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Abstract Automatic estimation of velocities from GPS coordinate time series is becoming required to
cope with the exponentially increasing flood of available data, but problems detectable to the human eye
are often overlooked. This motivates us to find an automatic and accurate estimator of trend that is resistant
to common problems such as step discontinuities, outliers, seasonality, skewness, and heteroscedasticity.
Developed here, Median Interannual Difference Adjusted for Skewness (MIDAS) is a variant of the Theil-Sen
median trend estimator, for which the ordinary version is the median of slopes vij= (xj–xi)/(tj–ti) computed
between all data pairs i> j. For normally distributed data, Theil-Sen and least squares trend estimates are
statistically identical, but unlike least squares, Theil-Sen is resistant to undetected data problems. To mitigate
both seasonality and step discontinuities, MIDAS selects data pairs separated by 1 year. This condition is
relaxed for time series with gaps so that all data are used. Slopes from data pairs spanning a step function
produce one-sided outliers that can bias the median. To reduce bias, MIDAS removes outliers and
recomputes the median. MIDAS also computes a robust and realistic estimate of trend uncertainty. Statistical
tests using GPS data in the rigid North American plate interior show ±0.23mm/yr root-mean-square (RMS)
accuracy in horizontal velocity. In blind tests using synthetic data, MIDAS velocities have an RMS accuracy of
±0.33mm/yr horizontal, ±1.1mm/yr up, with a 5th percentile range smaller than all 20 automatic estimators
tested. Considering its general nature, MIDAS has the potential for broader application in the geosciences.

1. Introduction
1.1. Motivation

Accurate station velocities are needed for many geodetic investigations in geophysics, including plate
tectonics, strain across faults systems, the contribution of vertical land motion to regional sea level, glacial
isostatic adjustment, mountain uplift, subsidence, and secular unloading/loading of water reservoirs and
ice sheets. To illustrate the magnitude of the problem, the recent global tectonic model of Kreemer et al.
[2014] required the time-consuming, manual screening of the east and north component time series from
over 6700 stations.

In addition, for the case where a geophysical event such as an earthquake or the onset of volcanic activity
may have recently displaced a station, it is useful to determine the preevent velocity as a reference velocity
to detrend the coordinate time series. Doing this automatically would facilitate rapid event analysis and could
even be used to issue an alert for potential events that may otherwise go undetected.

All of the above motivates us to find a way to estimate station velocities accurately without the need for
manual screening. Such velocity estimates should be resistant to the kinds of problems we shall now explore
that are common in GPS time series. Moreover, the velocity estimates should each come with a realistic
uncertainty computed using robust statistics of dispersion.

1.2. Common Problems

A common problem in GPS time series is seasonality. The presence of seasonal signals can significantly bias
velocity estimates unless they are mitigated. This is particularly problematic for shorter time series in least
squares analysis owing to correlations between velocity and seasonal parameters [Blewitt and Lavallée, 2002].

Much of the literature on statistics of errors in geodetic time series has given appropriate attention to spectral
characterization [e.g.,Williams et al., 2004]. Yet expert analysts know intuitively that many of the specific error
sources in time series require some degree of characterization in the time domain [Agnew, 1992]. One com-
mon example is the presence of step discontinuities in the time series caused by equipment changes, which
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not reflect geophysical motion of a station. In this case, the estimated velocity should reflect the trends
between the steps, as if the steps were absent [Williams, 2003]. In the case of least squares analysis, steps
can be estimated simultaneously with velocity but, unless the step epochs are known, some kind of step
detection algorithm needs to be applied first. Yet to date, blind tests conducted on detecting step disconti-
nuities in GPS data prove that the best expert eyeball performs better than the world’s best automatic
methods [Gazeaux et al., 2013].

Other common timedomainproblems inGPSdata includeoutliers, time-dependentnoise (heteroscedasticity),
and unmodeled events in general. For example, it is typically the case that the noise level in GPS time series
tends to be worse for earlier data, when there were fewer satellites and reference frame stations. Such hetero-
scedasticitymay not be accurately characterized by formal errors. As another example, GPS time series tend to
benoisier in summer thanwinter, becauseof increasedvariation in atmospheric refractivity [Blewitt et al., 2013].
However, some stations that are subject to sustained snow covermay experience the opposite seasonal effect.

The eyeball is good at discerning temporal patterns of errors like these that can be harmful to least squares
estimation. There are also problems in GPS time series with nonnormal probability distribution functions
(PDF) that can be obvious to the eye but are not handled well by traditional methods that involve a combina-
tion of least squares estimation with outlier and step detection. Examples of pathological features include
skewness (asymmetric PDF), kurtosis (sharp-peaked, long-tailed PDF), and multiple peaks (multimodal PDF).

1.3. Current Approach

Operational methods to date, whether automatic or not, typically iterate on two broad steps: (1) apply least
squares estimation to coordinate time series according to a parametric model that at least includes station
velocity and Fourier coefficients to fit seasonal signals and (2) attempt to detect and remove outliers or pro-
blematic periods of data, detect step discontinuities, and insert extra parameters to estimate each detected
step. A problemwith this approach is that the initial least squares fit is biased, thus impacting the detection of
steps [Gazeaux et al., 2013]. Iteration may not always solve this problem satisfactorily.

