Skip to Main content Skip to Navigation
Journal articles

The dynamics of a long-lasting effusive eruption modulated by Earth tides

Abstract : Deciphering eruptive dynamics in near-real time is essential when dealing with hazard assessment and population evacuation. Recognition of specific patterns in time-series measured during volcanic activity may help decipher distinctive behavior at active volcanoes, providing insights into the underlying driving mechanisms. Multi-parameter data sets usually agree on the overall trend characterizing the temporal evolution of an eruption providing insights into the first-order eruptive dynamics. However, second-order variations detected in different data sets remain often poorly understood. The 2014-2015 Holuhraun eruption (Iceland) offers an excellent opportunity to investigate the dynamics of a long-lasting effusive eruption. We analyze the seismic tremor and the volcanic radiated power emitted by the lava field during the 6 months of the eruption using Singular Spectrum Analysis (SSA). In both geophysical time-series, we identify periods from ∼5 to ∼32 days coinciding with periods of Earth tides. Here we show that ∼50% of both signals are composed of tidal periods suggesting that magma movements follow frequencies imposed by lunisolar forces within the crust and at Earth's surface.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, February 22, 2022 - 4:23:10 PM
Last modification on : Friday, August 5, 2022 - 12:01:20 PM




Stéphanie Dumont, Jean-Louis Le Mouël, Vincent Courtillot, Fernando Lopes, Freysteinn Sigmundsson, et al.. The dynamics of a long-lasting effusive eruption modulated by Earth tides. EARTH AND PLANETARY SCIENCE LETTERS, 2020, 536, p. 99-122. ⟨10.1016/j.epsl.2020.116145⟩. ⟨insu-03584799⟩



Record views