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Advanced inversion Multi-term approach utilizing multiple a priori constraints is proposed.
The approach is used as a base for the first unified algorithm GRASP that is applicable to
diverse remote sensing observations and retrieving a variety of atmospheric properties.
The utilization of GRASP for diverse remote sensing observations is demonstrated.

Keywords: inversion method, multiple a priori constraints, atmospheric remote sensing, GRASP algorithm,
atmospheric aerosol

We describe an approach called the Multi-term Least Square Method (LSM) that has been used to
develop complex aerosol inversion algorithms for a number of years and applied to retrievals of
laboratory and ground-based measurements. Theoretically, it was shown how to unite the advantages of
a variety of approaches and to provide transparency and flexibility in development of practically efficient
retrievals. From a practical viewpoint, this approach provides a methodology for using multiple a priori
constraints to atmospheric problems where rather different groups of parameters should be retrieved
simultaneously. For example, Dubovik and King (J. Geophys. Res., 2000, 105, 673–696) used multi-term
LSM for designing the algorithm that retrieves aerosol size distribution and spectrally dependent
complex index of refraction from Sun/sky-radiometer ground-based observations. Furthermore, the
significant potential of the multi-term LSM approach was demonstrated with the development of the
GRASP (Generalized Retrieval of Aerosol and Surface Properties) algorithm. The GRASP algorithm is
based on several generalization principles with the idea to develop a scientifically rigorous and versatile
algorithm. It has significantly extended capabilities and areas of applicability and can be applied to
diverse remote sensing observations. This paper also illustrates the practical applicability of GRASP and,
therefore the multi-term LSM, in diverse situations.

Edited by:
Yingying Ma,

Wuhan University, China

Reviewed by:
Evgueni Kassianov,

Pacific Northwest National Laboratory
(DOE), United States

Alexander Kokhanovsky,
Telespazio Belgium, Germany

*Correspondence:
Oleg Dubovik

oleg.dubovik@univ-lille.fr

Specialty section:
This article was submitted to

Satellite Missions,
a section of the journal

Frontiers in Remote Sensing

Received: 08 May 2021
Accepted: 09 August 2021

Published: 19 October 2021

Citation:
Dubovik O, Fuertes D, Litvinov P,

Lopatin A, Lapyonok T, Doubovik I,
Xu F, Ducos F, Chen C, Torres B,

Derimian Y, Li L, Herreras-Giralda M,
Herrera M, Karol Y, Matar C,

Schuster GL, Espinosa R,
Puthukkudy A, Li Z, Fischer J,

Preusker R, Cuesta J, Kreuter A,
Cede A, Aspetsberger M, Marth D,

Bindreiter L, Hangler A, Lanzinger V,
Holter C and Federspiel C (2021) A
Comprehensive Description of Multi-

Term LSM for Applying Multiple a Priori
Constraints in Problems of

Atmospheric Remote Sensing: GRASP
Algorithm, Concept, and Applications.

Front. Remote Sens. 2:706851.
doi: 10.3389/frsen.2021.706851

Frontiers in Remote Sensing | www.frontiersin.org October 2021 | Volume 2 | Article 7068511

METHODS
published: 19 October 2021

doi: 10.3389/frsen.2021.706851

http://crossmark.crossref.org/dialog/?doi=10.3389/frsen.2021.706851&domain=pdf&date_stamp=2021-10-19
https://www.frontiersin.org/articles/10.3389/frsen.2021.706851/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.706851/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.706851/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.706851/full
https://www.frontiersin.org/articles/10.3389/frsen.2021.706851/full
http://creativecommons.org/licenses/by/4.0/
mailto:oleg.dubovik@univ-lille.fr
https://doi.org/10.3389/frsen.2021.706851
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles
https://www.frontiersin.org/journals/remote-sensing
https://www.frontiersin.org/journals/remote-sensing#editorial-board
https://doi.org/10.3389/frsen.2021.706851


GRASP has two main independent modules. The first module
is a numerical inversion that includes general mathematical
operations not related to a particular physical nature of the
inverted data. Numerical inversion is implemented as a
statistically optimized fitting of observations following the
multi-term LSM strategy. The presentation of the GRASP
numerical inversion provides a profound description of the
main methodological aspects used for establishing a multi-
term LSM approach that is aimed at applying multiple a priori
constraints in the retrieval. The foundation of this approach uses
the fundamental frameworks of the Method of Maximum
Likelihood (MML) and LSM statistical estimation concepts.
We discuss the asymptotical optimal properties of MML and
LSM estimates in order to emphasize the importance of statistical
estimation methods in remote sensing.

We also compare the multi-term LSM with other established
statistical optimization approaches of numerical inversion that
are constrained by a priori information, such as Bayesian
concepts and the Optimal Estimation approach (Rodgers,
Inverse Methods for Atmospheric Sounding: Theory and
Practice, 2000). In addition, we discuss several other
methodological inversion optimization aspects, including
accounting for non-negativity of measured and retrieved
characteristics, optimizing inversion in non-linear cases,
accounting for measurement redundancy, estimating
contributions of random measurement and systematic errors
on the retrieval uncertainties, etc. All of these aspects are
complimentary to multi-term LSM that need to be fully
addressed in the development of practically efficient inversion
algorithms. These methodological developments have already
been applied to several remote sensing algorithms, such as the
algorithm by Dubovik and King (J. Geophys. Res., 2000, 105,
673–696) that has been employed for more than two decades for
operational processing of observations from AERONET ground-
based Sun-sky radiometers, and the algorithm by Dubovik et al.
(J. Geophys. Res., 2006, 111, D11208) developed for retrieval of
aerosol particle refractive index together with size and shape
distributions from full phase matrix measurements.

The second main module of GRASP is the forward model.
Similarly to the numerical inversion module, it has been
developed in a universal way for simulating various
atmospheric remote sensing observations with high accuracy.
As a result, GRASP is a highly versatile algorithm that can be
applied to diverse passive and active satellite and ground-based
atmospheric observations and is inherently designed for
synergetic retrievals when different observations are inverted
simultaneously. Depending on the input data, GRASP can
retrieve detailed columnar and vertical aerosol properties and
surface reflectance. Diverse approaches for modeling aerosol and
surface properties together with different a priori constraints can
be used in GRASP retrievals.

Thus, the GRASP package can be considered as a platform for
developing, testing, and refining novel retrieval concepts and
their utilization in operational processing environment. In
addition, GRASP is designed as a practically efficient,
transparent, and accessible community open source algorithm
that can be used as an advanced tool for verifying different

retrieval concepts and realizing those concepts in high-
performance operational software. At present, GRASP is being
adapted to reprocess the observations provided by several satellite
instruments, ground-based networks, single instruments, aircraft
and for various synergetic data sets that combine coordinated
passive and active remote sensing observations. For example,
GRASP has been adapted for operational reprocessing of
observations from POLDER-1, -2, -3, MERIS, and AATSR/
Envisat satellite missions. There are developments of
operational retrievals of aerosol and surface properties from
OLCI/Sentinel-3, Sentinel-5P, 3MI/Metop-SG, and Sentinel-4
geostationary observations. GRASP has also been used for
synergetic aerosol retrievals by inverting a combination of
ground-based lidar and radiometer data. GRASP has also been
used for interpretation of airborne and laboratory nephelometer
measurements, and it has been used for developing new
approaches to derive diverse aerosol properties from ground-
based direct sun and diffuse sky radiation measurements by
radiometers and sky cameras.

