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Defects in the twist-bend nematic phase: Stabilities and instabilities
of focal conic domains and related topics
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This article provides an explanation for the instability of toric focal conic domains and the stability of parabolic
focal conic domains in the twist-bend nematitrg) phase, by reason of the presence (the brst case) or absence
(the second case) of defect densities attached to the conics, which are disclinations. This result is obtained after
a reminder of the theory of attached defects (the extended Volterra process) and is followed by its usage in other
cases (dislocations, disclinations, dispirations, double helices) iINth@hase. The notion of spin disclination
is introduced.

DOI: 10.1103/PhysRevE.98.032705

I. INTRODUCTION A. Experimental methods

The twist-bend nematicNys) phase has been actively =~ The optical textures of defect states of theg phase
studied in the past few years for its fundamentally signipcangpresented in this paper are from our experimental stud-
and often challenging, properties. The heliconical structure ofes on the dimeric mesogen 10,70-bis(4-cyanobiphenyl-40-
the N1g phase, with its associated spontaneous Rexoelectrid)heptane (CB7CB) and its 1:1 (by weight) mixture with
polarization, was Prst envisaged by Meyé}. [Much later,  n-heptyloxy cyanobiphenyl (7OCB). CB7CB was synthesized
its possible occurrence in nematogens of achiral moleculeBy two of the authors (M.B.K. and C.V.Y.)L]; the synthetic
with negative bend elastic constant was foreseen by DozoRrocedure followed is described in the Supplemental Material
[2]. Indeed, the molecules in thdtg phase assemble into Of Ref. [12]. The phase sequence of CB7CB determined from
chiral structures, left or right with equal probability and it is Polarization microscopy was: isotropic (115 N (103 C)
this chirality that is at the origin of its Bexoelectric propertiesNts. The phase behavior of various mixtures of CB7CB
[3,4]. Optically, theNtg phase reveals itself in spontaneously and 70CB is discussed in Reflg]. The particular mixture
developed periodic patterns, not fully understood, such aysed here had the following transitional sequence: isotropic
brought out by Panoet al. [5], which have led to a more (820 C) N (35 C) Ntg. Optical textures were studied using a
dePnitive identibcation of the phase with its nanometric pitchCarl-Zeiss Axio Imager.M1m polarizing microscope with an
See also Refs6EB] and the bibliography therein. AxioCam MRc5 digital camera. The sample cells, designed

A most striking feature is the instability of toric focal conic for either planar or 90twisted nematic conpguration, were
domains (TFCDs, eccentricigy= 0) such as in Figl, which ~ supplied by M/s AWAT, Poland. Sample temperature, accurate
nucleate in the homeotropibits state derived electrically to+0.1 C, was maintained using an Instec HCS402 hot-stage
from the homeotropic N state. TFCDs are unstable and gradigonnected to a STC200 temperature controller. In electric
ally transform into parabolic focal conic domains (PFCDs) orPeld experiments, the driving voltage was from a Stanford
into double helices (DHs). A classic arrangement of resultingRe€search Systems function generator (DS345) coupled to a
PFCDs P] is illustrated in Fig.2(b); the DHs are shown in FLC Electronics voltage ampliper (model A800). The Peld
Figs. 3(b)D3(d); see Refl(] for the TFCD instability at the frequency and rms voltage were measured with a Keithley-
N  Nig transition under an electric peld. 2002 multimeter.

PFCDs (eccentricitg = 1) occur easily in théNtg phase
under dilative strains4]); they generally form sets of parallel
parabolas which are stable [Fig(a)] or as isolated defects.

However, usual focal conic domains (FCDs<@ < 1) are This article is devoted to a physical description of
most often observed as belonging to tilt boundaries, i.e., seffiese characteristics on the theoretical basis of the
of parallel ellipses with equal eccentricitiesDouble helices €xtended Volterraprocess; see Ref. 13], where it is
(DHs), brst observed in layered media by Williamg][ are ~ shown that the analysis of the shape, mobility, and relaxation
frequent; see FigB. properties of a disclinatio. in a liquid crystal can be
expressed in terms of densities of continuous dislocations,
disclinations, and dispirations attached to it, thus providing,
“kleman@ipgp.fr can we say, a qualitative description of the stresses and
*murthyksk@cens.res.in strains. The previously mentioned textural features of\the

