
HAL Id: insu-03579527
https://insu.hal.science/insu-03579527

Submitted on 18 Feb 2022

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Improvement of density models of geological structures
by fusion of gravity data and cosmic muon radiographies

Kevin Jourde, Dominique Gibert, Jacques Marteau

To cite this version:
Kevin Jourde, Dominique Gibert, Jacques Marteau. Improvement of density models of geological
structures by fusion of gravity data and cosmic muon radiographies. Geoscientific Instrumentation,
Methods and Data Systems, 2015, 4, pp.177-188. �10.5194/gi-4-177-2015�. �insu-03579527�

https://insu.hal.science/insu-03579527
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Geosci. Instrum. Method. Data Syst., 4, 177–188, 2015

www.geosci-instrum-method-data-syst.net/4/177/2015/

doi:10.5194/gi-4-177-2015

© Author(s) 2015. CC Attribution 3.0 License.

Improvement of density models of geological structures

by fusion of gravity data and cosmic muon radiographies

K. Jourde1, D. Gibert2,3, and J. Marteau4

1Institut de Physique du Globe de Paris, Sorbonne Paris Cité, CNRS – UMR7154, Univ. Paris Diderot, Paris, France
2OSUR – Géosciences Rennes, CNRS – UMR6118, Univ. Rennes 1, Rennes, France
3Volcano Observatories, Institut de Physique du Globe de Paris, Paris, France
4Institut de Physique Nucléaire de Lyon, CNRS – UMR5822, Univ. Claude Bernard, Lyon, France

Correspondence to: D. Gibert (gibert@univ-rennes1.fr) and K. Jourde (jourde@ipgp.fr)

Received: 25 February 2015 – Published in Geosci. Instrum. Method. Data Syst. Discuss.: 2 April 2015

Revised: 6 August 2015 – Accepted: 6 August 2015 – Published: 25 August 2015

Abstract. This paper examines how the resolution of small-

scale geological density models is improved through the fu-

sion of information provided by gravity measurements and

density muon radiographies. Muon radiography aims at de-

termining the density of geological bodies by measuring their

screening effect on the natural flux of cosmic muons. Muon

radiography essentially works like a medical X-ray scan and

integrates density information along elongated narrow coni-

cal volumes. Gravity measurements are linked to density by

a 3-D integration encompassing the whole studied domain.

We establish the mathematical expressions of these integra-

tion formulas – called acquisition kernels – and derive the

resolving kernels that are spatial filters relating the true un-

known density structure to the density distribution actually

recovered from the available data. The resolving kernel ap-

proach allows one to quantitatively describe the improvement

of the resolution of the density models achieved by merging

gravity data and muon radiographies. The method developed

in this paper may be used to optimally design the geometry

of the field measurements to be performed in order to ob-

tain a given spatial resolution pattern of the density model to

be constructed. The resolving kernels derived in the joined

muon–gravimetry case indicate that gravity data are almost

useless for constraining the density structure in regions sam-

pled by more than two muon tomography acquisitions. In-

terestingly, the resolution in deeper regions not sampled by

muon tomography is significantly improved by joining the

two techniques. The method is illustrated with examples for

the La Soufrière volcano of Guadeloupe.

1 Introduction

Determining the density distribution inside geological struc-

tures is of major importance in many domains of Earth sci-

ences. The development of space-borne techniques to either

determine the geoid shape or directly measure the plane-

tary gravity field dramatically improved the quality of the

data available to perform studies at the global and regional

scales (e.g. Ménard et al., 2003; Tapley et al., 2005). This

significantly boosted new areas of research in hydrology

(e.g. Llubes et al., 2004; Longuevergne et al., 2013), erosion

(e.g. Mouyen et al., 2012), and climate change (e.g. Chen et

al., 2006; Wouters et al., 2014; Song et al., 2015).

For studies performed at local scales, from kilometre down

to decametre, classical gravimetry methods remain the main

approach used to recover the density distribution under-

ground. Despite huge improvements to gravity meters, either

relative or absolute (Lederer, 2009; Riccardi et al., 2001),

gravity surveying remains a lengthy, costly and difficult task,

especially on volcanoes and rough topography (e.g. Carbone

et al., 2003). Meanwhile, the progress and evolution of re-

search domains demand even more challenging capabilities

of geophysical imaging of the density distribution inside the

Earth. Conventional gravity surveying may quickly reach its

limits in applications – hydrology, volcanology, civil engi-

neering, archaeology – where high resolution is mandatory or

to monitor density changes underground (e.g. Christiansen et

al., 2011; Creutzfeldt et al., 2014). Measurement points gen-

erally remain sparse, especially when absolute gravity me-

ters are employed, and are not suitable for producing high-
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resolution models of the density structure. This situation is

further complicated by the strong non-uniqueness that char-

acterizes the gravimetric inverse problem and by sophisti-

cated signal processing methods needed to isolate the rele-

vant information (e.g. Crossley et al., 2012).