GRASP algorithm and software organization are described in
detail, and an overview of GRASP applications and data products
is provided.

1 INTRODUCTION

The multi-term LSM (Least Square Method) strategy has been
proposed and advocated for more than two decades in series of
studies (Dubovik et al., 1995; Dubovik and King, 2000; Dubovik
2004; Dubovik et al., 2006; Dubovik et al., 2008; Dubovik et al.,
2011; King and Dubovik, 2013, etc.). These realized algorithmic
developments showed the multi-term LSM as fruitful
methodology both for understanding the advantages of well-
known approaches of constrained inversion and for constructing
new practically efficient retrieval methods relying elaborated a
priori constraints. The above algorithmic studies and
implementations have also advanced many complimentary
aspects addressing various issues and needs of successful
implementation of the proposed retrieval methodology in
practical applications. Specifically, the questions of
implementing multi-term LSM strategy in both linear and
non-linear cases, accounting for non-negativity nature of
measured and retrieved characteristics, dealing with
redundancy of observations, assuring consistency of multiple
constraints, estimating retrieval errors, similarities and
differences with other methodologies, etc. were discussed and
analyzed in depth. It was shown that most of standard approaches
for constraining inversion solution could be derived and
optimized in the frame of multi-term LSM strategy. Moreover,
this strategy is not limited to any particular application and
advocated as quite universal concept for designing new
practical procedures for advanced constrained inversion
techniques. As a practical result of these multi-year
methodological efforts a highly versatile algorithm GRASP
(Generalized Retrieval of Aerosol and Surface Properties) for
atmospheric remote sensing has been proposed and
implemented. The description of GRASP algorithm structure
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and details of implementations will be used in this paper for
illustrating the practical utilization of multi-term LSM approach.
The GRASP development was pursuing the idea for creating the
algorithm that works with diverse remote sensing applications, is
convenient for application to diverse synergetic processing of the
complimentary observations and well adapted for continuing
evolution once used by the community. Figure 1 illustrates
the concept of the algorithm. The algorithm is a useful
practical tool for interpretation of actual remote sensing data
and illustrates the usefulness of utilizing the multi-term LSM in
diverse applications.

The GRASP development was initiated by Dubovik et al.
(2011) in the frame of the efforts on designing satellite
algorithm of new generation for improving aerosol retrieval
from POLDER-3/PARASOL imager over land surfaces where
the high surface reflectance dwarfs the signal from aerosols. It
derives simultaneously a large number of parameters
characterizing aerosol and surface properties. GRASP also
relies on the heritage of earlier efforts on developments for
retrieving aerosol properties from the ground-based
observations by AERONET network radiometers (Dubovik
et al., 2000; Dubovik and King, 2000; Dubovik, 2004; King
and Dubovik, 2013) and from laboratory measurements of
aerosol phase matrices (Dubovik et al., 1995; Dubovik et al.,
2006, etc.). All above algorithms had significant similarities and
even common blocks used for mathematical inversion and
observation modeling. Therefore, it has become quite logical
and appealing from diverse considerations to merge these
different retrievals in one single algorithm based on unified
principles. Having such strategy is helpful for benefiting from

historical positive experience in new retrieval developments and
for developing successive strategy for evaluating and improving
these unified principles and therefore for advancing the retrieval
strategy in general. The overall idea of such algorithm and many
specific features are aimed to address the existing challenges of
modern remote sensing data interpretation (Dubovik et al., 2021).
Thus, GRASP unified algorithm and software was developed as a
tool applicable to many different observations that is alternative
to development of several retrieval codes dedicated to
interpretation of different remote sensing observations. GRASP
has been developed as freely assessable software from a platform
for GRASP open source code (https://www.grasp-open.com/),
introductory video is available at (http://www.youtube.com/
watch?v�PcDeqwDF15A). Moreover, recently GRASP-CLOUD
services have been offered to remote sensing community
described in details by Aspetsberger et al. (2019).

GRASP is based on several generalization principles with the
idea to develop scientifically rigorous, versatile, practically
efficient, transparent and accessible algorithm. Two main
modules of GRASP numerical inversion and forward model
are independent, can be changed separately and even fully
replaced if needed for a particular application. Indeed,
numerical inversion includes general mathematical operations
and forward model module is developed for simulating various
atmospheric remote sensing observations. Both modules are
described below in details. As it will be shown many specific
features in both modules can be adapted to a particular
application. Following the multi-term LSM strategy the
numerical inversion was implemented as a statistically
optimized fitting of observations that unites the advantages of

FIGURE 1 | Illustration of the GRASP algorithm concept. Acknowledgment: the figure uses several images adapted from the website of NASA and ESA, from Reed
et al. (2019) and also from https://www.maxpixel.net/ distributed under Creative Commons license originally authored by C. Jenkinson, B. Koenig, and R. Kokich.
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a variety of known approaches (Dubovik, 2004). For example, in
aerosol retrievals, different smoothness constraints were applied
simultaneously on aerosol size distributions and spectral
dependencies of aerosol refractive index (see Dubovik and
King, 2000; King and Dubovik, 2013). In addition, the multi-
term LSM has been used for formulation of multi-pixel retrieval
that implements simultaneous optimized inversion of a large
group of independent observation (see Dubovik et al., 2011). This
inversion scheme improves retrieval consistency by using known
limitations on spatial and/or temporal variability of retrieved
parameters. For example, in satellite retrieval, the horizontal
pixel-to-pixel variations of aerosol and day-to-day variations
of surface reflectance are enforced to be smooth by an
additional set of a priori constraints. This concept is also
promising for developing synergetic retrievals using
observations that are not fully coincident in time or/and space
as illustrated below in the paper.

The forward model simulates atmospheric radiation resulting
from interaction of incident light with atmosphere and
underlying surface. The aerosol model is assumed to be a
mixture of several aerosol components with particles possibly
having different compositions and shapes. A number of different
concepts for parameterizing particle size distributions, refractive
indices dependencies and shape mixtures can be used. A BRDM
(Bi-directional Reflectance Distribution Matrix) that includes
Bidirectional Reflectance Distribution Function (BRDF) and
Bidirectional Polarization Distribution Function (BPDF) are
used to account for the effects of surface reflectance,
respectively (see GRASP Forward Model). The algorithm fully
accounts for multiple interactions of scattered solar light with
aerosol, gas and surface by means of solving radiative transfer
equation. As one of the specific characteristics of GRASP
retrieval, all calculations are done on-line without searching a
pre-calculated look-up table. At the same timf, several different
strategies based on trade-offs by increasing retrieval speed by the
price of reducing completeness of retrieval have been realized for
adapting GRASP for processing large amount of observations in
timely manner for example as required from Near-Real-Time
(NRT) processing of satellite observations. Thus, the structure of
the algorithm is convenient for adapting and testing alternative
routines for handling aerosol, surface, gas or multiple scattering
contributions. This flexibility is convenient for adapting the
forward modeling strategy to a completeness of the input
information and time performance requirements. This makes
GRASP uniquely adaptable both to ground-based observations,
where information content is high and a very complex retrieval
can be realized, and to single-view satellites, where the amount of
input information is limited, and the forward modeling needs to
be simplified.