B. Content
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FIG. 1. Imperfect toric focal conic formations in tirg phase
of a 20um-thick CB7CB layer in a 9Gtwist cell. (a) 8.1 V, 10
kHz and (b) after switch off from 15 V, 1 kHz. Defect regions FIG. 3. (a) Single-helical (SH) and double-helical (DH) defects
are encircled. The appearance of these defects is a brst step fiormed in theN+g phase of the mixture of CB7CB and 70CB (1:1
the transformation of TFCDs into PFCDs. Notice the small grainyby weight) held in a 90twist cell at 31C. The dark rails parallel to
defects all along circles. Crossed polarizers with their axes alonghe DHs of the right upper part are bunches of screw dislocations
(x,y). Scale bar: 1pm. of small Burgers vectors, whose total Burgers vector is probably
of the same order as the giant Burgers vector of the DHs. The

central diagonal region is oppositely twisted relative to outer regions.

phase consitute a set of most mterest_lng opsewat!ons O.f .thﬁwe disclinations separating the oppositely twisted regions in the
role of these attached defects, in particular in the instability

I~ . . - N ph lop i H def i hase. Th
of TFCDs, the stability of PFCDs, their modibcations under? o UrSOrt Pnase develop into SH defects in thes phase. The

h . f . fthe th Hs run in the direction of midplane nematic director. The helices
the action of stresses. We start by a reminder of the theory Iso form by coalescence of drifting TFCDs that evolve during the
attached defects.

transition from electric homeotropic Freedericksz state to the planar
state (b)D(d). Scale:(m each small div. Double arrows represent
Il. THE THEORY OF ATTACHED DEFECTS polarizers. Sample thickness: (B, (b) 20um.

A. The Volterra process and the matching condition

; ; whereb is the Burgers vector of thdislocationpart of the
The classic Volterra procesdd] states that a line defect displacement anfi= 2sin /2  (see Ref.13 for the proof

in an ordered material results from a thought experiment con-fth. ; 2 the Erank vector of thaisclinati a
sisting of the following steps: (1) a relative rigid displacementf[Jh "; cirmufa;)t 3 nrani vee %:tov tsrc |r|1an|orlﬁarr(t It? N
d(M) of the lips * and S of a cut surface bordered by € angie of rotation, 1S a u ector along he rotatio

the lineL, (2) the introduction of a piece of perfectly ordered gXiSd’.O Feir:_g the origint glong this afisg.boaﬁerve t}ha; N
material in the void thus created (or the removal of doubly. ISClinations cannot be represented by the expression

covered material), (3) the elastic relaxation of the whole. zfs,:a/ /kz— J;JlrzltgerotIte_rra protcefs1l_ah= 1 dte];?(h(::rt\slts th; sfum
Being a rigid displacement(M) is the sum of a transla- ortwo Kk = ctects In contact. The notatiknstands for

; ; . an angle of rotation = 2Kk .
tionb and a rotatiorf x OM: In order that the molecular structure of the added material
dM)= b+ fx OM, matches perfectly to the lip molecular structubeand f x

OM have to be symmetry elements of the ordered material
(matching conditiopn These aregerfectdislocations (discli-
nations). If this condition is not achieved,sdacking fault
which carries extra energy takes place along the cut surface
in the relaxed material; one speaks ofieuperfectdislocation
(disclination).

The symmetry elements we have in mind can be quantized
symmetry elements as well as continuous ones (as they exist
in liquid crystals).

B. Continuous defects

The above considerations implicitly assume that the dis-
placement (M) is small and the relaxation linear outside the
core of the line defect. This condition is easy to achieve if the

FIG. 2. Focal conics in thélys phase of CB7CB, close to its diSPlacement is restricted to a small translation; in most cases
setting point: (a) PFCDs and FCDs (see later for eccentricities oP IS empirically equal to a very few lattice parameters.
the numbered conics here), (b) electrically generated (8 V, 1 kHz) This condition of a small diSplacement cannot be achieved
PFCDs, arranged along the substrate rubbing direction. The precut? the case of a generic disclination, although straight wedge
sor N was: (a) aligned along, (b) homeotropic. Single polarizer disclination lines are possible in liquid crystals because the
alongx in (a), crossed polarizers alongandy in (b). Scale bar:  axis of rotation is along the line; the large displacements
20um. Sample thickness 20um. at a distance from. are viscously relaxed. If is curved, the
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db, df S continuous helical rotationglong the axis, i.e., the
product of a rotatiom  and a translationp/ 2 )d