In the domain of natural hazards, determining the volume

of potentially unstable rock masses – cliffs, volcanoes, steep

landscapes – is of primary importance in identifying the ex-

posed areas and estimating the risk level. In volcanic regions,

low-density unconsolidated materials are particularly subject

to destabilization due to their low strength and their high fluid

content (e.g. Le Friant et al., 2006). If these vulnerable ma-

terials are located on active volcanoes, their destabilization

may trigger further damage to the edifice due to the rapid de-

compression of shallow hydrothermal reservoirs. Elaborating

models of the density structure of lava domes subject to an

intense hydrothermal alteration is of primary importance to

better constrain hazard models.

Muon radiography is a new method that allows one to re-

cover the density distribution inside rock volumes at kilome-

tre scale by measuring their screening effect on the natural

cosmic muon flux crossing rocks. Since the pioneering works

by Nagamine (1995, 2003), Nagamine et al. (1995) and

Tanaka et al. (2001), recent studies have illustrated the inter-

est of the method in imaging spatial and temporal variations

of the density inside mountains and volcanoes (Tanaka et al.

2005, 2007a, b, 2008, 2009a, b, 2013; Gibert et al., 2010;

Cârloganu et al., 2013; Lesparre et al., 2010, 2012c; Shino-

hara and Tanaka, 2012; Eppelbaum and Khesin, 2012; Por-

tal et al., 2013; Carbone et al., 2014). Muon radiography is

a straight-ray transmission method involving a Radon trans-

form that markedly differs from the 3-D integrative gravity

method. As will be discussed in the next section, muon radio-

graphy uses the flux of muons “coming from above”, and it

is limited to the imaging of shallow structures located above

the particle detector. Also, muon radiography only provides

information on parts of the density structure that are crossed

by the rays, contrarily to the gravity method that brings infor-

mation on the whole density distribution. These differences

between both methods motivate the joining of both types of

data to elaborate density models of complex geological struc-

tures.

Studies combining muon data and gravity measurements

remain scarce, and we emphasize the early study by Caffau

et al. (1997), who compared muon tomography with gravity

measurements. More recently, Davis and Oldenburg (2012)

and Nishiyama et al. (2014) presented joined inversions of

gravity data and muon tomography using a straightforward

linear regularized inversion based on block models. In the

present study, we develop a quantitative methodology to ex-

amine how information brought by gravimetry data and by

muon radiography may be joined to improve the resolution

of density models of highly heterogeneous structures like

altered active volcanoes. Fusion of information is studied

through an approach based on the resolving kernels which

provide a way to quantitatively evaluate the resolution of

the resulting density model independently of any particular

parametrization (e.g. block discretization). Resolving kernels

only depend on the geometrical properties of the data ac-

quisition (i.e. locations of measurement points and telescope

acceptance functions), and they allow one to perform prior

analysis to evaluate the model improvements that may be ex-

pected by joining additional gravimetric data or muon radio-

graphies. In this way, field measurements may be optimized

with respect to the characteristics aimed at for the resulting

density model. We begin by establishing the relationships be-

tween the density structure and both muon tomography and

gravity data. Next, we derive the resolving kernels respec-

tively corresponding to individual gravity and muon inver-

sions and to joint gravity–muon inversion. The resolving ker-

nels translate the information contained in the data into infor-

mation concerning the density structure.

In order to give the reader a practical insight, the theo-

retical developments of general interest that are derived in

the paper are illustrated with examples taken from real field

experiments conducted on La Soufrière of Guadeloupe to

emphasize the practical interest of combining muon radio-

graphies and gravity measurements. La Soufrière of Guade-

loupe is an active volcano located in the Lesser Antilles arc.

The last magmatic eruption occurred in AD 1530 when the

present lava dome formed, and the last phreatic eruption

occurred in 1976. Recent field measurements in its vents

(Allard et al., 2014) and sources (Villemant et al., 2014)

show a significant regain of activity in the 2006–2012 pe-

riod. More recently, new vents appeared during our muon

tomography experiments. Developing 3-D density models of

the lava dome is of primary interest to assess the structure

of the edifice and to better constrain the upper hydrother-

mal system and its related hazards. The muon tomography

experiments were already described in various articles (Les-

pare et al., 2012c; Jourde et al., 2013). Three sites, called

Ravine Sud, Rocher Fendu and Savane à Mulets, were ex-

plored and are represented in Fig. 1.2. The results showed

important density heterogeneities in the volcanic dome well

correlated with the surface vent positions. The gravimetry

survey is currently running. For the purpose of this article,

we simulated 100 measurements regularly spaced on a grid

that covers the dome (Fig. 1.1).

2 Basic principles of cosmic muon radiography

The small cross section of muons in ordinary matter (Bar-

rett et al., 1952) allows the hard component of the muon

spectrum (Dorman, 2004; Tang et al., 2006; Gaisser and

Stanev, 2008) to cross hectometres, and even kilometres, of

rock. Most muons crossing the rock volume have a negligible

scattering relative to the instrument angular resolution and

travel along straight trajectories, ranking muon tomography

among the class of straight-ray scanning imaging methods
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(2) tomography coverage

(1) gravimetry coverage

Figure 1. (1) The red dots represent the positions at which we sim-

ulated gravimetry measurements on the Soufrière of Guadeloupe;

(2) muon tomography data coverage. The lines represent the obser-

vation axes of the muon telescope when located at Rocher Fendu

(red), Ravine Sud (yellow) and Savane à Mulets (green).