Such types of algorithms that require step detection can fail in two possible ways. On the one hand, failing to
detect real permanent steps will bias the estimates of station velocity and other possible parameters. On the
other hand, the detection of false positives can lead to unnecessary degradation of precision in the determi-
nation of station velocity, with negative impact on the stability of reference frames realized from such data
[Blewitt et al., 2013].

1.4. MIDAS Approach

Least squares estimation predominates in geodesy; indeed, it has been argued that least squares was
invented for geodesy by Gauss [Stigler, 1981]. The almost complete dependence of geodetic practice on
least squares estimation is hard to justify considering that least squares (alone) is not robust and that a
large body of research has revolutionized robust estimation theory and practice over the last few decades
[Wilcox, 2005].

This paper develops a robust median trend estimator based on Theil-Sen [Theil, 1950; Sen, 1968], which is well
known and used in many fields of science such as astronomy [Akritas et al., 1995], remote sensing [Fernandes
and Leblanc, 2005], and hydrology [Helsel and Hirsch, 2002]. The ordinary version of Theil-Sen works by taking
the median trend (50th percentile) between all possible pairs of data. Thus, outliers have negligible effect,
and the result reflects the predominant relationship between points, which the eye naturally detects.

Median Interannual Difference Adjusted for Skewness (MIDAS) is a customized version of Theil-Sen that
incorporates the qualities needed for accurate GPS station velocity estimation, such as insensitivity to seaso-
nal variation. MIDAS has features designed to make trend estimates resistant to step discontinuities in the
time series. Figure 1 uses a simple example of simulated data to provide an intuitive impression of the
insensitivity of MIDAS velocity estimates to steps that can be barely detected by eye. Figure 1 also shows
what happens to least squares estimates if step detection fails. In addition, MIDAS computes a realistic velo-
city uncertainty that is based on the observed distribution of sampled slopes.

After developing and testing the methodology, this paper concludes with a summary of our findings and our
thoughts on the applicability of the MIDAS method for automation in GPS geodesy and in other disciplines.
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Appendix A provides a theoretical
derivation of statistics that rigorously
quantify the robustness of MIDAS to
outliers and steps.

2. Methodology
2.1. The Ordinary Theil-Sen
Estimator

The development of the MIDAS esti-
mator starts by considering the
ordinary Theil-Sen estimator, which
for the case of coordinate time series
is defined as the median of slopes
between pairs of data:

bv ¼ median j>i
xj � xi
tj � ti

� �
(1)

where coordinate xi is sampled at
time ti.

The ordinary version of Theil-Sen
computes the median slope between
all possible pairs of a coordinate time
series. In the development of MIDAS

that follows below, we modify the selection of pairs in order to reduce sensitivity to seasonality and
step discontinuities.

Conventionally, the median slope is defined by ranking the slopes of the selected n data pairs from lowest to
highest values: v(p� 1)< v(p). Themedian can then be defined as middle ranking value if n is odd; if n is even,
the median is the average of the two middle values:

bv ¼ medianp v pð Þ½ � ¼
v nþ 1ð Þ=2½ �; for odd n

v n=2ð Þ þ v n=2þ 1ð Þ
2

; for even n

8<
: (2)

It turns out that computing the median does not actually require sorting all the data, which can be computa-
tionally expensive. Instead, we use the “quickselect” algorithm by Hoare [1961], which can find any specified
percentile in a computation time that, in practice, scales linearly with the number of data O(n).

2.2. The Interannual Theil-Sen Estimator

To mitigate seasonality, researchers in water resources [e.g., Hirsch et al., 1982; Helsel and Hirsch, 2002]
suggest selecting only data that are separated by an integer number of years. An important feature of our
procedure is that we restrict this selection even further by demanding that data pairs be separated by just
1 year, which makes the estimator less sensitive to step discontinuities. Pairs of data spanning a step discon-
tinuity will produce velocity samples that are on one of the tails of the distribution. Demanding that the time
separation be just 1 year rather than any integer year minimizes the fraction of pairs that span discontinuities
while maintaining insensitivity to seasonality.

It is common for time series to have time specified by real-valued years, for which 1 day is defined as
1/365.25 years. In this case, to select a single pair it is sufficient to require

0:999 year < tj � ti
� �

< 1:001 year (3)

for which the pair will be separated by 365 days. Clearly, the specific choice of 365 days could be relaxed to
some degree while preserving insensitivity to seasonality. It might be thought that allowing all possible pairs
within a wider time window around 1 year might generate superior results. We tested this idea by gradually
widening the window up to 100 days wide to allow up to 104 more pairs. We found that the velocity estimates
change very little at the ~0.1mm/yr level. This suggests that our minimal selection of pairs contains

Figure 1. Example of simulated time series with steps, showing trends
estimated by least squares (maroon), interannual Theil-Sen (blue), and
MIDAS (green). None of the estimators model the steps. To visualize howwell
each estimator fits the data, also plotted are data without steps and the true
trend (gray). Steps of 10mm are added at 3.0 year and 5.0 year. The simulated
data include an annual sinusoidal signal of amplitude 2mm and random
errors with standard deviation 1.5mm. Least squares simply fails without
step parameters. The MIDAS trend error is 0.5 ± 0.5mm/yr, reducing the bias
in the interannual Theil-Sen by 50%.
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essentially all of the independent information available. A big advantage of this approach is that the number
of computations is reduced by orders of magnitude, as the number of pairs for our selection method goes
linearly with the number of data O(n).

