Skip to Main content Skip to Navigation
Journal articles

Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge

Abstract : The origin of light hydrocarbons discovered at serpentinite-hosted mid-ocean hydrothermal fields is generally attributed to the abiogenic reduction of carbon (di)oxide by molecular hydrogen released during the progressive hydration of mantle-derived peridotites. These serpentinization by-products represent a valuable source of carbon and energy and are known to support deep microbial ecosystems unrelated to photosynthesis. In addition, the pool of subsurface organic compounds could also include materials derived from the thermal degradation of biological material. We re-investigate the recently described relics of deep microbial ecosystems hosted in serpentinites of the Mid-Atlantic Ridge (4-6°N) in order to study the ageing and (hydro)thermal degradation of the preserved biomass. An integrated set of high resolution micro-imaging techniques (Scanning Electron Microscopy, High Resolution Transmission Electron Microscopy, Raman and Fourier Transform Infra-Red microspectroscopy, Confocal Laser Scanning Microscopy, and Scanning Transmission X-ray Microscopy at the carbon K-edge) has been applied to map the distribution of the different organic components at the micrometer scale and to characterize their speciation and structure. We show that biologically-derived material, containing aliphatic groups, along with carbonyl and amide functional groups, has experienced hydrothermal degradation and slight aromatization. In addition, aliphatic compounds up to C6-C10 with associated carboxylic functional groups wet the host bastite and the late serpentine veins crosscutting the rock. These compounds represent a light soluble organic fraction expelled after biomass degradation through oxidation and thermal cracking. The detected complex organic matter distribution recalls a typical petroleum system, where fossil organic matter of biological origin maturates, expelling the soluble fraction which then migrates from the source to the reservoir. Ecosystem-hosting serpentinites can thus be seen as source rocks generating a net transfer of hydrocarbons and/or fatty acids issued from oxidative processes and primary cracking reactions, then migrating upward through the serpentine vein network. This finally suggests that deep thermogenic organic compounds of biological origin can be a significant contributor to the organic carbon balance at and far below peridotite-hosted hydrothermal fields.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03581767
Contributor : Nathalie POTHIER Connect in order to contact the contributor
Submitted on : Sunday, February 20, 2022 - 3:26:42 PM
Last modification on : Thursday, July 7, 2022 - 3:15:26 AM

Identifiers

Citation

Valerio Pasini, Daniele Brunelli, Paul Dumas, Christophe Sandt, Joni Frederick, et al.. Low temperature hydrothermal oil and associated biological precursors in serpentinites from Mid-Ocean Ridge. Lithos, 2013, 178, pp.84-95. ⟨10.1016/j.lithos.2013.06.014⟩. ⟨insu-03581767⟩

Share

Metrics

Record views

7