(Malmqvist et al., 1979; Marteau et al., 2011). In practice,

muon tomography is performed by using a series of pixelated

particle detectors that allow one to determine the trajectories

of the muons passing through the rock body. Portable field

telescopes presently used sample hundreds of directions and

allow one to scan an entire volcano from a single viewpoint

in a couple of weeks (Fig. 1.2). By counting the number of

muons passing through the target, the attenuation onto the

incident muon flux is determined for each sampled direction

and is used to produce a radiography of the object opacity

(expressed in g cm−2) or of average density along ray paths

if the object geometry is known.

Lesparre et al. (2010) establish a feasibility formula where

the achievable density resolution is related to the measure-

ment duration (i.e. time resolution), the total apparent rock

thickness (i.e. total opacity) and the telescope acceptance

(i.e. the detection capacity of the matrices). The feasibility

formula is written as an inequality and gives practical hints

for designing field experiments and evaluating which density

heterogeneities can be resolved inside a given geological tar-

get, for a given amount of time and a given telescope. In a

more recent study, Jourde et al. (2013) present experimen-

tal evidence of a flux of upward-going particles that occurs

in certain field conditions. These particles have trajectories

parallel to those of the muons emerging from the rock body

to radiography, but they travel through the telescope from

rear to front. These upward-going particles may constitute a

huge Poissonian noise that could strongly alter the radiogra-

phies. Jourde et al. (2013) give practical recommendations

for choosing experimental sites likely to give the best possi-

ble signal-to-noise ratio, and they also put strong constraints

on the time resolution of the electronic detection chain neces-

sary to statistically recognize particles coming from the rear

face of the telescopes.

3 The sampling of the density distribution by muon

tomography and gravimetry

Here, we recall the main formula relating the density distri-

bution to the data, i.e. fluxes of muons and gravity measure-

ments. In the inverse problem framework, these formulas de-

scribe the forward problem for each method. In the remain-

der of this paper, we suppose that the muon data have been

cleaned of perturbing effects such as upward-going fluxes of

particles as described in Jourde et al. (2013).

3.1 Muon tomography

The primary information used in muon tomography con-

sists in cosmic muon flux attenuation measurements result-

ing from the screening produced by the geological volume to

be scanned. Attenuation is measured by counting the num-

ber of muons emerging from the volume for each observa-

tion axis, sm= (rm, Pm(ϕ, θ )), of the telescope (Fig. 1.2).

rm represents the position of the telescope, and Pm the ob-

servation axis acceptance pattern which depends on (ϕ, θ ),

the azimuth and zenith angles referenced at rm (see Fig. 2).

Note that rm is the same for all the observation axes on a

given site. Pm depends on the telescope geometry and angu-

lar orientation on the site. Our standard field telescopes count

31× 31 observation axes and, in a field experiment where

the telescope successively occupies several places around the

target, the number, M , of data may easily reach several hun-

dredths. For example, if we use the muon tomography data

from the three Soufrière sites, M = 3× 31× 31. In practice,

M is lower, as many axes point downward or above the vol-

cano.

The Pm (cm2) shape depends on the detection matrices’

structure (see Lesparre et al. (2012a, b) for further details).

It has a steep peak centered on a small solid angle region

�m. It is identically null outside�m (Figs. 2 and 3). Observe

that Pm must not be confounded with the integrated pixel

acceptance Tm (cm2 sr−1) used for instance in Lesparre et al.

(2010),
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RA

RT

Figure 2. Muon tomography reference frame and notations.RA and

RT respectively are the absolute orthonormal and the instrument

reference frames. An observation axis sm= (rm, Pm(ϕ, θ )) is rep-

resented with rm the vector that localizes the telescope position and

Pm its acceptance pattern (restrained to the solid angle �m). The

spherical coordinates (ϕ, θ ) here are localizing the steep acceptance

peak mentioned in Sect. 3.1.

Tm =
2π∫

0

π∫
0

Pm(ϕ,θ)× sin(θ)dθdϕ =

∫
�m

Pm(ϕ,θ)d�. (1)

The number of muons attributed to a given line of sight ac-

tually corresponds to all muons detected in �m. Inside the

geological volume the trajectories of these muons describe a

conical volume whose apex is located at the telescope, rm.

The attenuation of the muon flux caused by the rock screen

depends on the amount of matter encountered by the particles

along their trajectories. For a given straight trajectory t= (r,

ϕ, θ ) (r is a telescope site and (ϕ, θ ) the azimuth and zenith

angles referenced at r), it is quantified by the density line

integral along t and the opacity

% =

∫
t

ρ(ξ)dξ = L× ρ, (2)

where ρ is the density, L the particle path length, and ρ is

the average density along t. The differential flux associated

with t may be expressed as a function δ φt=
∂3φ
∂�∂S

(%, ϕ, θ )

(s−1 cm−2 sr−1) that accounts for the muon flux that reaches

the instrument. Then the measured flux φm for the mth line

of sight relates to the opacity via the relationship

φm = T −1
m

∫
�m

Pm(ϕ,θ)× δφt (%,ϕ,θ)d�. (3)

Note that the integration is restricted to the small solid angle

�m because of the compact support of the observation axis

acceptance Pm (Fig. 3).