GRASP is a versatile algorithm that can be applied to various
passive and active remote sensing observations made from
satellites, ground, aircraft or in laboratory and also to diverse
combinations of those measurements. Depending on the input
data, GRASP can be configured to retrieve columnar and vertical
aerosol properties and surface reflectance. Specifically, GRASP is
being adapted for reprocessing complex POLDER observations
(Dubovik et al., 2011; Dubovik et al., 2019; Li et al., 2019). Chen

et al. (2020) provide detailed description and discussion of
currently available PODLER-3/GRASP aerosol products. Some
demonstration of POLDER-3/GRASP retrievals are also
documented in several other papers (Bovchaliuk, et al., 2013,
Milinevsky et al., 2014, Kokhanovsky et al., 2015, Popp et al.,
2016; Neukermans et al., 2018, Chen et al., 2018; Chen et al., 2019;
Frouin et al., 2019, Remer et al., 2019, Sogacheva et al., 2020, Wei
et al., 2020; Wei et al., 2021, etc.). It has been shown that using
these advanced multi-angular polarimetric measurements
GRASP can derive detailed aerosol information including
aerosol absorption – a property that is very difficult to derive
from satellite observations. This concept now has been adapted
for research NRT retrieval from future 3MI/Metop-SG mission.
At the same time, the application of GRASP was shown to be
useful for deriving aerosol properties from single- and dual-view
polar MERIS and AATSR/Envisat, OLCI/Sentinel-3, Sentinel 5P
and geostationary Sentinel-4 observations, etc. Obviously, these
observations contain less information and the number of
parameters retrieved by GRASP is significantly lower than from
polarimetric observation. Nonetheless, the base generalized
approach of GRASP retrieval remains the same, i.e., from
practical application point of view GRASP satellite retrievals are
formally implemented in the same way for all observations:

1) The same assumptions are used everywhere, i.e., there are no
location specific assumptions.

2) The same set of a priori constraints is applied globally.
3) The retrieval uses the same initial guess globally (e.g. for

aerosol parameters);
4) Minimal or no post-processing used for the obtained results.

The outcome of such strategy will be discussed and illustrated
below using the real results and; their validation.

GRASP can be equally applied to various ground-based
observations. Since overall it inherits inversion strategy and
many specific elements from the algorithm developed by
(Dubovik and King, 2000; Dubovik et al., 2006, etc.) for
inverting AERONET data (Holben et al., 1998) it can be
naturally applied to the observations of ground-based sun/sky-
radiometers. It should give very close results to AERONET
operational code if applied in identical way as done in the
network processing. At the same time, GRASP includes some
additional features that can be of interest for obtaining some new
results from ground-based radiometers. For example, GRASP can
be applied to aerosol size information from direct Sun
observations only (Torres et al., 2017), or it can implement
simultaneous inversion of sequence of Sun and/or Sun/sky
radiometric observations under a priori constraints on aerosol
variability using multi-pixel approach. This will be demonstrated
below. Schuster et al. (2019) used the code with Polarized Imaging
Nephelometer measurements to mimic the AERONET retrieval
algorithm and validated the results with simultaneous laboratory
measurements of scattering, absorption, and particle size.
Moreover, the GARRLiC (Generalized Aerosol Retrieval from
Radiometer and Lidar Combined data) as a branch of GRASP was
developed for inversion of coincident multi-spectral lidar and
radiometer observations by Lopatin et al. (2013). Using this
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synergy, GARRLiC/GRASP retrieves improved aerosol columnar
properties together with details about vertical aerosol variability
including profiles of fine and coarse aerosol mode concentrations
and vertical profiles of ω0(λ), as will be illustrated below.
GARRLiC/GRASP has been used in a number of studies and
employed in routine processing within Aerosol, Clouds and Trace
Gases Research Infrastructure (ACTRIS) (Tsekeri, et al., 2013;
Bovchaliuk, et al., 2016; Benavent-Oltra et al., 2017; Tsekeri, et al.,
2017; Román et al., 2018; Benavent-Oltra et al., 2019; Hu et al.,
2019; Herreras et al., 2019; Titos et al., 2019; Konsta, et al., 2021).
The evolution of the GARRLiC/GRASP branch, its applications
to more complex lidar systems and more complex synergy
processing is discussed by Lopatin et al. (2021). There are
ongoing developments for utilization of the GRASP for
processing other ground-based observations as those by sun
and lunar sky cameras (Román, et al., 2017; 2021). In
addition, GRASP has been adapted and extensively used for
obtaining the aerosol observations from airplane and
laboratory measurements by polar-nephelometer (Espinosa
et al., 2017; Espinosa W. R. et al., 2019; Schuster et al., 2019).
Such measurements by polar-nephelometer of angular
distribution of intensity and polarization, as well as, total
aerosol scattering and absorption, that are not affected by
multiple scattering effects, are very useful for validating used
aerosol model and overall verification of the concept of aerosol
retrieval from remote sensing.

It should be noted that the main potential and advantage of
unified GRASP software is that there are many different options
for implementing retrieval and for generating and displaying the
outputs that are developed in core software and can be used in
different applications. Specifically, different approaches for
modeling atmospheric radiation can be used in retrieval. For
example, modeling of scattering by aerosol polydispersions can be
realized using different models for parameterizing aerosol size
distributions. Also, the aerosol retrieval can be set to derive
optical properties of aerosol particles such as complex
refractive index along with the size information as was
realized by Dubovik and King (2000). Alternatively, the
aerosol can be modeled as an internal or external mixture of
different chemical aerosol components and the retrieval could be
aimed for deriving aerosol chemical composition from the remote
sensing observations. Such approach has been integrated in
GRASP for both satellite and ground-based measurements, as
discussed by Li et al. (2019). Similarly, different surface
reflectance models can be used in GRASP retrievals. Also,
different possibilities for using a priori constraints are
available. Namely, the retrievals can be constrained by direct a
priori estimated of unknowns, by using a priori smoothness
assumptions on variability of any retrieved functions (e.g., size
distributions, spectral dependencies, etc.) or by using a priori
smoothness assumptions on variability of retrieved parameters in
time or in space if multi-pixel approach is used, or by using all or
several of these constraints simultaneously. For all the retrieved
parameters and functions derived from them GRASP can provide
the error estimation by calculating the elements of the covariance
matrix. Also, GRASP is designed to provide the values of
broadband fluxes and radiative forcing using retrieved

parameters (see Derimian et al., 2016). In addition, for some
situations the possibilities of estimating aerosol type, air quality
(PM 2.5) and other characteristics of high practical and scientific
interest have been introduced into GRASP.

The details of using different options in the retrieval and
forward modeling, scientific and methodological concepts of
setting up and utilization of GRASP in diverse applications are
discussed the following sections in detail.