2.3. The MIDAS Estimator

If step discontinuities exist in the time series, the interannual Theil-Sen trend estimate can be biased, because
a step can produce a multimodal distribution of slopes from up to 365 data pairs spanning the step. Steps
smaller than 2 standard deviations of the data noise will generally produce a unimodal distribution that is
skewed (with one tail more populated than the other).

To handle this problem, we compute an initial value of the median trend using slopes from all selected data
pairs and then define slopes as outliers (possibly associated with steps) if they are greater than 2 standard
deviations on either side of themedian. This requires an estimate of the standard deviation of the distribution
that is not sensitive to outliers [Leys et al., 2013]. For this, we base our estimate on a well-known robust esti-
mator of dispersion known as the median of absolute deviations (MAD). The standard deviation can then be
estimated robustly by scaling the MAD according to Wilcox [2005]:

MAD ¼ medianp v pð Þ � bvj j
σ ¼ 1:4826 MAD (4)

This estimate of standard deviation assumes that a majority of data reasonably fit a Gaussian PDF, with a
minority of the data being outliers. Given this estimate of the standard deviation, final values of the median
and standard deviation are computed after trimming the tails of the distribution beyond 2 standard
deviations. The two steps can be summarized as follows:

Step1 : bv ¼ medianp v pð Þj j
σ ¼ 1:4826 medianp v pð Þ � bvj j

Step2 : Select q ¼ pf g for all v pð Þ � bvj j < 2σbv ¼ medianq v qð Þj j
σ ¼ 1:4826 medianq v qð Þ � bvj j

(5)

The specific choice of trimming tails beyond 2 standard deviations strikes a balance between having a small
impact on a majority of data that has a Gaussian PDF while being effective at removing outliers arising from
step discontinuities. Whereas the precise choice of 2 standard deviations is not important, simpler schemes
based on trimming a specific percentage of both tails prove to be less effective because steps can introduce
significant skewness to the distribution.

2.4. Relaxed Pair Selection

The selection of pairs of data 1 year apart works well for the case of continuous stations that produce station
position estimates every day without gaps. At the opposite extreme, sporadic data from campaign stations
may not have any pairs of data that satisfy this criterion. Somewhere between these extremes lie semicontin-
uous stations [Blewitt et al., 2009], which have campaign sessions that may last for months at a time, with
large time gaps between the sessions. Since much valuable information lies in time series that have gaps,
we are motivated to relax the selection criteria so that as much data as possible are used.

In designing the relaxed selection algorithm, we apply the following principles. (1) There should be negligible
difference in estimates if we were to introduce small gaps in a time series. (2) The principle of time symmetry
demands that if all the data were reversed in time, the magnitude of the velocity estimate should not change.
(3) Selection should give first priority to pairs separated by 1 year. (4) A pair separated by more than 1 year
must be selected if a 1 year pair cannot be formed.

We designed our code to satisfy all these principles.

1. There is no threshold that defines whether we treat a time series as continuous or otherwise. The same
code applies to all time series.

2. The code runs the pair selection subroutine twice, firstly, in time order (“forward”) and secondly, in reverse
time order (“backward”).

3. When moving forward or backward through the data to select pairs, the first priority is given to pairs
1 year apart, if they exist.
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4. If there is nomatching pair 1 year apart, the algorithm selects the next available data point that has not yet
been matched. This prevents overdependence on specific data. If the points available for matching are
exhausted because the end of the time series is reached, the search is reset to the closest matching pair
at least 1 year apart.

The consequences of applying this relaxed algorithm are negligible for time series with a few short gaps.
Generally, there is a large improvement for sporadic campaign time series, for which strict selection may fail
to find any pairs at all. For time series with gaps, the relaxed algorithm adds significantly more slope samples
to the distribution, resulting in a more precise estimate. On the other hand, the robustness of MIDAS for data
with gaps is generally weaker than for continuous data, because there is more dependence on specific data
(which may have problems) that are used multiple times. This motivates us to compute an uncertainty in
velocity that realistically reflects the slope distribution and predicts catastrophic failure of the estimator.

2.5. Velocity Uncertainty

Using the iterated estimate for the standard deviation given in the second step of equation (5), the formal
standard error in the median is estimated according to Kenney and Keeping [1954, p.212], under the assump-
tion that the trimmed distribution is approximately normal:

bσ ¼
ffiffiffi
π
2

r
σffiffiffiffi
N

p

≈ 1:2533
σffiffiffiffi
N

p
(6)

Recall that the estimate of the standard deviation is based on the MAD, equation (4), under the assumption
that a majority of data have a Gaussian PDF, with a minority being outliers. This justifies the use of rules
applicable to the normal distribution. Here N is the effective number of independent q slopes selected in step
2 of equation (5). We compute this by dividing the actual number by a factor 4 to account for the nominal
number of times the original coordinate data are used to form pairs:

N ¼ Nactual

4
(7)

Note that N will generally be different for each of the three coordinates of position, because of the way that
tails are trimmed. As is common practice in GPS geodesy, we treat the time series in the east, north, and up
component independently, as correlations between these components are typically small (~0.1). Moreover,
systematic errors and step discontinuities tend to affect these components differently (e.g., antenna
height change).

Finally, the MIDAS velocity uncertainty is defined as the scaled standard error in the median:

bs ¼ 3bσ (8)

The scaling factor of 3 is chosen so that the error is realistically close to the root-mean-square (RMS) accuracy,
according to tests using simulated data described later. The need for a scaling factor arises when data are
autocorrelated, which also changes the effective number of independent observations [Zięba and Ramsa,
2011]. Autocorrelation can arise from power law noise [Agnew, 1992] such as flicker noise, which is pervasive
in nature [Brody, 1969] and is therefore pervasive in GPS data [Williams et al., 2004].