15
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4
3
2
1

M1
M2M3

Figure 3. Representation of the acceptance. The horizontal bars la-

belled M1, M2 and M3 represent the pixelated detection matrices

of the telescope. We draw Tm and Pm/Tm for 15 observation axes

sm symmetrically distributed on the left and right sides of the main

axis of the telescope (arbitrarily indexed for m going from 1 to 15;

we do not represent all the observation axes, for clarity purposes).

The red and black sawtooth-like curves are a merging of the normal-

ized intra-pixel acceptance Pm/Tm for even and odd lines of sights

respectively. The blue dots represent the 15 discrete values of the

integrated pixel acceptance Tm obtained by integrating each Pm on

the unit sphere (Eq. 1). Observe that the solid angle �m associated

with a given sm (here represented form= 11) overlaps the solid an-

gle of the neighbouring lines of sight. The dashed lines are plotted

along the acceptance steep peaks discussed in Sect. 3.1.

δ φt is not linearly related to %; however, for small opac-

ity fluctuations we assume that δ φt may be approximated

by its first-order development around the local average den-

sity, ρ0(r). ρ0(r) is the prior density model of the geological

structure. For a given path t it reads as

δφt (%)= δφt (%0)+ (%− %0)×
dδφt

d%
(%0)+ o(%), (4)

where %0=
∫
t

ρ0(ξ) dξ . Rearranging the terms and letting

αt =
dδ φt
d%

(%0), we obtain

δφt (%)− δφt (%0)≈ αt

∫
t

[ρ(ξ)− ρ0(ξ)]dξ. (5)

Inserting Eq. (5) into Eq. (3), we get the approximate equa-

tion

φm−φ0 ≈

∫
�m

d�

∫
t

Pm(ϕ,θ)
Tm

×αt × [ρ(ξ)− ρ0(ξ)]dξ, (6)

where φ0=φm(ρ0) is the flux corresponding to the prior den-

sity model ρ0(r) and t= (rm, ϕ, θ ).

Geosci. Instrum. Method. Data Syst., 4, 177–188, 2015 www.geosci-instrum-method-data-syst.net/4/177/2015/
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In the remainder of the present paper, we shall use the cen-

tred and normalized flux,

φ̃m =
φm−φm (ρ0)

φm (ρmin)−φm
(
ρmax

) = φm−φ0

Cφ,m
, (7)

where ρmin and ρmax are expected extreme values of the den-

sity.

3.2 Gravimetry

Gravimetry aims to estimate the gravity field generated by

surrounding objects measuring locally the vertical accelera-

tion they produce. The vertical acceleration g is directly re-

lated to the density spatial distribution through the Newton

law:

gn =G

∫
V

(rn− r) · ez

‖ rn− r‖3
× ρ(r)dr, (8)

where the vector rn represents the location of the nth mea-

surement point (in our example, n runs from 1 to 100). As for

muon tomography, we use the normalized gravity anomaly

g̃n defined as

g̃n =
gn− gn (ρ0)

|gn (ρmin)− gn(ρmax)|
=
gn− g0

Cg,n
. (9)

4 Resolving kernel approach

4.1 The acquisition kernels

We defineX, the space that contains the set of continuous L2

functions going from R3 into R. The 3-D density distribution

ρ belongs toX and is related to the muon flux measurements,

φ̃m, and to the gravity data, g̃n, through the action of acqui-

sition kernels G and M which also belong to X. This reads

φ̃m = 〈Mm, ρ− ρ0〉X, m= 1, · · ·, M (10)

g̃n = 〈Gn, ρ− ρ0〉X, n= 1, · · ·, N, (11)

where 〈·, ·〉X is the X inner scalar product, and M and N are

respectively the number of muon tomography and gravimetry

data. From Eqs. (6)–(9), we obtain explicit expressions for

M and G,

Mm(r)=
Pm(ϕ,θ)
Tm

×
αt

Cφ,mξ2
, (12)

Gn(r)=
G

Cg,n
×

(rn− r)

‖ rn− r‖3
· ez. (13)

Observe that the 1/ξ2 term in Eq. (12) comes from

the spherical coordinate elementary volume expression,

ξ2 dξ d�, inserted into Eq. (6). Examples of acquisition ker-

nels are plotted in Fig. 4 and discussed in Sects. 5.1 and 5.2.

The X structure allows one to introduce prior information
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(2) tomography acquisition kernel, 

(1) gravimetry acquisition kernel, 
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Figure 4. (1) Acquisition kernel of a gravimetric measurement;

(2) acquisition kernel for a single observation axis of the muon tele-

scope. The kernels are normalized with reference to their maximum

value and printed in a log10 scale.

into the problem. For instance, the classical inner product of

L2 continuous functions,

〈f,g〉X =

∫
V

f (r)× g(r)dr, (14)

can be replaced by the weighted inner product,

〈f,g〉X =

∫
V

∫
V

w(r′,r′′)× f (r′)× g(r′′)dr′dr′′, (15)

where the weight functionw (w(r′, r′)> 0,w(r′, r′′)=w(r′′,

r′)) plays the role of a covariance function that may be used

to neglect the impact of the free air zone around the studied

structure for gravimetry and muon tomography (see Eq. 25

and its comment below). It may also serve to introduce a cor-

relation length for the density variations.

