

EGU21-7338

https://doi.org/10.5194/egusphere-egu21-7338 EGU General Assembly 2021 © Author(s) 2022. This work is distributed under the Creative Commons Attribution 4.0 License.

The role of radical chemistry in the product formation from nitrate radical initiated gas-phase oxidation of isoprene

Philip T. M. Carlsson¹, Luc Vereecken¹, Anna Novelli¹, François Bernard^{2,6}, Birger Bohn¹, Steven S. Brown^{3,5}, Changmin Cho¹, John Crowley⁴, Andreas Hofzumahaus¹, Abdelwahid Mellouki², David Reimer¹, Franz Rohrer¹, Justin Shenolikar⁴, Ralf Tillmann¹, Li Zhou^{2,7}, Astrid Kiendler-Scharr¹, Andreas Wahner¹, and Hendrik Fuchs¹

Experiments at atmospherically relevant conditions were performed in the simulation chamber SAPHIR, investigating the reaction of isoprene with NO_3 and its subsequent oxidation. Due to the production of NO_3 from the reaction of NO_2 with O_3 as well as the formation of OH in subsequent reactions, the reactions of isoprene with O_3 and OH were estimated to contribute up to 15% of the total isoprene consumption each in these experiments. The ratio of RO_2 to HO_2 concentrations was varied by changing the reactant concentrations, which modifies the product distribution from bimolecular reactions of the nitrated RO_2 . The reaction with HO_2 or NO_3 was found to be the main bimolecular loss process for the RO_2 radicals under all conditions examined.

Yields of the first-generation isoprene oxygenated nitrates as well as the sum of methyl vinyl ketone (MVK) and methacrolein (MACR) were determined by high resolution proton mass spectrometry using the Vocus PTR-TOF. The experimental time series of these products are compared to model calculations based on the MCM v3.3.1,¹ the isoprene mechanism as published by Wennberg *et al.*² and the newly developed FZJ-NO₃-isoprene mechanism,³ which incorporates theory-based rate coefficients for a wide range of reactions.

Among other changes, the FZJ-NO $_3$ -isoprene mechanism contains a novel fast oxidation route through the epoxidation of alkoxy radicals, originating from the formation of nitrated peroxy radicals. This inhibits the formation of MVK and MACR from the NO $_3$ -initiated oxidation of isoprene to practically zero, which agrees with the observations from chamber experiments. In addition, the FZJ-NO $_3$ -isoprene mechanism increases the level of agreement for the main first-generation oxygenated nitrates.

¹Institute for Energy and Climate Research, Forschungszentrum Jülich GmbH, Jülich, Germany

²Institut de Combustion, Aérothermique, Réactivité et Environnement (ICARE), CNRS (UPR 3021)/OSUC, Orléans, France

³NOAA Chemical Sciences Laboratory, Boulder, USA

⁴Atmospheric Chemistry Department, Max-Planck-Institut für Chemie, Mainz, Germany

⁵Department of Chemistry, University of Colorado Boulder, Boulder, USA

⁶now at: Laboratoire de Physique et Chimie de l'Environnement et de l'Espace (LPC2E), Université d'Orléans, Orléans, France

⁷now at: College of Architecture and Environment, Sichuan University, Chengdu, China.

¹ M. E. Jenkin, J. C. Young and A. R. Rickard, The MCM v3.3.1 degradation scheme for isoprene, *Atmospheric Chem. Phys.*, 2015, **15**, 11433–11459.

 $^{^2}$ P. O. Wennberg *at al.*, Gas-Phase Reactions of Isoprene and Its Major Oxidation Products, *Chem. Rev.*, 2018, **118**, 3337–3390.

³ L. Vereecken *et al.*, Theoretical and experimental study of peroxy and alkoxy radicals in the NO3-initiated oxidation of isoprene, *Phys. Chem. Chem. Phys.*, submitted.