2.6. Robustness

The robustness of an estimator can be quantified by its sample breakdown point, defined as the number of
arbitrarily large outliers in a data set that can be tolerated before the estimate becomes arbitrarily large. The
“asymptotic” breakdown point is defined for an infinite number of data. Least squares estimators, including
the sample mean, have the worst possible asymptotic breakdown point of 0%. In contrast, the sample med-
ian has the best possible breakdown point of 50%. Even though the ordinary Theil-Sen estimator is a median,
it has a lower breakdown point of 1–2�½=29%, because the fraction refers to the original data rather than
the sampled pairs. This theoretical value is a direct consequence of Theil-Sen sampling n(n–1)/2 pairs of data
and is generally different for other sampling schemes.

The sample breakdown point of our interannual Theil-Sen and MIDAS estimators are identical, but different
than the ordinary Theil-Sen. The MIDAS breakdown point for continuous time series is derived analytically in
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Appendix A. The asymptotic breakdown point is shown to be 0.25(1–1/T), where T is a dimensionless quantity
defined as the time spanned by all the data divided by the time separation between data pairs (365 days).
Therefore, up to 25% of data can be outliers for very long time series. This assumes the worst possible case
where all bad coordinate data are paired with good data. Examples of the sample breakdown point are
10% at 1.25 years, 14% at 2.33 years, and 20% at 5 years. Other examples are shown in Table A1 of
Appendix A. In the case of GPS time series, the fraction of outliers rarely exceeds a few percent if we discount
the effect of step discontinuities (to be addressed next), so outliers are typically not problematic.

To quantify resistance to step discontinuities, we introduce the “step breakdown point,” defined as the mini-
mum number of arbitrarily large steps that cause the estimator to give arbitrarily large values, as a function of
the time span T in years. It is shown in Appendix A that the asymptotic step breakdown point for a continuous
time series is (T–1)/2, rounded down to the nearest integer. No arbitrarily large steps can be tolerated until
3 years, after which one step can be tolerated. One more step can be tolerated for every 2 additional years.
This assumes the worst possible case where steps do not overlap (are separated by more than 1 year) and
where the steps are all in the same direction. Note that an infinite step in one direction would exactly cancel
with a nonoverlapping step in the opposite direction, so it is possible to tolerate more steps than the step
breakdown point.

In terms of breakdown point, the MAD and hence the MIDAS velocity uncertainty are just as robust as the
velocity estimate. This is a desirable quality, because if the breakdown point is exceeded, the MAD can be
arbitrarily large; thus, the MAD should appropriately reflect any catastrophic failure of the velocity estimate.

Finally, we point out that robustness can be enhanced if given a list of epochs at which steps may be
expected due to known equipment changes or earthquakes. Our implementation of MIDAS has the option
of reading such a list and using it to prevent the sampling of slopes from data pairs that span such epochs.
This option was not exercised in any of the tests described here.

2.7. Limitations

Before discussing limitations of MIDAS, we first point out that other specific choices could have beenmade in
the MIDAS algorithm that would yield similar results. We do not claim that MIDAS is theoretically optimal;
rather, we emphasize the importance of its general design to be insensitive to common problems in GPS
data, such as steps and seasonality. We also emphasize that the robustness and accuracy of MIDAS should
in the end depend on testing using real and simulated data that exhibit common problems.

Like any estimator, MIDAS has its limitations, and users should exercise appropriate caution. First of all, if the
station really does have a nonconstant velocity, then interpretation of the MIDAS velocity can be problematic.
However, appropriate interpretation of the MIDAS velocity may be possible, depending on the situation. For
example, in the case where the station was subject to an event that occurs after the midpoint of a time series,
such as an earthquake followed by postseismic deformation, the MIDAS velocity can be interpreted as the
preevent velocity. We emphasize that MIDAS is simply a trend estimator and that other estimators would
need to be applied to study other factors influencing the time series. Nevertheless, it may be useful to
subtract the preevent velocity estimated by MIDAS from the postevent time series to characterize the
event-induced signal.

Secondly, MIDAS does not mitigate the effects of periodic signals unless they are harmonics of 1 year. That is,
MIDAS is completely insensitive to seasonal signals of any annually repeating form, but it could be sensitive
to large periodic signals that do not repeat exactly from 1 year to the next, or signals of other frequency.
Fortunately, the level of velocity bias caused by periodic signals averages down quickly with time, faster than
that for white noise [Blewitt and Lavallée, 2002]. We investigated the specific case of a sinusoidal signal with
the draconitic (eclipse) period of the GPS satellite constellation, which at ~351 days differs from 365 days
because of precession of the orbit nodes [Griffiths and Ray, 2013]. We find by simulation that a 1mm ampli-
tude signal biases the MIDAS velocity within a negligible maximum range of ±0.03mm/yr for time series
spanning 2 to 3 years (and rapidly falling with each passing year).