4.2 The resolving kernel

The 3-D density distribution, ρ̂(r), obtained by solving the

set of linear equations (Eqs. 10, 11), is a degraded version

of the true density distribution, ρ(r), both because of the

limited number of data available and because of the filter-

ing (i.e. blurring) effect of the acquisition kernels. In the re-

mainder of the paper, we shall use the set of undifferentiated

acquisition kernels

www.geosci-instrum-method-data-syst.net/4/177/2015/ Geosci. Instrum. Method. Data Syst., 4, 177–188, 2015
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{ζk} = {Gn} ∪ {Mm} k = 1, · · ·, K =M +N, (16)

and the set of undifferentiated normalized data

{dk} = {g̃n} ∪
{
φ̃m
}
k = 1, · · ·, K =M +N. (17)

We now formulate the inverse problem in the framework

of functional spaces where the family of acquisition kernels

constitutes a set of generating functions of a subspace XK of

X of dimension K (Tarantola and Nercessian, 1984; Bertero

et al., 1985). This implicitly assumes that the ζk are linearly

independent with respect to the retained inner product; i.e. no

acquisition kernel can be written as a linear combination of

the other kernels. The noticeable instances where this im-

portant assumption is not satisfied correspond to situations

where several data have been acquired identically, i.e. ei-

ther at the same location for gravity measurements or with

the same position and orientation of the telescope for muon

tomography. In such cases the dimension of XK is reduced

since the redundant data may be merged (i.e. averaged) into

a single one.

The best density distribution that can be recovered through

the inversion process (it is the best because it takes all the

information contained in the data and makes the fewest hy-

potheses about the XK complementary subspace) is a linear

combination of the generating functions,

ρ̂(r)− ρ0(r)=

K∑
k=1

ak × ζk(r). (18)

The components ak of Eq. (18) are obtained by minimiz-

ing the quadratic distance εY between the data and the corre-

sponding values given by the density model

εY =‖ 〈{ζk} ,ρ− ρ0〉X −{dk}‖Y

=

K∑
k=1

Wk × (〈ζk,ρ− ρ0〉X − dk)
2. (19)

Y is the weighted Euclidean space that contains the measure-

ments. The weights Wk permit one to introduce prior infor-

mation about the measurement quality. It is possible to intro-

duce crossed termsWij if the measurements are not indepen-

dent, but it is not the case here. We get

ak =

K∑
j=1

Wj × S
k,j
×〈ζj ,ρ− ρ0〉X, (20)

where Sk,j is the (k, j ) component of the Gram matrix

inverse defined as Sk,j =Wj ×〈ζk , ζj 〉X. Using Eq. (20),

Eq. (18) becomes

ρ̂(r)− ρ0(r)=

K∑
k=1

ζk(r)

K∑
j=1

Wj × S
k,j
×〈ζj ,ρ− ρ0〉X. (21)

The presence of 〈ζj , ρ〉X in the right-hand part of this equa-

tion indicates that the density distribution actually recovered,

ρ̂(r), is assembled from projections of the true unknown den-

sity, ρ(r), onto the acquisition kernels. The recovered density

is a filtered version of the true density distribution, and the

filter (i.e. the resolving kernel) depends on the data. This can

be made more explicit by rewriting Eq. (21) as (Bertero et

al., 1985)

ρ̂(r)− ρ0(r)=

∫
V

1(r,r′)×
(
ρ(r′)− ρ0(r

′)
)

dr′, (22)

where we introduce the resolving kernel

1(r,r′)=

K∑
j=1

bj (r)× ζ̃j (r
′), (23)

with

bj (r)=

K∑
i=1

Wi × ζi(r)× S
i,j , (24)

ζ̃j (r
′)=

∫
V

w(r′,r′′)× ζj (r
′′)dr′′. (25)

ζ̃j is the acquisition kernel ζj modulated by the prior infor-

mation represented by the w function. For instance, w may

be an indicator function used to limit the support of the ac-

quisition kernels to the volume of interest.

5 Characterization of the resolving kernels

A resolving kernel, 1(r, r′), is a function defined in the

whole space that plays the role of a spatial filter. When

applied to the true density distribution, it gives the recon-

structed density. The amplitude and the shape of 1 render

the achievable resolution of the reconstructed density struc-

ture. According to Eq. (23), it is a linear combination of

the acquisition kernels. 1 may be characterized in different

ways by using several properties to quantify its resolution

and anisotropy. These properties should be as independent as

possible from a specific resolving kernel and allow the user

to easily appreciate the resolution and its eventual bias. In

the present study, we simply compare the resolving kernels

against the ideal kernel represented by a Dirac distribution

δ(r− r′). This is achieved through the projection γ of 1(r,

r′) onto a δ(r− r′),

γ (r)= 〈1(r,r′),δ(r− r′)〉X =

∫
V

w(r,r′)×1(r,r′)dr′. (26)

Here the X scalar product is defined by Eq. (15). Here, the

Hamming function is used as the weight function

w(r,r′)=
HL(||r− r′||)

Kw
×

[
1+ cos

(
2π × ||r− r′||

L

)]
, (27)
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where Kw is a normalizing constant, HL is a rectangu-

lar pulse that restricts w to |r− r′| ∈ [−L/2; L/2], and

L= 25 m. If r or r′ is located outside the volcano, we take

w(r, r′)= 0. This choice is explained in Sect. 5.4.

