2�
p

=
P / 2�

R2 + P2/ 4� 2
. (7b)
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These equations are of the second degree inR and P.
Taking the Þrst one as an equation with unknownR, a real
R requires�� > P ; and the second one as an equation with
unknownP, a realP requires 4�R < p . Thus, sincep is
very small, the helix has a microscopic radius and is close
to a straight line. Assume then thatR = 0, which yields
� = 	 , p = P. This much twisted disclination is probably
of a high energy, but one has a comparable twist of� and�
along the� axis in a perfectNTB phase. We havenÕt observed
any defect of the sort. Its search in aN* phase, where the pitch
is large, could be rewarding.

Geometers have actively investigated closed curves of con-
stant torsion, in particular spherical curves; see Ref. [23]. One
may wonder whether the small grainy defects observed in the
Þrst steps of the instability process of a TFCD (Fig.1) [10]
could not be of this type.

VI. CONCLUSION

To conclude, we have shown that the mere geometri-
cal consideration of defects attached to disclinations, in the
framework of the extended Volterra process theory, casts some
light on the stability characteristics of the FCDs observed in
theNTB phase: the attached continuous defects are imperfect
in the sense that they do not carryNTB symmetries. Also,
this theory predicts two types of molecular conÞgurations
surrounding FCD ellipses, whether their attached defects are
continuous or quantized. Both types have been observed, the
Þrst one belonging to ellipses of a large eccentricity, close
to e = 1. Finally, disclinations with (perfect) attached con-
tinuous dispirations are special line defects, with a constant
torsion. They have not been observed yet. A deeper under-
standing of the various unusual aspects of defects and textures
would require an investigation of the associated energies.
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APPENDIX: CURVE FITTINGS

Curve Þtting for the conic in the inset. Coordinates (x, y)
of various points (indicated by squares) lying on the white

Ellipse f = [(x - xc)/a] 2 +[(y-yc)/b] 2 
Reduced Chi-S 1.31233 
Adj. R-Square 0.9999 
 Value Std. Error 
xc 1887.5 0.38 
yc 1580.7 12.30 
a 66 1.07 
b 214 12.67 
e=�[1…(a/b)2] 0.9514 0.0045 

Parabola y= A x2 + B x + C 
Residual sum of 
squares 

2614 

Adj. R-Square 0.9359 
 Value Std. Error 
C -148526 11936 
A 159.4 12.6 
B -0.0422 0.0033 

FIG. 9. Curve Þttings, see text.

median dashed line of the conic were chosen for the pur-
pose of Þtting. The parameters of Þtting as given by the
Origin 9.1 software are tabulated below the plot in which
blue and red lines are for parabola and ellipse, respectively;
0.11µm/ pixel, scale bar= 10µm. A 50× objective of NA
0.55 was used in textural studies. Corresponding distance
resolution is
 0.5 µm or 
 5 pix; thus,a, b, and e are to
be considered as 66± 3 pix, 214± 3 pix, and 0.952± 0.005,
respectively.
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