2 THEORY OF MULTI-TERM LSM
INVERSION

The inversion module is one the key parts of the GRASP
algorithm and software. It is implemented based on rather
general principles that are not directly related with any
specific application. This is why, this module can be used with
diverse forward models that make the GRASP concept
fundamentally generalizable. It is important to note that the
inversion module is based on a rather extensive and positive
heritage of inversion algorithm developments for atmospheric
remote sensing (Dubovik et al., 1995; Dubovik et al., 2000;
Dubovik and King, 2000; Dubovik, 2004; Dubovik et al., 2006;
Dubovik et al., 2008; Dubovik et al., 2011, etc.). As a result, the
GRASP inversion strategy and software module has a generalized
character and, at the same time, it is well tuned for interpretation
of ground-based and satellite observations.

The inversion is implemented as a statistically optimized
fitting of observations following the Multi-term LSM strategy
that unites the advantages of a variety of approaches; it provides
transparency and flexibility in algorithm development inverting
passive and/or active observations and deriving several groups of
unknown parameters (e.g., Dubovik, 2004, etc.). This
methodology is designed to use the underlying LSM concept
for building statistically optimum solution for practical situations
when different observations and a priori data should be processed
and interpreted together. Overall, the approach is based on the
fundamental Method of Maximum Likelihood (MML). If there is
a vector f p composed by the measurements of physical
characteristics fj(a) depending on the vector of parameters a
and this vector contains random measurement errors Δf p, i.e.,

f p � f (a) + Δf p, (2.0.1)

then the vector of unknowns a derived from Eq. 2.0.1 will
inevitably contain some errors Δa. Here and everywhere below
in the text, the vectors are denoted by lowercase italic letters in
bold, while the matrices are denoted by the upper-case letters in
bold. According to MML the solution âbest should result in
modeled errors Δfjp � fj

p − fj(â), corresponding to the most
probable error realization, i.e., to the maximum of Probability
Density Function (PDF):

P(Δf̂ p) � P(f (a) − f p) � P(f (a)∣∣∣∣f p) � max (2.0.2)

where P( f (â)| f p) is the PDF of unknown parameters a
conditioned on the measurements f p and called the Likelihood
Function. The MML is one of the strategic principles of statistical
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estimation that provides statistically the best solution in
many senses (Edie et al., 1971). For example, under few
rather general conditions (the derivatives of PDF should
exist and be limited in the entire parameter space, etc.) the
asymptotical error distribution (for infinite number of Δf p
realizations) of MML estimates â have the smallest possible
variances of Δâi. Most of statistical properties of the MML
solution remain optimum for a limited number of
observations (Edie et al., 1971). Under the assumptions of
a normal PDF, i.e.,

P(f (a)∣∣∣∣f p) � ∼ exp( − 1
2
(f (a) − f p)TCf

−1(f (a) − f p)), (2.0.3)

where Cf is the covariance matrix of errors Δf p. Based on MML,
the maximum of PDF corresponds to the minimum of exponent
of Eq. 2.0.3, i.e., the solution should satisfy to the so-called LSM
condition:

2Ψ̂(a) � (f (a) − f p)TCf
−1(f (a) − f p) � min . (2.0.4)

The minimum of the multi-term quadratic form Ψ̂(a)
corresponds to its extremum, i.e., to a point with zero
gradient ∇Ψ̂(a):

∇Ψ̂(a) � 0. (2.0.5)

For the general case of non-linear functions fk(a) the solution can
be found iteratively:

ap+1 � ap − Δap, (2.0.6)

where Δap is the solution that can be found by solving the system
of so-called normal equations, i.e.:

(KT
pCf

−1Kp)Δap � KT
pCf

−1Δf p, (2.0.7)

where Δf p � f (ap) − f p, and Kp is Jacobian matrix with the

elements {Kp}ji � zfj(a)
zai

∣∣∣∣∣∣∣∣a�ap. Then, the minimized quadratic

form given by Eq. 2.0.4 has approaches a χ2 distribution with
known the asymptotic limit (e.g., Fourgeaut and Fuchs 1967; Edie
et al., 1971):

2Ψ(a) � min → (Nf − Na), (2.0.8)

where Nf - number of measurements and Na - number of
unknowns, i.e. numbers of elements in the vectors f p and a.

2.1 Multi-Term LSM Approach for Inverting
Multi-Source Data
Themulti-term LSM concept is adapted in GRASP for combining
information from different data sources. This approach has been
formulated for implementing the flexible constrained inversion as
a statistically optimized inversion of multi-source data. The
concept follows the developments of Dubovik et al. (1995),
Dubovik and King (2000), Dubovik et al. (2000), Dubovik
(2004), Dubovik et al. (2008), and Dubovik et al. (2011). Such
an approach is naturally derived from Eq 2.0.7 and allows
generalizing various inversion formulas into a single
formalism. The approach considers the situation when

measurement vector f p in Eq. 2.0.1 is obtained from different
and independent “sources”, i.e., f p and its covariance matrix has
the following array structure:

f p � ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
f p1
f p2
· · ·
f pK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ and Cf �
⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

C1 0 0 0
0 C2 0 0
· · · · · · · · · · · ·
0 0 0 CK

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ (2.1.1)

where (f p)T � (f p1, f
p
2, . . . f

p
K)

T is a column vector, Ck is the
covariance matrix of the k-th data set fk

p and index k denotes
different data sets or “sources”. This assumes that the data from
the same source have similar error structures that are
independent of errors in the data from other sources. For
example, direct Sun and diffuse sky radiances have different
magnitudes and are measured by sensors with different
sensitivities, i.e., their errors should be independent (due to
the different sensors) and likely have different magnitudes. In
this situation, it is convenient to consider Eq. 2.0.1 as a joint
system:

f pk � f k(a) + Δf pk , (k � 1, 2, . . . ,K), (2.1.2)

where the index k denotes different data sets. It should be
noted here that from the formal viewpoint, the only difference
between Eq. 2.1.2 and Eq. 2.0.1 is that Eq. 2.1.2 explicitly
outlines an expectation of an array structure for the covariance
matrix Cf*. Such explicit demarcation of the input data makes
the retrieval more transparent because the statistical
optimization of the retrieval is driven by a covariance
matrix of random errors. It should, be noted that Eq. 2.1.2
does not assume any relations between the different forward
models fk(a), i.e. forward models fk(a) can be the same or
different.

Thus, the joint PDF of independent data sets f1
p, f2

p, . . ., fK
p can

be obtained by the simple multiplication of the PDFs of data from
all K sources:

P(f (a)∣∣∣∣f p) � P(f 1(a), . . . , f K(a)∣∣∣∣f p1, . . . , f pK) � ∏K
k�1

P(f K(a)∣∣∣∣f pk).
(2.1.3)

Then, under the assumptions of a normal PDF, one can write

P(f (a)∣∣∣∣f p) � ∏K
k�1

P(f k(a)∣∣∣∣f pk) ∼ exp

⎛⎝− 1
2
∑K
k�1

(f k(a) − f pk)TCk
−1(f k(a) − f pk)⎞⎠.