The corresponding line defects are, in the same order:

S quantized dislocationsf Burgers vectonp, n =~ Z,

S quantized disclinationsof Frank vector ( +
2m ) , m Z,

S continuous dislocationBurgers vectorslu,

P S continuous dispirationsFrank vectordf = d and
FIG. 4. Attached inbnitesimal defects (dislocations, disclina—Burgers vectodb = _(p/ 2 )d .
tions) along a disclination link. The Frank vectof varies along The above notations are Fhe Same_as those clgsslcally used
the line in directionP andP are close points. for theN* phase. The only difference is that i n is in the

plane, along a direction. Thus, there isl* another set of

binary axesnthe planes, along the axis. The classibcation
rotation axis, which in the Volterra process is Pxed in position of line defects in & * phase contains the same defects as in a
is no longer all over along the line. The solution is to let theNtg phase plus a set gliantized disclinationsf Frank vector
Frank vectorf vary alongL, which requires the introduction ( +2m ) , m Z.
of attached dislocations and disclinations. This isgk&ended Notice that the Volterra classibcation, here and in other
Volterra proces$13]. Consider indeed two close poirfisand  phases, is independent of the values of the elastic constants.
P = P+ tdsonthe line (Fig4). The displacement of a point However, the defect (meta)stability, and the presence of tex-

M , seen fronP, isdp(M) = f x PM; seen fronmP itis  tures involving long distance interactions between defects,
dp (M) = f x PM. These two displacements are obviously are dependent on those constants; it is thereby no surprise
not equal; the difference that the defects and textures observedNig are vastly
different from those in & * phase, although the symmetries
dp(M)S dp(M) =S f x tds+ df x PM (1) are much similar. The elastic constants of Mg phase are

indeed anomalous (in particular, a negatkig; constant).
is the sum of a dislocation (the Burgers veador= S f x tds ~ How these unusual elastic constants affect the existence and
does not depend avl) and a disclination of Frank vectdf,  (meta)stability of defects, this important question goes well
both attached th betweerP andP . beyond the scope of this paper.

By the same reason as above, viz. the preference for a
perfect matching, one expects thiti and df are symmetry . i
elements of the material, in so far as such symmetries exist. D. Examples of relaxation mechanisms
In crystalline solids, continuous symmetries do not exist and We may clarify the relaxation mechanisms iNgg phase
this relaxation proces®sf the stresses around a disclination is with two examples:
absent. This is not so in liquid crystals. Continuous defects are (1) Letdu be the inPnitesimal Burgers vector of a disloca-
prominent in the relaxation of quantized defects in nematicdion attached to a disclination of Frank vector alongsuch
N and cholesteric&l *, see [L4]. They have the property to that [Eq. ()]
disperse away while remaining attached to the main line 5
which is the process by which they relax the stresses carried du=S2 xds,
by the line. Thus, they are not visible. But they provide a qual-
itative description of these stresses. If continuous defects playheredsis aline element of the disclination (in this equation,
a role in the relaxation properties of the quantized defectsthe factor 2 stands for the Frank vector modulus 2 sig,
they also place limits on the relaxation processes since they = ) By implication the relevantuOs have to be taken
are restricted somehow by the matching condition. in a plane perpendicular to, thereby along the direction.

Thus, ds is in a plane perpendicular to. Consequently,
the disclination relaxes in such a plane; the tandetat the
C. Classibcation of defects, thé\rs phase disclination line is locally normal to a direction.