Finally, the computation of breakdown point in this paper assumed a continuous time series; hence, the
robustness of MIDAS cannot be guaranteed for time series with gaps. We have not attempted to quantify
how the robustness of MIDAS degrades, as the time series becomes more sparse, because this problem is
not tractable analytically. Even a Monte Carlo simulation would not address this question satisfactorily,
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because the breakdown point is determi-
nistic and relates to the worst-case
scenario, which is different for each speci-
fic sparse time series. Fortunately, the
MIDAS uncertainty has been designed
to degrade for cases where the break-
down point has been exceeded.

3. Performance Tests
3.1. Visual Assessment of
Step Mitigation

The first qualitative test is simply to
check visually that MIDAS appears to
be mitigating step discontinuities. If
MIDAS has performed well on time
series with constant velocity, the
detrended time series with steps should
appear by eye to have zero slope
between the steps, if we visually dis-
count outliers. Once this has been
established, we then go on to conduct
rigorous quantitative tests.

An example of a detrended time series
is shown in Figure 2 for three stations
with very different characteristics. The
grid lines of zero slope are intended to
aid the eye in assessing the accuracy of
the fit. The first is station RENO, a con-
tinuously operating station that was
subject to a magnitude 5.0 earthquake
in 2008 and clearly exhibits postseismic
coordinate variation that is an order of
magnitude larger than the small coseis-
mic step. The second example is station
ROBP, which around 2011.0 exhibits a
step of ~10mm in the all three compo-
nents. This step went undetected in
conventional analysis, which relied on
a combination of station configuration
logs, earthquake catalogs, and the

application of step detection algorithms, which sometimes fail. This step was not associated with any known
geophysical activity and is likely to have been caused by an undocumented antenna change. The third
example is station DRYV, our campaign station that had a monument replaced and relocated ~80mm away
in the east direction immediately prior to the last campaign (see section 3.4).

All of these examples and the many others visually inspected so far demonstrate qualitatively that MIDAS is
mitigating steps as designed. Moreover, they illustrate howMIDAS can be used as a tool to flag problems with
conventional analysis or for flagging time series that deserve further investigation using other tools.

3.2. Accuracy Using Synthetic Data

MIDAS was subject to a blind test using 50 simulated station coordinate time series (each for east, north, and
up) that were previously generated for the Detection of Offsets in GPS Experiment (DOGEx) for purposes of
testing step detection methods [Gazeaux et al., 2013]. Each of the 150 time series (100 horizontal and 50 up)
has a known but undisclosed constant velocity, synthetic steps, gaps, and power law noise. A total of 20

Figure 2. Coordinate time series that have been detrended using the
MIDAS velocities for pathological examples detailed in the text: (top)
station RENO north component, with an earthquake and skewness;
(middle) station ROPB east component, with previously undetected
step and outliers; (bottom) station DRYV east component, with displaced
monument in the final campaign. Trends agree visually with zero
slope lines.
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automatic step detection programs
from different analysis groups around
the world were previously tested
blindly by Gazeaux et al. [2013].
Performance can be assessed by com-
paring the true velocity to the velocity
estimated by least squares using all
the steps identified by each program
(whether true or false).

Since MIDAS does not even attempt
to detect steps, we instead blindly
tested the accuracy of MIDAS veloci-
ties. Only one of the authors had
access to the true velocities of the
simulated data, while a different
author was responsible for producing
the MIDAS velocities using the simu-
lated data without ever having access
to the true values. Figure 3 shows a
histogram of the resulting MIDAS
velocity error distribution separately
for the horizontal (east and north
pooled together) and up compo-
nents. We first analyze this distribu-
tion in terms of central tendency,
dispersion, and kurtosis, and then we
compare it with distributions from
the other estimators (Figures 4 and 5).

First of all, the mean μ of the MIDAS
velocity errors is 0.036 ± 0.032mm/yr
horizontal and �0.07 ± 0.15mm/yr
up, which are statistically consistent
with zero for normally distributed
errors. The dispersion of the velocity
error distribution from the 150 syn-
thetic time series was analyzed using

three statistics: (1) the RMS velocity error, which is the standard deviation about 0; (2) the “IQR” interquartile
range (P75–P25); and (3) the “IPR” interpercentile range (P95–P5). The rationale for these statistics is as follows:
(1) the RMS includes all solutions, whether good or bad, and gives a measure that can be directly compared
with MIDAS uncertainties and with measures of accuracy tested on real data; (2) for a symmetric distribution,
the IQR is simply twice the MAD of velocity estimates and is therefore a robust measure of dispersion, quan-
tifying how well the estimator performs most of the time; (3) the IPR is insensitive to the few most extreme
values in each tail yet will reflect poor performance should an excessive number of outliers exist. For a normal
distribution of standard deviation σ, the IQR and IPR correspond to 1.35σ and 3.29σ, respectively, with a ratio
IPR/IQR = 2.44. Increasing the number of outliers increases this ratio.

The results on themeasures of dispersionof theMIDAS velocity errors are as follows: (1) the RMS is ±0.33mm/yr
horizontal and ±1.07mm/yr up, (2) the IQR is 0.41mm/yr horizontal and 1.20mm/yr up, and (3) the IPR is
1.10mm/yr horizontal and 3.54mm/yr up. Themeasures of dispersion are ~3 times larger for up than the hor-
izontal, which we assume reflects the DOGExmodel for simulating data. This ratio is a common rule-of-thumb
in GPS geodesy. In comparison, the RMS uncertainty computed by MIDAS is ±0.41mm/yr horizontal and
±0.91mm/yr up. Thus, the overall magnitude of the MIDAS uncertainties is therefore reasonably consistent
with the dispersion of actual errors, a consequence of our scaling of the standard errors by the factor of 3 to
compute the uncertainty in equation (8).

