Skip to Main content Skip to Navigation
Journal articles

Clouds and Snowball Earth deglaciation

Abstract : Neoproterozoic, and possibly Paleoproterozoic, glaciations represent the most extreme climate events in post-Hadean Earth, and may link closely with the evolution of the atmosphere and life. According to the Snowball Earth hypothesis, the entire ocean was covered with ice during these events for a few million years, during which time volcanic CO2 increased enough to cause deglaciation. Geochemical proxy data and model calculations suggest that the maximum CO2 was 0.01-0.1 by volume, but early climate modeling suggested that deglaciation was not possible at CO2 = 0.2. We use results from six different general circulation models (GCMs) to show that clouds could warm a Snowball enough to reduce the CO2 required for deglaciation by a factor of 10-100. Although more work is required to rigorously validate cloud schemes in Snowball-like conditions, our results suggest that Snowball deglaciation is consistent with observations.
Document type :
Journal articles
Complete list of metadata
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Tuesday, February 22, 2022 - 9:29:02 AM
Last modification on : Wednesday, February 23, 2022 - 3:34:59 AM
Long-term archiving on: : Monday, May 23, 2022 - 6:17:08 PM


Geophysical Research Letters -...
Publisher files allowed on an open archive





Dorian S. Abbot, Aiko Voigt, Mark Branson, Raymond T. Pierrehumbert, David Pollard, et al.. Clouds and Snowball Earth deglaciation. Geophysical Research Letters, American Geophysical Union, 2012, 39, p. 39-48. ⟨10.1029/2012GL052861⟩. ⟨insu-03583017⟩



Record views


Files downloads