(2.1.4)

Thus, for multi-source data, the solution should correspond to
minimum of K quadratic forms:

2Ψ̂(a) � 2∑K
k�1

Ψ̂k(a) � ∑Κ
k�1

(f k(a) − f pk)TCk
−1(f k(a) − f pk) � min,

(2.1.5)

and for the non-linear functions fk(a) the solution can be
found iteratively as shown by Eq 2.0.6, 2.0.7, while the left and
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right parts of normal system of Eq. 2.0.7 can be written as a
sum of terms:

⎛⎝∑K
k�1

KT
k,pCk

–1Kk,p
⎞⎠Δap � ∑K

k�1
KT

k,pCk
–1Δf pk. (2.1.6)

whereLk,p are Jacobian matrices at p-th iteration of the functions
fk(a) in the vicinity of ap. This is conventional LSM solution that
can be easily derived for the linear fk(a) and can also be used for
the case when fk(a) is non-linear (see, e.g., Dubovik, 2004 and
discussion in Section 1.3.2 below). Similarly, the asymptotic limit
of the minimized quadratic form, for most applications, can be
written as:

2Ψ(a) � min → ∑K
k�1

Nk – n, (2.1.7)

where NK is a number of measurements (inputs) in the k-th data
set and n is the number of retrieved unknowns (parameters).
Similarly, the a priori data sets are included in the K data sets.
They are statistically independent of the measurements, i.e. they
have errors with a different level of accuracy uncorrelated with
the remote-sensing errors.

It should be noted that in practical application it is often
convenient to use weighting matrices Wk instead of covariance
matrices Ck (e.g., Linnik 1962; Twomey 1977). When several data
sets inverted together the use of weighting matrices add
convenient transparency into approach because it makes it
evident the relative contribution of the data from different
data sources (e.g., Dubovik et al., 1995; Dubovik and King,
2000; Dubovik 2004, etc.). Specifically, using the weighting
matrices Eq. 2.1.6 can be written as

⎛⎝∑K
k�1

ckK
T
k,pWk

–1Kk,p
⎞⎠Δap � ∑K

k�1
ckK

T
k,pWk

–1Δf pk. (2.1.8)

Here the contribution of different terms in Eq. 2.1.1 are scaled by
the corresponding Lagrange multipliers ci, defined as:

Wi � 1
ε2i
Ci and ci �

ε21
ε2i
, (2.1.9)

where ε2i is the first diagonal element of Ci, i.e., ε2i � {Ci}11.
Evidently, c1 � 1. As discussed by Dubovik and King (2000),
Dubovik (2004), and Dubovik et al. (2011), etc., such
renormalization is also convenient, because with the
definition of the minimized quadratic function (or “residual”)
given by Eq. 2.1.8, the measurement error ε21 can be estimated
from the residual of the fit. Indeed, once the weighting matrices
used in the solution provided by Eq. 2.1.8 minimizes quadratic
with the limit depending on ε21:

2Ψ′(a) � 2ε21Ψ(a) � min → ε21⎛⎝∑K
k�1

Nk – n⎞⎠ and (2.1.10)

ε̂21 ≈
2Ψ′(ap)∑k�1,...,KNk − Na

. (2.1.11)

2.1.1 A Priori Constraints in Multi-Term LSM Approach
In many practical situations, the information from measurement
is not sufficient. In such situation a solution of Eq. 2.0.7 can be
non-unique and inclusion of additional a priori information
(constraints) becomes necessary. Multi-term LSM concept has
been proposed for the integration of different types of a priori
constraints in remote sensing applications (Dubovik et al., 1995;
Dubovik and King 2000; Dubovik et al., 2000; Dubovik 2004;
Dubovik et al., 2008; Dubovik et al., 2011). In this approach a
priori estimates are considered to be “equivalent” to the
measurements in the sense that the a priori data are
characterized by their PDF and could be treated equivalently
to the actual measurements. In this regards Eq 2.1.6–Eq 2.1.9 do
not show any formal distinction between different f k(a). In
practice there are always two different types of data sets: direct
measurements and quantified a priori knowledge about
unknowns a. Therefore, the vector of the measurement (f p)T �
(f p1, f

p
2, . . . f

p
k)

T can be formally written as:

(f p)T � (f p1, f p2, . . . , f pk , f a1, f a2, . . . f an, )T, (2.1.12)

where f pi � f pi (a) represent directly measured characteristics and
f ai � f ai (a) represent a priori known characteristics of unknowns
a. Correspondingly the right side of Eq. 2.1.3 can be formally split
in two groups:

P(f (a)∣∣∣∣f p) � ∏K
k�1

P(f k(a)|f pk)∏N
n�1

P(f an(a)∣∣∣∣f a,pn ), (2.1.13)

where the first group represents K sets of data obtained from
actual measurements, the second group represent N sets of data
f a,pn obtained from a priori knowledge.

Correspondingly, the resulting Eq. 2.1.6 can also be formally
arranged to identify the contribution of measurements and a
priori terms.

⎛⎝∑K
k�1

KT
k,pCk

–1Kk,p +∑N
n�1

KT
a,n,pCa,n

–1Ka,n,p
⎞⎠Δap

� ∑K
k�1

KT
k,pCk

–1Δf p,pk +∑N
n�1

KT
a,n,pCa,n

–1Δf ap ,pn , (2.1.14)

where two groups of the terms in left and right parts of the
equation represent contributions of the set of K measured
characteristics fk(a) and the set of N a priori fn

a(a) characteristics.
Thus, the above Multi-term approach is a simple rearranging

of the base LSM formulation. At the same time, it provides the
solid basis for unifying many known formulas of constrained
inversion in a single formalism, as discussed by Dubovik (2004).
In addition, it was shown to be practically convenient and
efficient approach for developing remote sensing algorithms
using diverse complimentary observations and a priori
constraints. Specifically, the Multi-term approach has been
successfully used in previous inversion algorithms for
laboratory (Dubovik et al., 2006), ground-based (Dubovik and
King, 2000; Dubovik et al., 2000; Dubovik et al., 2002), airborne
(Gatebe et al., 2010), satellite observations (Dubovik et al., 2011)
and in inverse modeling (Dubovik et al., 2008). All remote
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sensing development have been integrated into a versatile GRASP
algorithm (Dubovik et al., 2014). Many of the technical details
adapted in the GRASP have been previously shown and
discussed. Therefore, the Sections below outline only newly
introduced elements and are focused on conceptual elements
of inversion as well as on user-oriented explanations of the
GRASP algorithm and software utilization.

2.1.2 A Priori Constraints Used in GRASP Algorithm
The multi-term LSM concept allows flexible utilizations of nearly
arbitrary a priori constraints, i.e., knowledge about any a priori
known function f an(a) of unknowns a. However, only a limited
number of the most popular and physically transparent a priori
constraints are presently used in GRASP. At the same time, the
utilization of other a priori constraints that are not included in the
proposed options can also be realized upon a request.