Figure 3. Histograms of MIDAS velocity errors on synthetic time series.
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As a further test that MIDAS velocity errors closely follow the normal distribution without excessive frequency
of outliers, we follow Folk and Ward [1957] by defining “graphic kurtosis”:

K ¼ 1
2:44

IPR
IQR

(9)

This has a value of 1.0 for the normal
distribution. Distributions with heavy
tails and sharped peakness relative
to the normal distribution have larger
kurtosis [DeCarlo, 1997]. The graphic
kurtosis for MIDAS velocity errors is
1.11 horizontal and 1.21 up, which
are considered close to that of the nor-
mal distribution [Folk and Ward, 1957].

The MIDAS velocity errors distribu-
tion was then compared to distribu-
tions resulting from least squares
estimation that include steps that
were identified from each of 20
automatic programs from around
the world. The sample distributions
are summarized using a boxtail plot
in Figure 4. Boxes from the worst
four programs tested are not shown.
Of all methods tested, the velocity
error distribution for MIDAS shows

Figure 4. Boxplots summarizing the velocity error distributions using the DOGEx synthetic data for (left) north and east
components and (right) up component. Results are from MIDAS and from least squares using steps identified by 16 of
the best automatic step detection programs. The box width is the IQR, and the central line is the median. The width
between whiskers is the IPR. Boxplots are ranked top to bottom in order of increasing IPR. MIDAS outperforms least squares
with step detection.

Figure 5. Performance of horizontal velocities estimated by MIDAS com-
pared with least squares using a variety of step detection methods, plotted
as IPR (5th percentile range) versus equivalent step detection threshold, as
explained by Gazeaux et al. [2013]. Even though MIDAS does not detect
steps, it has an equivalent step detection threshold of ~6mm, lower than
actual step detection methods.
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the smallest IPR in the horizontal
components (100 samples) and the
second smallest IPR in the up com-
ponent (50 samples). MIDAS also
has the smallest IQR for the
horizontal components.

The DOGEx also quantified and com-
pared the equivalent offset size that
could be detected by each step
detection method. To some degree,
this statistic is sensitive to the distri-
bution of step sizes assumed by
DOGEx, but it does give an impres-
sion on relative performance.
Figure 5 shows that for horizontal
components, MIDAS has an equiva-
lent offset size at ~6mm, which is
smaller than from any step detection
algorithm. Overall, the DOGEx results
indicate that MIDAS performs at least
as well as least squares coupled with
the best automatic step detectors.

In comparisons with manual screening
by five different international experts
(not shown), only one method slightly
exceeded the performance of MIDAS

by a level that is not statistically significant. Thus, MIDAS is an automatic method of velocity estimation that
performs as well as the best human experts.

3.3. Accuracy Using Real Data

The no-net rotation condition of the published North America-fixed reference frame, NA12, is realized by 30
core stations that have long, manually screened, well-behaved time series [Blewitt et al., 2013]. These stations
lie in the stable interior of the North America tectonic plate far from geophysical processes that deform the
crust. We can therefore test the accuracy of velocity estimates under the assumption that these stations have
true velocities of zero in the no-net rotation frame. These stations were not selected on the basis of the
magnitude of their horizontal velocity estimates; hence, these estimates provide an absolute test of accuracy
(or at least an upper limit). Given that one of the criteria for selecting these stations was the quality of the least
squares residuals, such time series are near-optimal for least squares velocity estimation. The results are
shown in Figure 6.

We quantify accuracy of the horizontal velocity components by the RMS scatter about zero. The RMS is
±0.26mm/yr for least squares and ±0.23mm/yr for MIDAS. Therefore, both methods have similar accuracy
for the NA12 core stations. This confirms the expectation that MIDAS competes with least squares when
applied to prescreened, well-behaved data.

In comparison, the RMS uncertainty in horizontal velocity components over all 30 stations as computed by
equations (6) to (8) is ±0.14mm/yr. The RMS uncertainty is significantly lower than the observed RMS. If
the uncertainties are realistic, then this difference would suggest there exists real intraplate deformation
in North America at a level ±0.2mm/yr, slightly below the level allowed by previous published results
[Calais et al., 2006; Blewitt et al., 2013].

We cannot test the up component in a similar way, because the quality of the up velocity was already used as
a criterion to select the horizontal time series by Blewitt et al. [2013]. Nevertheless, the RMS velocity difference
between MIDAS and least squares is ±0.5mm/yr, which can be considered a measure of precision rather
than accuracy.

Figure 6. Accuracy of estimated horizontal velocities of stations in the deep
interior of the North American plate, where it is assumed that the plate is
rigid. Blue diamonds show results of our MIDAS estimator, and red crosses
show the published NA12 reference frame velocities estimated using least
squares on step-free data [Blewitt et al., 2013]. MIDAS uncertainties are not
shown for clarity; however, they are consistent with the scatter of the data.
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Finally, we tested the processing time
for a much broader set of real-world
data with mean time series duration
of 9 years. The processing time on a
single CPU of a laptop computer
was 0.08 s per time series (for single
coordinates). Considering that the
computational complexity is approxi-
mately linear in time, this implies
~0.01 s per year of data.