We now display resolving kernels corresponding to the

data acquisition shown in Fig. 1.1 for muon tomography

and in Fig. 1.2 for gravimetry. Muon radiographies are taken

from three sites equidistantly located along the southern edge

of the volcano. Gravity measurements are assumed to be

made on a regular grid over the entire lava dome.

Accounting for the fact that the acquisition kernels ζk are

either for gravity or for muon tomography (Eq. 16), we suc-

cessively consider the case of resolving kernels obtained for

muon tomography alone, for gravity data alone, and for a

combination of muon tomography and gravity data. We com-

pute 1(r, r′) for two positions r={r1; r2} located along a

vertical line that goes through the centre of the dome (Fig. 5).

Points r1 and r2 are respectively inside and below the volume

of the lava dome spanned by the lines of sight of the tele-

scopes (Fig. 1.1). The parameter γ is computed and plotted

on the four characteristic slices represented in Fig. 5.

5.1 Gravimetry kernels

Figure 4.1 shows a gravimetry acquisition kernel G. Remem-

ber that the data used in the present study are normalized

relative to a reference model with density ρ0 (Eq. 9). The

gravimetry acquisition kernels are very sensitive to density

fluctuations close to the measurement point because of its

1/r2 term. The gravity data are actually the component of

the gravity field anomaly taken along the local vertical, and

the acquisition kernel becomes less and less sensitive as we

get closer to the horizontal plane that contains the measure-

ment point.

The gravimetry inverse problem is systematically ill-posed

(e.g. Al-Chalabi, 1971) because no matter the number of

measurements, the resolving kernel mostly integrates infor-

mation around the measurement positions, i.e. near the sur-

face. An illustration of this problem is given for the resolving

kernels of r1 and r2 (Figs. 6.1 and 7.1). For gravimetry in-

versions it is more realistic to model ρ(r) by a function that

depends on a few discrete parameters (even if it means losing

the linearity between the data and the measurements) rather

than trying a continuous inversion.

Observe that G integrates the density over the entire vol-

ume and provides information for point r2 located below the

lines of sight of the telescope.

5.2 Muon tomography kernels

Figure 4.2 shows a typical muon tomography acquisition ker-

nel M (Eq. 12). It has a conical shape whose aperture angle

depends on the distance between the front and rear detection

matrices of the telescope. The apex of the kernel is located at

the telescope, and the kernel widens as we move away from

Figure 5. 3-D views of the cross sections used to represent the re-

solving kernels in Figs. 6 and 7. The resolving kernels are computed

at points 1 and 2. Point 1 is located at a level Z1 in the part of the lava

dome scanned by the lines of sight of the muon telescope (Fig. 1.2)

and point 2 is located at Z2 below the ray coverage of the telescope.

the telescope; thus, the local sensitivity is decreasing. More-

over, the triangular shape of the intra-pixel acceptance Pm
(see Figs. 2 and 3) makes the sensitivity maximum along the

main line of sight sm.

Figure 4.2 shows we are as sensitive to a density change

occurring on a few tenths of metres in front of the telescope

as to the same change happening on a few hundred metres

beside the volcano. It reveals how deterministic the telescope

position is. If one desires to image or monitor a specific re-

gion belonging to a bigger structure, the measurement will

be much more sensitive if the telescope is in front of it. The

important heterogeneities inside the muon tomography ac-

quisition kernels forbid us from using the Radon transform

mathematical corpus. For an equivalent resolution and scan-

ning, the kernels can be regularized by taking the telescope

away from the volcano and reducing the angular aperture. We

then get into the typical experimental conditions of a medical

X-ray tomography. But, the consequences are a weaker par-

ticle flux (a longer acquisition time) and a greater sensitivity

to potential noises. So, a compromise has to be found, but
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(2) Ravine Sud tomography data

(1) Gravimetry data

(4) Gravimetry and tomography data

(3) All sites tomography data

10-1-2-3-4

Resolving kernel value normalized
at point 1 in logarithmic  scale

Figure 6. Resolving kernel at point r1 (Fig. 5): (1) the gravity data

alone; (2) Ravine Sud muon radiography alone; (3) combination of

three muon radiographies; and (4) joined muon and gravity data

sets. See Fig. 1 for the locations of gravity measurements and the

three sites for muon radiographies. The resolving kernel’s absolute

value is normalized with reference to the value computed at point

r1 and represented with a log10 scale.
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(1) Gravimetry data

(2) Gravimetry and tomography data

(3) Gravimetry and tomography data + prior information

Figure 7. Resolving kernel at point r2 (Fig. 5): (1) gravity data

alone; (2) joined muon radiographies and gravity. (3) is obtained

by joining muon radiographies, gravity, and some prior information

about the density spatial correlation. See Fig. 1 for the locations of

gravity measurements and the three sites for muon radiographies.