The base configuration of GRASP proposes two types of a
priori limitations: “single-pixel” and “multi-pixel” constraints.
The utilization the word “pixel” in this terminology originated
from interpretation of satellite images that are composed of
separate pixels. Correspondingly, “single-pixel” relates to the
constraints on parameters within each pixel independently,
while “multi-pixel” relates to the constraints on inter-pixel
spatial or temporal variability of the retrieved parameters. This
classification (with the introduction of “multi-pixel” constraints)
is convenient not only for the interpretation of satellite images,
but it is also convenient for many other applications (laboratory
and ground-based measurements) where input data can be
related in time or space.

2.1.2.1 “Single-Pixel” Constraints—A Priori Constraints for
Coincident and Collocated Observations
This type of constraint includes a priori information about each
retrieved parameter (or characteristic in each set of
measurements) that can be used absolutely independently on
the measurements or as a priori knowledge in other data sets. The
most common example of this type of constraint is the
application of direct a priori estimates of unknowns ap, i.e.,

f a,p1 � f a,p1 (a) + Δf a,p1 → ap � a + Δa, (2.1.15)

where Δa are the uncertainties of the estimates ap and are
generally considered to be unbiased random errors within the
covariance matrix Cap. These constraints can be easily
included in Eq. 2.1.14 by defining: Ka,p � 1 - unity matrix;
i.e., KT

a,pC
–1
a Ka,p � C–1

a and KT
a,pC

–1
a f a,p1 � C–1

a ap. Utilization of a
priori estimates ap was introduced in the pioneering studies by
Twomey (1963) and later evolved and discussed in detail in the
Rodgers (2000) textbook on inversion.

Another common type of a priori constraint are
smoothness constraints that limit the variability of
retrieved functions by using a priori knowledge about
limitations on derivatives of those functions. For example,
a priori knowledge limits high frequency variations of
continuous functions v(x), such as the aerosol size
distribution, spectral dependence of the refractive index,
parameters of surface reflectance, etc. From a formal point

of view, the smoothness constraints are related by limited
values of the derivatives, i.e., with deviations of their m-th
derivative deviations from zero:

zmv(x)
zxm

≈ 0. (2.1.16)

For the vector of unknowns a � (a1, a2, . . . an)
T that contains the

elements describing these continuous functions v(x), the
knowledge on the smoothness of the retrieved function can be
defined using a vector-matrix linear system (e.g., see Dubovik
2004; Dubovik et al., 2011):

f a,p2 � f a,p2 (a) + Δf a,p2 → 0p � Gma + Δp
g, (2.1.17)

where Gm is the Jacobian matrix of the matrix of the m-th
derivatives, 0p is zero vector representing the fact that the a
priori estimates of the corresponding derivatives equal to zeros. In
practice, these are often approximated by matrices of the m-th
finite difference estimated in point a. The errors Δg

p reflect the
uncertainty in the knowledge of the deviations of y(x) from the
assumed constant (m � 1), straight line (m � 2), parabola (m � 3),
and so on.

Under the assumption that the Δg
p in Eq. 2.1.15 have a

normal distribution with the unbiased covariance matrix
CΔm, these constraints can be easily included in Eq. 2.1.14 by
defining: Ka,2,p � Gm, where Gm is Jacobian of m-th derivatives,
and f a,p2 � 0p. Correspondingly, the following can be written

KT
a,2,pC

−1
a,2Ka,2,p � GT

mC
−1
ΔmGm andKT

2,pC
−1
2 Δf a,p2 � GT

mC
−1
Δm(a

p − 0p)

� GT
mC

−1
Δma

p. Utilization of such smoothness constraints was
suggested by one of the first formulations of constrained
inversion by Phillips (1962) and was also considered in article
by Tikhonov (1963) and Tikhonov’s later studies.

Thus, for a case where only a direct a priori estimates and
smoothness constraints are used, Eq. 2.1.14 can be explicitly
written via weighting matrices as:

⎛⎝∑K
k�1

ckK
T
k,pWk

–1Kk,p + caW
–1
a +∑N

n�1
cnΩn

⎞⎠Δap

� ∑K1

k�1
ckK

T
k,pWk

–1Δf Pk + caW
–1
a (ap – ap) +∑N

n�1
cnΩna

p, (2.1.18a)

where Ωn denotes the smoothness matrices defined as

GT
mW

−1
2,mn

Gm � Ω2,mn � Ωn (2.1.18b)

Equation 2.1.18 include several smoothness constraints so that
several physically independent functions can be retrieved
simultaneously under different a priori smoothness constraints.
For example, Dubovik and King (2000) retrieve aerosol size
distribution and spectral dependence of refractive index.

Thus, Eq 2.1.18 generalize the commonly used equations of
constrained inversion by Phillips (1962), Tikhonov (1963),
Twomey (1975), Rodgers (1976), Twomey (1977), Rodgers
(1990), and Rodgers (2000) and allows for significantly
extended flexibility in practical use (Dubovik and King, 2000;
Dubovik 2004, etc.)
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The values of uncertainties in a priori constraints are
considered to be directly comparable to uncertainties in the
actual measurements and even defined in the GRASP software
relatively to the measurement errors.

The definition of measurement uncertainty in GRASP code is
the following:

1) Type of measurement errors:

- for each measurement data set f k
p two types of errors Δfkp

can be set: relative or absolute;

2) The magnitude of the errors:

- for each data set the magnitude of the errors is defined
by the standard deviation εi and a weighting matrixWi

(assumed as the unity matrix by default). The standard
deviation is used inside of the code to calculate
corresponding Lagrange multipliers ci.

Correspondingly the magnitudes of uncertainties in a priori
estimates are defined in the same way as measurements.
Specifically, the following “single–pixel” a priori constraints
can be set in GRASP code.

“Single-pixel” a priori constraints:
1) Direct a priori estimates of unknown

parameters a � (a1, a2, . . . an)
T:

- for each parameter ai an a priori value ai
p can be provided

with the corresponding Lagrange multipliers cai;
- it is also possible to assume a vector ap of a priori
estimates for all the retrieved parameters or for selected
groups (e.g. parameters describing size distribution) with
common Lagrangemultipliers ca and weightingmatrixWa.

2) The vector a of unknows includes groups of parameters
describing specific retrieved characteristics
a � (asd , an, abrdf , ah . . .)

T, where asd, an, ak, abrdf, ah are
vectors containing only the parameters of size distribution,
real and imaginary refractive indices and surface BRDF and
aerosol vertical profile correspondingly. For each such
group of parameters asd, an, ak, abrdf, ah, etc. that
describing describes a continuous function (e.g., asd) in
the retrieved vector a � (asd , an, abrdf , ah . . .)

T the
smoothness constraints can be set by defining:

- the order m of limited derivatives (m � 0 – constant; m � 1–
straight line; m � 2– parabola, etc.)

- the strength of the applied a priori smoothness constraints is
defined by Lagrange multipliers cn.