3.4. Performance Using
Campaign Data

We do not expect the MIDAS estima-
tor to be as resistant to seasonality
and problem in time series when pro-

cessing GPS campaign data that are sparse in time. Nevertheless, it was previously demonstrated in Figure 2
for campaign station DRYV that MIDAS can mitigate the effect of monument relocation.

Here we test the performance of MIDAS on time series from our ~400 station MAGNET (Mobile Array for
NEvada Transtension) semicontinuous network, for which antennas are mechanically constrained to be
installed at precisely the same location for every campaign visit [Blewitt et al., 2009]. Some of the MAGNET
stations are located sufficiently near to continuously operating stations of the Plate Boundary Observatory,
such that, geophysically, we can consider their velocities to be identical. This allows us to conduct engineer-
ing tests (such as this one) to assess the quality of MAGNET velocity solutions and their relationship to MIDAS
uncertainty for campaign data.

We selected 11 such pairs of stations. The number of campaigns per station ranged from 7 to 17 with a mean
of 11.9. For campaign stations, the time series span ranged from 6 to 10 year with a mean of 8.6 year. The
mean number of days sampled per year was 61.5 therefore on average 17% of days had data for a campaign
station (versus ~100% for a continuous station).

Results of the differences in estimated MIDAS velocities between each station pair are presented in Table 1.
The RMS differences are 0.15mm/yr horizontal and 0.74mm/yr up. The RMS uncertainty for these differences
(pessimistically assuming zero correlation) is 0.26mm/yr horizontal and 1.16mm/yr up. Not shown on
Table 1, the MAGNET RMS uncertainty is 0.23mm/yr horizontal and 1.00mm/yr up. Also not shown, the
MAGNET RMS up velocity is 0.74mm/yr, which can be taken as an upper bound on vertical rate accuracy
(as it neglects any real geophysical vertical rates). This demonstrates that the velocity uncertainty is realistic for
MAGNET campaigns and that MAGNET campaigns can deliver sub-mm/yr accuracy and precision, competitive
with continuously operating stations.

We conclude that MIDAS performs extremely well with MAGNET-style campaign data. Finally, we note that
processing of campaign stations should obviously bemuch faster than for continuous stations. The processing
time for 369 MAGNET stations (1107 time series) was 16 s on a single CPU.

4. Conclusions

We have developed MIDAS, a new estimator of GPS station velocity, designed to be resistant to seasonal
signals, outliers, step discontinuities, and heteroscedasticity. Unlike current methods based on conventional
least squares, MIDAS does not attempt to detect step discontinuities. MIDAS is based on the Theil-Sen
median trend estimator with two design features to mitigate steps: (1) slope samples from pairs of data
are preferentially selected using data separated by 1 year and (2) the median is iterated once after removing
slope outliers that exceed an estimated 2 standard deviations from the median value. Theoretically, the
number of arbitrarily large steps that can be tolerated is (T–1)/2, where T is the span of the time series in years,
thus, 3 years is theminimum span to be resistant to a single step. Continuous time series spanning 3 years can
tolerate 17% of data being outliers. Asymptotically, the very longest time series can tolerate up to 25% of data
being outliers.

Table 1. Differences of MIDAS Velocities for Pairs of Nearby Stationsa

Station 1 Station 2 Velocity 2–Velocity 1 (mm/yr)

Campaign Continuous East North Up

BLAC P096 0.21 ± 0.26 -0.15 ± 0.29 -0.67 ± 1.06
CINN P097 0.11 ± 0.26 0.10 ± 0.26 0.30 ± 1.14
DVAL P143 -0.24 ± 0.36 -0.08 ± 0.34 -1.36 ± 1.68
GARC GARL -0.12 ± 0.19 0.19 ± 0.21 0.50 ± 0.78
JERS P083 0.32 ± 0.26 -0.05 ± 0.23 -0.55 ± 0.92
KYLE P078 0.16 ± 0.20 -0.17 ± 0.19 -0.27 ± 0.90
RPAS P071 -0.14 ± 0.35 -0.01 ± 0.42 0.25 ± 1.91
SKED P151 -0.10 ± 0.22 -0.23 ± 0.26 -1.26 ± 1.17
UHOG UPSA 0.05 ± 0.17 -0.14 ± 0.18 -0.72 ± 0.80
VIGU P002 -0.01 ± 0.19 -0.07 ± 0.23 0.14 ± 0.76
VIRP P095 0.22 ± 0.27 0.02 ± 0.30 -0.90 ± 1.00

RMS 0.17 ± 0.25 0.13 ± 0.27 0.74 ± 1.16

aError bars are the root-sum-square of MIDAS uncertainties for each pair.
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We have tested MIDAS accuracy using real data and synthetic data. Results from both types of test are con-
sistent with each other. To summarize our findings, (1) MIDAS ranks best in blind tests of velocity accuracy
over schemes that couple least squares estimation together with 20 different automatic step detection pro-
grams; (2) MIDAS proves to be robust when subject to synthetic data with step discontinuities, producing
velocity errors that are realistic and approximately normally distributed; (3) MIDAS velocities for various time
series tested have an RMS error of ~0.3mm/yr horizontal and ~1.0mm/yr up, consistent with computed
uncertainties; and (4) MIDAS performs well on campaign data and effectively rejects data from campaigns
that have antenna setup blunders Unlike the ordinary Theil-Sen estimator, MIDAS computation time scales
linearly with the number of data. Using the well-established quickselect algorithm to find percentile values,
computation is ~0.1 s per time series.