The resolving kernel’s absolute value is normalized with reference

to the value computed at point r2 and represented with a log10 scale.

the actual lack of understanding of the noises and the already

very long acquisition times we are facing lead us to take the

telescope the closest we can to the volcano.

We draw the reader’s attention to the fact that, despite their

compact support, the acquisition kernels overlap each other

for neighbouring main lines of sight (see Fig. 3). As will be

seen below, this characteristic is fundamental to understand-

ing the shape of the resolving kernels.

A muon tomography resolving kernel is a linear combi-

nation of muon tomography acquisition kernels M (Eq. 23),

and the inversion process optimizes the bi coefficients to ob-

tain the best density model (Eq. 24). Figure 6.2 and 6.3 show
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the resolving kernel for point r1 for different combinations

of tomography data sets.

When using data acquired from a single place located

at the southernmost edge of the volcano (Ravine Sud; see

Fig. 1.2), the resolving kernel (Fig. 6.2) encompasses lines

of sight spanning a limited range of azimuths. Consequently,

the filtering effect of 1(r1, r′) integrates ρ along a long nar-

row cone to give the estimated density ρ̂(r1). The fact that

1(r1, r′) does not have a compact support like the M ker-

nels comes from the overlapping of neighbouring acquisition

kernels that produces a transfer of information among lines

of sight.

When simultaneously using all three muon tomography

sites, the resolving kernel includes acquisition kernels that

span a wider range of sight azimuths. Consequently, the re-

solving kernel is more localized onto point r1 (Fig. 6.3).

However, the number of radiographies remains small, and

the kernel has a spider shape visible in the horizontal slice of

Fig. 6.3.

Observe that the resolving kernel 1(r2, r) equals 0, since

all acquisition kernels are null in this part of the volcano.

5.3 Joined muon tomography and gravimetry kernels

We now consider resolving kernels computed by using both

muon M and gravity G acquisition kernels.

Gravimetry does not improve significantly the inversion

process at r1, and the resolving kernel 1(r1, r′) (Fig. 6.4)

looks very similar to the one obtained for the muon radio-

graphies alone (Fig. 6.3). The information provided by muon

tomography is dominant relative to gravimetry, except at the

immediate vicinity of the gravity measurement points.

The situation is very different for point r2, where the re-

solving kernels obtained by joining muon radiographies and

gravity data (Fig. 7.2) appear very different from the gravity

kernel (Fig. 7.1). The most conspicuous effect is that muon

data compensates for the great sensitivity of gravimetry at

near-surface locations by shifting the centre of the mass of

the resolving kernel downward. This considerably improves

the vertical resolution achievable in the deepest parts of the

volcano.

The conclusions are different if only one tomography ac-

quisition is available. In that case the gravimetry measure-

ments have an impact on the upper part of the dome because

they contribute to resolving the ambiguity about the anomaly

spatial depth relative to the acquisition position. But, then

the zone below the dome will lack data to be properly con-

strained.

5.4 Impact of prior information

The choice made for the X and Y weight functions w(r′, r′′)

(Eq. 15) and Wi=1...K (Eq. (19)) has an important influence

on the obtained resolving kernels 1(r, r′).

In the X space, the diagonal term w(r′, r′′= r′) permits

one to adjust the local degree of prior knowledge of ρ(r).

For instance,w(r, r)= 0 in regions where ρ(r) is assumed to

be sufficiently well known to have no impact on our measure-

ments. This corresponds to situations where ρ0(r)= ρ(r) and

where the concerned regions do not have to be accounted for

in the inversion process. In our case, we use it to cancel the

free-air impact on muon tomography and gravimetry, but we

can also constrain it to incorporate direct field measurements

of the density.

The non-diagonal part w(r′, r′′ 6= r′) may be used to intro-

duce a spatial correlation in ρ. This can be done through ζ̃ ,

the convolution of ζ with w (Eq. 25). Here, we use a sim-

ple Hamming function with a 25 m correlation length every-

where in the dome (Eq. 27), and ζ̃ is a smoothed version

of ζ which attenuates the 1/r2 effect previously mentioned

(for muon tomography, it permits one to get closer to the

X-ray tomography experimental conditions previously de-

tailed). The correlation introduced by the Hamming function

increases the acquisition kernel sensitivity further from the

measurement point toward the central and northern parts of

the dome. This produces a better localization of the resolv-

ing kernel at r2, as can be checked by comparing Fig. 7.3

with Fig. 7.2, where no spatial correlation was applied. The

counterpart of this effect is a de-sharpening of the kernel at

point r2. w is a regularizing low-pass filter that removes spu-

rious short-wavelength fluctuations in the density model and

reduces the ill-conditioning of the inverse problem (e.g. Bert-

ero et al., 1988).