Perfect line defects are classibed by the symmetry ele- (2) Consider a wedge look= 1/2, f= 2, all along
ments of the material, according to the matching condition. Irfhe loop. According to Eq.1) there are attached continuous
the following, we adopt the classic notations of the cholesteriglisclinations with Frank vectors along the (radialjlirection,
phase 13] for N1g, to which they are well adapted:denotes ~ Without attached continuous disclinations. These disclinations
either the axis of helicity of the directar with pitch p (the  constitute a part of possible continuous dispirations, but the

axis) or the plane perpendicular to it (the plane), dislocation part is lacking; the continuous defects attached to
denotes a direction normal to the local director in thelane, ~ the loop are imperfect. In fact, wedge loops ilNgs phase
= x s along the projection af on the plane. are unstable. See later.

The symmetry elements of tirg phase are:

S quantized translationsultiple of the pitchp, along the Il DEFECTS ATTACHED TO FOCAL CONIC

axis. . . . DOMAINS AND DOUBLE HELICES

S binary axesn planes, normal to the directar i.e., a

rotation along the axis, Let us now analyze theoretically the defects attached to
S continuous translations the planes, denotedu, FCDs and DHs.
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FIG. 5. Cutthrough twk = 1/ 2 wedge disclination lines A and
B. The attached inPnitesimal disclinations are restricted to the ribbon
between A and B, which ribbon can be made to vanish,AB,
yielding ak = 1 wedge line without attached defects.

@)
=/

A. Toric focal conic domains FIG. 6. Along the ellipse of a FCD. Intersections of two cyclides
As just stated a wedge look= 1/2 carries a set of ata distance multiple gf. It is assumed that there is adirection
imperfect attached defects. The singular circle of a TFCD iglong these intersections;rotates helically about the normalto
such a wedge loop. It is a simple calculation to get these cyclides.

L .1 .
= [Ssin, cos |, ds S —[cos , sin ], a dislocation of Burgers vectorp2outside the FCD (not

] . _ represented in Fig6), and an inbPnitesimal disclination of
the circle radius. Hencéd /ds|, a measure of the density Frank vectoralong S normal to the layer.

of attached disclinations: The quantized dislocations attached to ellipses in a SmA
d 1 sample generally cover surface areas between neighboring
ds ~ ellipses and connect theri]. The same situation occurs in

] . ) theNtg phase. These quantized dislocations are singularities
The instability of TFCDs in thé&ts phase has to be searched f the order parameter, whereas the order parameter is contin-
in these imperfect disclination densities, not only because ofjoys inside the ellipses, which results in striking differences in

their presence, but also because in a TFCD the disclinationge appearance of the inside and outside regions of an ellipse,
attached to the circle cannot terminate on the axis, whichyith a net discontinuity at the ellipse itself; see Fig.

does not accept attached defects as shown immediately below. |t the coarse-grained model is not physically achieved,

Because of this impossibility the area of the stacking fault ishe jmperfections are at a nanoscopic scale smaller ghan
not restricted; the attached defects spread with no preferreg gistribution of continuous defects attached to the ellipses
endings. _ o . ) in place of the quantized dislocations (a fact not possible in
The other TFCD singularity is a straight= 1 wedge line  the SmA, possible in thélrg), does not carry singularities
whose Frank vector is along. This is possible since any axis of the order parameter, other than those of the ellipse itself.

in space is a 2 rotation axis. There are no attached defectsthys, one would expect continuous variations of the observed
to thisk = 1 line, even if one may consider that there are

attached defects to each half-line of strength 1/2. The
defect densities emanating from each half-line, if oriented
in the same direction, are of opposite strength; their sum
vanishes outside the ribbon bordered by the twe 1/2
disclinations (Fig5).

B. Focal conic domains, < e< 1

The situation is partly similar; the disclination along the
hyperbola is & = 1 wedge line, with axis all along. For
the same reason as above it carries no attached defects. The
ellipse singularity is more complex than the circle singularity
in a TFCD; it is a mixed wedge-twidt = 1/ 2 disclination
whose direction appears as the rotation axis whers in
the plane of the ellipse (Fig); but rotates helically about
the normal to the quasilayers.