The effect on the solution of applying smoothness constraints
using the limitations on the derivatives can be easily illustrated.
Namely, in Eq. 2.1.18 one can use only the linear system
representing the a priori constraints given by Eq. 2.1.17,
i.e., 0p � Gma + Δp

g. Correspondingly, the solution of such
system is provided by iterations shown by Eq. 2.1.18, where

only one term is used; i.e., Eq 2.1.18 is reduced toΩnΔap � Ωnap.
Evidently, the solution of such system is non-unique because the
matrix Gm has a smaller number of rows (n-m – number of finite
differences that approximate the corresponding derivatives) than
columns (n – number of unknowns) and therefore it is evident
that the matrix Ωn has zero determinant and the solution is non-
unique, i.e., many ap could provide the equality. Correspondingly,
the result strongly depends on the initial guess, i.e., iterative
solutions initialized with different initial guesses would converge
to different solutions. At the same time, all the solutions should
satisfy the smoothness equations, i.e., each solution should be a
constant for m � 1, a straight line for m � 2 and a parabola for m �
3, while the exact placement of constant, straight line or parabola
depends on the initial guess. Figure 2 illustrates this
consideration by showing the solutions chosen by the iterative
retrieval from the same initial guess using different a priori
smoothness constraints.

It should be noted, that all above “single-pixel” and “multi-
pixel” (discussed in the next sections) a priori constraints
implemented in the software were already actively used in
practical applications and, therefore should be considered as
recommended. For example, in case of “single-pixel” a priori
constraints, the use of a priori estimate is often useful for the
parameters or characteristics when their absolute values known
from climatology or other ancillary information and the retrieved
values do not expect deviate from these values and overall
sensitivity of observation is not very high to these parameters.
For example, such constraints are used for complex refractive
index in GRASP-AOD applications (see Ground-Based Passive
Observations). In satellite retrievals discussed in Satellite and
Airborne Passive Observations, climatological values are often
used as direct a priori estimates for some parameters of land
surface reflectance. “Single-Pixel” smoothness constraints are
often used for retrieval continuous function, such as aerosol
size distribution, spectral dependence of complex refractive
index, spectral dependence of the parameters of land surface
reflectance. At the same time, the strength of a priori constraints
varies significantly for different parameters. For example,
smoothness constraints are much stronger for such parameters
as spectral dependence of aerosol complex refractive index, then
for size distribution (e.g., see Dubovik and King, 2000). Similarly
the first parameter in the models of BRDF land surface reflectance
is expected to have strong variation while other parameters
(second, third . . .) describing land surface reflectance
anisotropy are nearly spectrally constant (see Dubovik et al.,
2011).

Finally, the practical libraries of GRASP-OPEN software
provide large number of the examples of GRASP settings files
that are useful examples showing how the a priori constraints in
other users in realized applications.

2.1.2.2 “Multi-Pixel” Constraints—A Priori Constraints (2-D
Case) for Coordinated but Non Coincident or/and
Non-Collocated Observations
The GRASP “multi-pixel” fit is statistically optimized inversion
that is implemented for several independent observations
simultaneously (Dubovik et al., 2011), e.g., for a group of
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multiple satellite image pixels. Such simultaneous retrieval
can be easily designed using Multi-term LSM concept defined
in Eq 2.1.1–Eq 2.1.14, as described in details in paper
by Dubovik et al. (2011). In “multi-pixel” fitting the state
vector is composed of the state vectors from several (n)
pixels:

a � (a1, a2, . . . , an)T, (2.1.19)

where each component ai represents a state vector for a set of
observations (or a “pixel” for satellite images). The observations
and a priori constraints for each “pixel” are defined in exactly the
same way as the “single pixel” retrieval described in Section
2.1.2.1. At the same time, implementing “multi-pixel” fitting of
the data allows one to additionally use inter-pixel constraints. In
fact, a priori constraints about known limited inter-pixel
variability of retrieved parameters can be realized by using a
priori knowledge about limitations on derivatives on time or
spatial variability of parameters retrieved from observations in
different pixels. Indeed, observations of different pixels provide
important information about the temporal and spatial
characteristics of the retrieved parameters. For example, a
satellite can observe the same pixel in time and several
neighboring pixels simultaneously. In principle, the variability
of each physical parameter ai can be considered as a value of a
continuous function ai � aj(x, y, z, . . . , t). Therefore, the limitation
on the variability of every parameter in time and space that can be
used as additional constraints. Similar to Eq. 2.1.16, inter-pixel
variability constraints are related with limited values of the
derivatives, i.e., with their m-th derivative deviations from zero.
At present, the time- and spatial-variation of each parameter in
GRASP can be limited using the following a priori assumptions:

zmai(x, y, z, t . . .)
zxm

≈ 0,
zmai(x, y, z, t . . .)

zym
≈ 0,

zmai(x, y, z, t . . .)
zzm

≈ 0, and
zmai(x, y, z, t . . .)

ztm
≈ 0,

(2.1.20)

and can be presented in matrix as similar to Eq. 2.1.17written for
a single-pixel case as:

⎧⎪⎪⎪⎨⎪⎪⎪⎩
f a,p2 � f a,p2 (a) + Δf a,p2
f a,p3 � f a,p3 (a) + Δf a,p3
f a,p4 � f a,p4 (a) + Δf a,p4
f a,p5 � f a,p5 (a) + Δf a,p5

→
⎧⎪⎪⎪⎨⎪⎪⎪⎩

0px � Gx,mxa + Δp
x

0py � Gy,mya + Δp
y

0pz � Gz,mza + Δp
z

0pt � Gt,mta + Δp
t

, (2.1.21)

wheremx,my, mz andmt are the orders of the derivatives used for
limiting the time (t) and spatial (x, y, z) variation of retrieved
parameters. These orders can be different for each dimension x, y,
z and t.

Then, the solution for the multi-pixel fitting equivalent of Eq.
2.1.18 (written for a single-pixel case) can be presented as:

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
A1,p 0 . . . 0
0 A2,p . . . 0
. . . . . . . . . . . .
0 0 . . . AN ,p

+Ωinter

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ΔaP

� ⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
∇Ψ1(aP1)
∇Ψ2(aP2)
. . .
∇ΨN(aPN)

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠ +Ωintera
P, (2.1.22)

where Ai,p and ∇Ψi(aPi ) refer to the left and right parts of Eq.
2.1.8 defined for i-th single pixel, so that Eq. 2.1.8 can be
denoted compactly as Ai,pΔaPi � ∇Ψi(aPi ). The matrix Ωinter of
multi-pixel constraints is defined via smoothness matrices for
the spatial and temporal variability of each retrieved
parameter as:

Ωinter � cxΩx,mx + cyΩy,my + czΩz,mz + ctΩt,mt . (2.1.23)

The detailed description of multi-pixel constraints and their
application is provided in the paper by Dubovik et al. (2011).
Specifically, Dubovik et al. (2011) provide explicit expressions for
Ωx,mx ,Ωy,myandΩt,mt , as well as corresponding Lagrange multipliers
cx , cy and ct . The equations are fully implemented in the GRASP
code. The vertical multi-pixel constraints defined by Ωz,mz and cz

FIGURE 2 | Illustration of the effect of smoothness constraints limiting derivatives of different order on the solution. The illustrations show the solutions chosen for
Eq. 2.1.17 alone (no other data inverted simultaneously) by the iterative retrieval from the same initial guess under different a priori smoothness constraint. The first,
second and third derivatives are a priori limited in the (A), (B), (C) correspondingly.
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that appear logically in general Eq 2.1.20–Eq 2.1.23 are not yet
implemented in a similar way as is done for horizontal and
temporal constraints, because in practice there are almost no
fully independent vertical observations. Instead, as was
discussed in a previous Section, the a priori limitations on
vertical variability are included as a part of single-pixel a
priori constraints that seem to address most needs in
practical applications (Lopatin et al., 2013; Lopatin et al.,
2021). The illustrations of a priori constraint on vertical
variability are discussed in Multi-Term LSM: Retrieval
Practice Using GRASP. It should be noted that the rather
complex and explicit expressions provided by Dubovik et al.
(2011) are of primary interest for methodological analysis. At
the same, the implementation of vertical or any other multi-
pixel constraints in practical algorithms can be efficiently
realized in computer routines using conceptual
Eq 2.1.20–Eq 2.1.23 without using explicit visualization of
the final equations.