We suggest that (1) MIDAS may be implemented to improve current step detectors by providing a robust
initial estimate of the trend less biased by undetected steps; then (2) knowing the timing of each step could
be used to improve MIDAS by elimination of affected slopes. This integration of MIDAS together with conven-
tional methods is ultimately necessary for applications such as reference frame realization, for which station
velocity alone is of limited value. MIDAS should also be useful as an independent check on conventional
methods for a variety of applications.

We conclude that MIDAS is suitable for automatic generation of velocity estimates and uncertainties for
publication and for automated operational analysis, for example, on our web pages at http://geodesy.unr.
edu that include ~40,000 time series, which are updated every week without need for manual screening, step
detection, and the associated bookkeeping. MIDAS is well tested and ready to contribute to many research
activities. Considering its general nature, MIDAS has the potential for broader application in the geosciences
beyond that of GPS velocity estimation, particularly to time series that exhibit seasonality, red noise, and
artificial steps caused by equipment configuration changes, such as tide gauge data.

Appendix A: MIDAS Breakdown Point

The sample breakdown point is defined, as the number of data with arbitrary problems that can be tolerated
before the estimate becomes arbitrarily large. This is not a probabilistic statistic; rather, it is deterministic
assuming the worst possible scenario, however, unlikely it may be. Here we derive the breakdown point
analytically for continuous time series (without gaps) applicable to both the interannual Theil-Sen estimator
and the MIDAS estimator. We first consider the case of arbitrarily large outliers and then consider the case of
arbitrarily large step discontinuities.

The MIDAS data pair selection algorithm is applied symmetrically in time, firstly, in time order (forward) and
secondly, in reverse time order (backward). For the case of continuous data (without gaps), all data pairs are
selected twice. Therefore, we only need to consider the application of MIDAS forward in time. Also, we will
not be concerned with the insignificant detail as to whether integers are odd or even.

Let there be n coordinate data, of which n0 are good and n1 are bad at the point of breakdown. These
coordinate data are used to compute slopes from m data pairs, of which m0 are good and m1 are bad:

n ¼ n0 þ n1
m ¼ m0 þm1

(A1)

So that we can express breakdown point more intuitively as a function of time span rather than number of
data, let us define the time span in years simply as the dimensionless quantity:

T ≡
n
365

(A2)

Similarly, it is convenient to define the sample breakdown point as the dimensionless quantity:

T1 ≡
n1
365

(A3)

The fractional breakdown point is defined:

b ≡
n1
n

¼ T1
T

(A4)
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Given that the median has a breakdown point of 50%, we can write

m1 ¼ m
2

(A5)

Now let us assume the worst-case situation, for which all bad coordinate data are paired with two good data
to form two bad pairs. Therefore, the breakdown point satisfies

n1 ¼ m1

2
¼ m

4
(A6)

Substituting (A6) into (A3) gives the breakdown point as a function of number of pairs:

T1 ¼ 1
4

m
365

(A7)

Moving forward through the time series, each data can be paired with another 1 year ahead, except for the
last year of data. Therefore, the total number of pairs is

m ¼ n� 365 ¼ 365 T � 1ð Þ (A8)

Substituting (A8) into (A7) gives the breakdown point in years as a function of time span:

T1 ¼ 1
4

T � 1ð Þ (A9)

Hence, from equation (A4) the fractional breakdown point is

b ¼ 1
4

1� 1
T

� �
(A10)

This is the asymptotic breakdown point. Note that for large T, the b tends to 25%. We now find the minimum
range of T for which it is possible to have the worst-case situation, equation (6). To match pairs twice, the
bad data must all fall within the range from 1 year to T–1 years, which is a range that spans T–2 years.
Therefore, all the good data must be at least within the first and last years, spanning 2 years, hence the
following inequalities:

n0 > 2�365
n1 < n� 2�365
T1 < T � 2

(A11)

From equations (A11) and (A9), we therefore have the inequality:

1
4
T � 1ð Þ < T � 2

T >
7
3

(A12)

Hence, equations (A9) and (A10) apply to time series longer than 2⅓ years:

b ¼ 1
4

1� 1
T

� �
if T > 2 1=3 (A13)

For shorter time series, consider that for spans between 1 and 2 years, no data can be paired twice. Therefore,
the worst case is that each bad data point is paired once with a good data point. Thus, the breakdown point is
twice that of (A13):

1
2

1� 1
T

� �
if 1 < T < 2 (A14)

Note that as the span gets smaller and approaches 1 year, the breakdown point goes to zero, and therefore,
MIDAS looses robustness. Between these extremes, the ratio of bad data that are paired once to those that
are paired twice can be interpolated, leading to the following expression:

b ¼ 1
4

8� 3Tð Þ 1� 1
T

� �
if 2≤T≤ 2 1=3 (A15)
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Now we derive the step breakdown point, M, which we define as the number of arbitrary steps that MIDAS
can tolerate. For a given number of steps M, the worst-case scenario is if steps are at least 1 year apart,
because this maximizes the number of bad data pairs spanning the steps:

m1 ¼ 365M (A16)

From (A5) and (A8), the breakdown point is satisfied by

m1 ¼ 365
2

T � 1ð Þ (A17)

Substituting (A17) into (A16) gives the step breakdown point:

M ¼ T � 1
2

(A18)

which must be rounded down to the nearest integer value to give the maximum number tolerable. Table A1
gives numerical examples of the analytical results derived here.
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