In a coarse-grained version of the Ntg phase, in which
the helical geometry of the directoiis replaced by the normal
to the quasilayers (the optical axis), the symmetry that has
to be taken into account is that of the SmA (or the SmA¥*)
[15], and this is indeed what happens empirically for most G, 7. Quasiparallel FCDs in a 30m-thick layer of CB7CB in
of the FCDs present in a sample: the defects attached to theplanar cell at ® C below the setting point and subjected to a 30
ellipse are quantized dislocations (in Ret3], p. 110, the v, 1 kHz beld. The FCD ellipses are connected by a set of attached
ellipse is discussed aske= 1/ 2 disclination.) To each layer quantized dislocations approximately parallel to the minor axes. P
of thicknessp traversing the FCD (see Fi@) is attached and A denote polarizer and analyzer.
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aspect from one side of the ellipse to the other. This igespect to the other by half a pitéh/ 2, more or less distorted
observed for eccentricities close to 1, where the notion otompared to circular helices. Let be the radius of these
PFCD comes under consideration; see Ri@) commented helices; this assembly forms a screw dislocation of Burgers
hereunder. But in no case can the ellipse arcs be relaxed lmectorb= 2  [17], i.e., a giant Burgers vector, visible by
continuous dispirations. We discuss later the specibc natutght microscopyj is also the pitchP of the heliceshb= P =
of disclination lines that are relaxed by (perfect) continuousnp in a Ntg phase. The same geometry has been observed
dispirations; they are very special, and certainly not conics. in the B7 banana phase, but in that case with no distortions
One cannot exclude the possibility that along an ellipseat all at the scale of light microscopy observationg,18].
some arcs are relaxed by quantized dislocations, other byhe two helices, being of a wedge type, do not carry attached
continuous defects. Various boundary conditions, or thermatlislocations, only attached disclinations with Frank vectors
Ructuations, can be at the origin of the choice, which isalong directions, thus imperfect attached dispirations.
made possible in &ltg because, structurally, the quantized The equation of a circular helix of radius pitchP = b,
dislocation picture is coexistent with a continuous defectcan be written

picture at a smaller scale. _ b
X= cos,y = sin,z=—
2
C. Parabolic focal conic domains The tangent, which is along thedirection can be written
PFCDs are very peculiar, compared to the other focal p 2°Svz2 b
conic domains withe = 1. If one thinks of a PFCD as the = 2+ _— S sin, cos, — .

geometrical limit of a FCD where 1, the limit of the 2 2
ellipse is a parabola carryingke= 1/ 2 disclination, the limit Because of the relation 2 = b, we eventually get
of the hyperbola a parabola carryingka= 1 disclination. _ 231/2[3 sin , cos, 1]
Suppose that the ellipse is equipped with attached quantized § ' T
dislocations whose total Burgers vector is[43), i.e., 4c/ 2p d = 2°Y2[Scos, Ssin, 0]d.
dislocations, P being the supposed Burgers vector of each , . o
one. see aboave' thﬂsp/Zpap:p elp dislogcations per unit d is along the Frank vector of an attached disclination and
length measured along the major axis. This quantity make dlo?g th_e /baXlS;ll'tsz dgnslny mr(?;urgd_ glong the helix is
sense even whee= c/a = 1, a and ¢ inbnite, and the s| = = /(2 ); along thepaxis itis

conic is a parabola. This is the largest density of quantized d o _ gu2l
dislocations possibly attached to a conic, hence the largest tilt dz 2 b~ 270~ 2
boundary energy density.

In fact this OasymmetricO picture of a PFCD is valid for! "€ horizontal line segments with Frank vectods 2which
any value ofe inbnitesimally close to 1, but not fe= 1. ~ rotate helically about with pitch b, form an helicoidal
The transition is discontinuous. At= 1, both parabolas carry Stacking faultof width 2 = b/ between the two helical
k = 1 disclinations: the axis of any cone with agéxon one disclinations, thus limited in size. There are no other defects
of the parabolas £ whose generatrices lie on the cofocal @ftached to the DH, except possibly those related to the
parabola B, is along the tangertyy to Py; this cone is of differences wnh a geometry Qf pgrfect circular hehces._ Apart
revolution,ty is an axis of 2 rotation symmetry along which from the stacking fault contribution to the energy, Pnite per
the local Frank vector alignsNnot along as in the FCD unit length of DH, one can |_nfer from the dlslqcatlon nature of
ellipse case. As witlk = 1 lines in TFCDs and FCDs, there the whole assembly that it is stable due to this very character.
are no defects attached to these parabolas. This is certainly
an element of topological and energetical stability of PFCDs, IV. LIGHT MICROSCOPY OBSERVATIONS
compared to the other types of FCD. A PFCD domain is
susceptible to occupy all space. The transition from a FC
to a PFCD has to be discontinuous, physically. It is indee
observed that the nucleation of PFCDs happens spontaneou
under stress, but neither from precursory FCDs, nor directly
from TFCDs, that are OdestroyedO before transforming into
PFCDs [LQ].

