Ferrous oxide-rich asteroid achondrites - INSU - Institut national des sciences de l'Univers Accéder directement au contenu
Article Dans Une Revue Geochimica et Cosmochimica Acta Année : 2019

Ferrous oxide-rich asteroid achondrites

James M. D. Day
  • Fonction : Auteur
Christopher A. Corder
  • Fonction : Auteur
Pierre Cartigny

Résumé

Ferrous oxide (FeO)-rich asteroid achondrites can be defined as asteroid-derived samples that experienced incipient partial melting processes in the early Solar System (>4.5 Ga) leading to melt-residues and cumulate and melt rocks that have high FeO in silicate grains (molar Mg/[Mg + Fe] < 80), implying relatively oxidative conditions (fO2 of IW +1 to +3). These achondrites include olivine-dominated brachinite and brachinite-like achondrite meteorites, ungrouped meteorites including Lewis Cliff 88763, Northwest Africa (NWA) 6693 and NWA 6704, Tafassasset, NWA 011/1296, and the oligoclase-rich meteorites Graves Nunataks (GRA) 06128 and GRA 06129. Ferrous oxide-rich asteroidal achondrites differ from other partially-melted achondrites, including ureilites and acapulcoite-lodranites in that the latter have higher molar Mg/ (Mg + Fe) in silicate grains, and lower fO2 (IW 0 to -2). New mineral chemical, whole-rock major- and trace-element and highly siderophile element (HSE: Re, Os, Ir, Ru, Rh, Pt, Pd, Au) abundance data, and O and Os isotope data are presented for FeO-rich achondrite meteorites Allan Hills 84025 (brachinite), Miller Range (MIL) 090206 and MIL 090405 (brachinite-like achondrites), and NWA 6693 (ungrouped). These results, combined with available data for FeO-rich asteroidal achondrites, reveal that these rocks include nearly-pure residues after partial melting, to samples formed by melt-rock reaction and as cumulates, requiring variable to extensive Fe-Ni-S partial melting, and between 1 and 20% silicate partial melting. The FeO-rich asteroidal achondrites originate from at least four distinct parent bodies, based on O-Cr-Ti isotope systematics, and occur for both carbonaceous and non-carbonaceous chondrite precursor sources. The initial water and volatile contents of FeO-rich asteroid achondrites were similar to carbonaceous chondrite groups, implying both carbonaceous and non-carbonaceous precursor materials generated water-rich partially-melted asteroidal bodies. The existence and recognition of FeO-rich asteroid achondrites explains the otherwise enigmatic nature of some iron meteorite groups (e.g., IVA, IVB) that require segregation from an oxidized asteroid parent body. The internal structure of some asteroid parent bodies was likely to be complex, reflecting early differentiation processes of nascent core formation, Fe-Ni-S melt pooling, variable silicate partial melting, igneous differentiation and the important role of melt-rock reaction, melt refertilization and late-stage C- (reduced bodies) or S-rich (oxidized bodies) fluid and vapor reactions.
Fichier non déposé

Dates et versions

insu-03586592 , version 1 (24-02-2022)

Identifiants

Citer

James M. D. Day, Christopher A. Corder, Nelly Assayag, Pierre Cartigny. Ferrous oxide-rich asteroid achondrites. Geochimica et Cosmochimica Acta, 2019, 266, pp.544-567. ⟨10.1016/j.gca.2019.04.005⟩. ⟨insu-03586592⟩
7 Consultations
0 Téléchargements

Altmetric

Partager

Gmail Facebook X LinkedIn More