The choice of w is problem-dependent and must be sus-

tained by prior knowledge. The Hamming function acts as

a low-pass filter with a limited support compatible with the

large homogeneous zones observed in the field: massive an-

desite, hydrothermally altered material and possibly large

cavities.

In the Y space, the weights Wi=1...K allow one to assign

different quality factors to the available data at one inversion

location. For instance, in muon tomography, the W s permit

one to account for the fact that not all observation axes have

the same integrated acceptance Tm (Fig. 3). The quality of the

gravity data strongly depends on the ground stability (i.e. tilt

stability during measurement sequences) and the presence of

wind (i.e. vibrations of the gravity meter). The non-diagonal

terms Wij,i 6=j are null, as the measurements are independent

of the ones from the others.

5.5 γ maps

The γ (r) index defined in Eq. (26) may be used to estimate

the resolution achievable everywhere in the volcano. Figure 8

shows slices of the γ function obtained for the gravity data

(Fig. 8.1) and by joining the three muon tomography data

sets together with the gravity measurements (Fig. 8.2). The

gravimetry γ slices clearly reveal the important sensitivity of

the data to density variations located in the immediate vicin-
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(2) Gravimetry and tomography data

Figure 8. Representation of |γ | on the four slices defined in Fig. 5.

The results are represented with a log10 scale for (1) only gravime-

try and (2) gravimetry and tomography data.

ity of the measurement points and the very low sensitivity to

the density structure located deeper in the lava dome.

The muon-gravimetry γ slices confirm the results obtained

for points {r1; r2} and show the considerable improvement

of the resolution obtained when jointly using the muon and

gravity data sets. They also reproduce the asymmetric resolu-

tion due to the conical shape of the muon acquisition kernels

M. Since the places occupied by the telescope are located

along the southern edge of the volcano, a finer resolution is

obtained for the southern part of the lava dome. This corre-

sponds to the dark-red circular sector visible in the left hori-

zontal slice in Fig. 8.2. As expected, the resolution is coarser

in the central and northern parts of the dome. The same slice

shows that the north-eastern region of the volcano is resolved

by the gravity data alone since no lines of sight of the tele-

scope cross this part of the dome.

The γ map is a useful tool to plan an acquisition survey.

One can easily compute how γ is changed with different pos-

sible measurement campaigns and select the most pertinent

one depending on the region of interest, the available time in

the field and the accessibility of the site. This choice is criti-

cal as muon tomography acquisitions are long (a few weeks)

and gravity measurements delicate. It can also be used to de-

sign a mesh for the problem. The meshing element density

can roughly follow the γ map fluctuations.

We emphasize that other definitions may be used for γ

and that a single index may prove insufficient to characterize

the shape of resolving kernels. Consequently, we recommend

performing a 3-D examination of individual resolving ker-

nels at locations of particular importance (i.e. like detecting

places where density changes occur).

6 Conclusions

The resolving kernel analysis discussed in the present study

allows one to quantitatively assess the way in which gravity

data and density muon radiographies may be joined to im-

prove the spatial resolution of density models of geological

structures.

Thanks to the compact support of muon acquisition ker-

nels, high resolution is achievable in parts of the density

model sampled by muon radiography. The resolution actually

obtained depends on the number and geometrical arrange-

ment of the radiographies available for the model construc-

tion (compare Fig. 6.2 and 6.3 for the La Soufrière example).

In parts of the model sampled by muon radiography, the fu-

sion of gravity data and muon radiographies does not lead

to significant improvement of the density model (compare

Fig. 6.3 and 6.4 for the La Soufrière example).

A main result concerns the improvement of the resolution

obtained in the deeper parts of the density model when join-

ing muon and gravity data, and despite the fact that these

parts are not directly sampled by muon tomography. Actu-

ally, a fraction of information brought by the muon data is

transferred to the deep regions of the model through the long-

range coupling of the gravity acquisition kernels used to con-

struct the joined resolving kernels (compare Fig. 7.1 and 7.2

for the La Soufrière example).

The muon tomography acquisition kernel has a conic

shape, and noise considerations lead us to put the cone apex

just in front of the studied structure (see Fig. 4.2 for the La

Soufrière example). It results in a large decrease in the sensi-

tivity between the front and rear of the volcano. This problem

adds to the heterogeneous tomography sampling and forbids

us from using the standard Radon transform usually adopted

in X-ray tomography medical experiments to inverse the den-

sity. It also shows how deterministic the telescope position is

if one desires to image or monitor a specific region belonging

to a bigger body.
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The positive weight function w of the inner product

(Eq. 15) may be used to introduce prior information both

by limiting the support of the density distribution to recon-

struct and by introducing a spatial correlation smoothing the

1/r2 effect of muon tomography and gravimetry acquisition

kernels. This extends the range of sensitivity of the measure-

ments and results in a solution with a more homogeneous

quality (compare Fig. 7.2 and 7.3 for the La Soufrière exam-

ple). The γ maps give an overview of the resolving kernel

geometry in the density model and may be used to optimally

plan future acquisition surveys to improve the resolution in

parts of the model (see Fig. 8 for the La Soufrière example).
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