Let us apply these considerations to some observed conics.
igure8 represents a solitary conic, most probably in the mid-
lane of the sample, whose outside interactions are limited to
e boundaries. A parabolic polynomial bt yields a coefbcient

D. Double helices

DHs nucleate at thé&l SmA transition in twist cells,
where they proceed from the deformation of twist discli-
nations into single helices (SHs). The same transformation
has been observed at the  Ntg transition; see Fig3(a).
They also evolve from strings of drifting unstable TFCDs; see
Figs.3(b)EB(d).
DHs consist of two helicak = 1/2 wedge disclinations FIG. 8. Solitary PFCD in a 2Qem-thick Nrg layer of CB7CB in
with the same axis and the same pitch, shifted one witha planar cell. Scale: 2m each small div. Polarizer along
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TABLE I. Fits of the conics in Fig2(a)to ellipses (the two brst  split into two parallel lines. However, conics 3D6, which have
columns) and parabolas (the last columRY. is the coefbcient of seemingly the same eccentricky 0.96, form a fragment

determination. of grain boundary ofangle = 2arcsine 147 ; obviously
. they are not connected by attached quantized dislocations, by
E”'gse Pargbo'a reason of a continuous appearance. They are most probably
R &(x 0.005) R connected by continuous defects.
1 1 1 0.9917
2 1 1 0.9987 v, ATTACHED DISPIRATIONS AND SPIN DISCLINATIONS
3 0.9999 0.964 0.7490 . . L . .
4 0.9999 0.965 0.9250 There remains the question of disclination lines carrying
5 0.9999 0.962 09501 Aattached dispirations of the ty;_:xda (Frank vector) qnd
6 0.9998 0.967 0.9590 zﬂd (Burgers vector.) According to EqL), one can write
7 1 1 0.9972 5 D
8 0.9999 0.951 0.9359 df=d , Sfxtds= 2—d . 3)
The elimination ofd  between these equations yields
of determinatiorR? = 0.9980, whereas an elliptic bt yields an df .2
eccentricitye = 1, equal to the eccentricity of a parabola, with ds S Ff x L. (4)
R? = 1! The same type of btting performed on the conics of )
Fig. 2(a) (see Fig9 of the Appendix for the btting procedure) Letustake = 2sin( /2) =2 for = ,then
yields similar results for the conics numbered 1, 2, and 7 d 2
(R? = 1, e = 1 for the elliptic bts, equally large valuesRf a5 Ft x . (5)

for the parabolic bts.) The conics 3D6 and 8 yield elliptic bts
with R2 andeboth 1, slightly smaller, whereas the parabolic The rotation rate of the Frank vector igi2 t, of a constant
pbts yield debnitely smaller values & (typically 0.95 or  modulus all along the line. This vector, according to B}, (
less) [L9]; see Tabld and Fig.9. is along the direction. Thust, , form a orthonormal
A remarkable fact is that the aspect of the FCDs is continframe;t is along the local axis. The disclination is of a pure
uous from one side of those conics to the other, in completéwist character. The rate of rotation of which is in the plane
opposition with what is expected for FCDs in a SmA phasenormal tot, contains two contributions, a rotation aboutith
Therefore, the deformation of the material is continuous andhe same rate asand a rotation about with a rate denoted
the singularity is restricted to the conic. We advance twoS1/ , unknown.Thusd /ds = (2/p ) S (1 )t.Also,

possibilities: dt/ds = d( x )/ds, one eventually gets

, dt 1

1. Continuous attached defects ds ==,
In continuity with the discussion above, the only attached d 1

defects would be inPnitesimal, thus the deformations contin- — == 8,
uous except on the conics. Except for those that are PFCDs ds P
(e = 1), this requires that the conic be&ka 1/ 2 disclination d _ & 2 6
line and the eccentricitg, according to the discussion above, ds ~ F ' (6)

be strictly <1. Since the density of quantized dislocations .
increases witre, one might then imagine a threshold value Which are the Frenet formulas for a frame wheres the

of e above which a continuous model is favored (in Fige principal.normal, th.e b!nor.mal,' =t the tangent to the Ii'ne.
is small), The torsion of the disclination line is the constanfp2; is

its radius of curvature. Results of a similar nature were stated
in Ref. [13] for cholesterics 21]. Disclinations whose relax-

, , . . ation is due all along their length to continuous dispirations
Conic defects in layered liquid crystals are seldom Opelyrecyryes of constanttorsion 2 /p ;  rotates about the line
fectO; they might suffer deformations, which have alread)(abOut ) with pitch p, which is small in aNtg phase. Call
been observed, in at least two cases: parabolas in Bef. [ g,ch a defect apin disclination
ellipses m_Ref. 20INin that Iattgr case, th.e departures from Kinigs [ 22] has shown that open curves of constant torsion
perfect ellipses have been discussed in terms of attachegl, e periodic along their length. Circular helices are of
dislocations, quantized or continuous. Whereas ellipses afg 5 type. LetR be the radius of the helis® its pitch, the

of k= 1/2 disclinations, parabolas ate= 1 disclinations 55jon 2/p and the curvature/1 of such an helix can be
that do not accept attached defects. But precisely accordingitten

to Fig. 5 the k = 1 disclination can be split into two close

2. Stacking fault ribbons

k = 1/2 disclinations separated by a stacking fault ribbon 1 R

made of defects that may deform the conics. T T RZy P24 2 (7a)
We could in the perspective of stacking faults consider

that conics 1, 2, and 7 of Fi@(a) and the solitary conic of 2_ = L (7b)

Fig. 8 are slightly deformed PFCDs, with the parabolic lines p R2+ P24 2
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These equations are of the second degre® iand P. F
Taking the brst one as an equation with unknddna real i
R requires >P ; and the second one as an equation with -
unknown P, a realP requires 4R <p . Thus, sincep is 1600 1=
very small, the helix has a microscopic radius and is close -
to a straight line. Assume then th& = 0, which yields = i
= , p = P. This much twisted disclination is probably K 1550 -
of a high energy, but one has a comparable twist @ind & i
along the axis in a perfecNtg phase. We havenOt observed - -
any defect of the sort. Its search ilN& phase, where the pitch 1500 1
is large, could be rewarding. r
Geometers have actively investigated closed curves of con- L]
stant torsion, in particular spherical curves; see . [One - E@I T
may wonder whether the small grainy defects observed in the 1450 1480 1530 1580
brst steps of the instability process of a TFCD (Fip[10] .
could not be of this type. x (pixel)
VI. CONCLUSION Ellipse f = [(x - xo)/a]  +[(y-yc)/b] *
To conclude, we have shown that the mere geometri- igj‘?“g_esdqur'es 16_391929393
cal consideration of defects attached to disclinations, in the value Std. Error
framework of the extended Volterra process theory, casts some Xc 1887.5 0.38
light on the stability characteristics of the FCDs observed in Ye 1580.7 12.30
the Ntg phase: the attached continuous defects are imperfect a 66 1.07
in the sense that they do not camfg symmetries. Also, b 214 12.67
this theory predicts two types of molecular conPgurations e=[1..(abf] 0.9514 0.0045
surr(_)undmg FCD eII_lpses, whether their attached defects are Parabola y=AX +Bx+C
continuous or qu_antlzed. _Both types have been ops_erved, the Residual sum of 2614
brst one belonging to ellipses of a large eccentricity, close squares
to e= 1. Finally, disclinations with (perfect) attached con- Adj. R-Square 0.9359
tinuous dispirations are special line defects, with a constant Value Std. Error
torsion. They have not been observed yet. A deeper under- c -148526 11936
standing of the various unusual aspects of defects and textures | A 159.4 12.6
would require an investigation of the associated energies. B -0.0422 0.0033

FIG. 9. Curve bttings, see text.
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