Thus, the following “multi-pixel” a priori constraints can be
set in GRASP code.

“Multi-pixel” a priori constraints:

1) For each single parameter ai, variability along coordinate x can
be limited by applying a priori constraints on the derivatives of
ai � ai(x). For example, in satellite retrievals, the coordinate x
relates with latitudinal variability. The smoothness constraints
on ai � ai(x) can be set by defining:

- order m of limited derivatives [m � 0 – ai � ai(x) is close to a
constant;m � 1– ai � ai(x) is close to a straight line;m � 2– ai
� ai(x) is close to a parabola, etc.]

- the strength of applied a priori smoothness constraints is
defined by Lagrange multipliers cx,i.

2) For each single parameter ai a priori constraints on
variability along coordinate y, i.e., ai � ai(y) can be
limited. For example, in satellite retrievals, the
coordinate y relates with longitudinal variability. The
smoothness constraints on ai � ai(y) can be set by defining:

- order m of limited derivatives [m � 0 – ai � ai(y) is close to a
constant;m � 1– ai � ai(y) is close to a straight line;m � 2– ai
� ai(y) is close to a parabola, etc.]

- the strength of applied a priori smoothness constraints is
defined by Lagrange multipliers cy,i.

3) For each single parameter ai a priori constraints on time
variability, i.e., ai � ai(t) can be limited. The smoothness
constraints on ai � ai(t) can be set by defining:

- order m of limited derivatives [m � 0 – ai � ai(t) is close to a
constant;m � 1– ai � ai(t) is close to a straight line;m � 2– ai
� ai(y) is close to a parabola, etc.]

- the strength of applied a priori smoothness constraints is
defined by Lagrange multipliers ct,i.

For the parameters with multi-dimensional variability ai �
ai(x,y,t) the above constraints can be applied simultaneously.

For example, aerosol concentrations, values of refractive
index, non-spherical fraction and any parameter used for the
description of surface reflectance BRDF and BPDF can be
considered as characteristics ai � ai(x,y,t) that change
horizontally and in time. In case of applying multi-pixel
constraints on the retrieved multi-dimensional function ai �
ai(x,y,t), the smoothness constraints would force the projection
of the solution at each coordinates x, y or t to take a from close to a
constant, a straight line or a parabola depending which of

corresponding partial derivatives zmai(x,y,t)
zxm , zmai(x,y,t)

zym or zmai(x,y,t)
ztm

with respect to x, y or t are assumed to be close to zero. Therefore
limiting several different partial derivatives will force ai(x,y,t) to
the corresponding 3D surface.

Figure 3 illustrates the application of multi-pixel
constraints in 2D. Similarly to the single-pixel case shown
in Figure 2, one can use only reduced linear system Eq. 2.1.22
using terms representing multi-pixel a priori constraints.
Evidently, the solution of such system is non-unique
because the matrix in the left part of Eq. 2.1.22 is
degenerated (it has smaller number of rows than columns),
and the results will strongly depend on the initial guess,
i.e., iterative solutions initialized with different initial
guesses would converge to different solutions. Situations
with a priori constraints limiting different partial
derivatives are shown in Figure 3. One can see that the
resulting solutions are always converge to smooth surfaces
with projection on the axis x or y represented a constant, a
straight line or a parabola depending which of corresponding
partial derivatives in respect to coordinate x or y are limited.

In practical applications “multi-pixel” constraints were
introduce and proven to be efficient in satellite applications.
Specifically, in GRASP simultaneous retrievals of land surface
and aerosol form satellite observations (see Satellite and Airborne
Passive Observations, the “multi-pixel” smoothness constraints
were applied to limit temporal variability for retrieved values of
land reflectance and spatial variability for retrieved values of
aerosol parameters (see Dubovik et al., 2011). Utilization of
temporal “multi-pixel” constraints is also was shown for
diverse synergy application (see discussion in Ground-Based
Active Observation and Synergy With Passive Observations and
Synergetic Retrievals and Other Diverse GRASP Applications). For
example, Lopatin et al. (2021) used the “multi-pixel” smoothness
constraints on temporal variability of aerosol parameters in
simultaneous inversion of the different ground-based
observations, that were obtained in the same place but not at
the same time. In such approach, the “multi-pixel” smoothness
constraints helped to significantly enrich the aerosol
characterization.

It should be noted that, in principle, the choice of possible
multi-pixel constraints is not limited to the set of constraint
possibilities listed above or already realized in the software. For
example, the a priori limitations can be expected for higher order
or mixed partial derivatives:
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z(k1+k2+k1+k2)ai(x, y, z, t)
zxk1zyk2zzk3ztk4

≈ 0. (2.1.24)

Also, the derivatives may also have non-zero average trends
which could also be useful practical constraints. Explicit
derivation of the matrices Ωinter, as well as understanding and
visual interpretation of a priori constraints on the partial
derivatives shown by Eq. 2.1.24 can be quite challenging for
mixed partial derivatives of high order in N-D cases. At the same
time, handling these cases using computer routines in inversion
algorithms is rather straightforward. In addition, as emphasized
by Dubovik et al. (2011), the matrices Ωinter are very sparse,
therefore solving an apparently large matrix system of Eq. 2.1.22
can be efficiently achieved using standard numerical solvers
developed for sparse systems.

In addition, Xu et al. (2019) proposed to integrate some
elements of Principal Component (PC) analysis into the
multi-pixel formalism. In this approach the vector of
unknowns is represented via expansion using PC basis
and the actual PC components and the coefficients are
sought as a part of the solution. This approach allows
reduction of the solution of dimensionality, decrease of

calculation time and other potentially interesting solution
optimizations.

All above features are considered for integration in the future
evolution of GRASP.

2.1.3 ComparisonWith Bayesian Strategy and Optimal
Estimation Approach
As discussed above, in a contrast with original approaches of
constrained inversion originated by Phillips (1962), Tikhonov
(1963), Twomey (1975), and Twomey (1977) the Multi-term
LSM is fully based on statistical estimation methodology that
suggests use of MML and LSM as the most practically efficient
approach. In this regard, Multi-term LSM approach is
fundamentally similar to conventional Bayesian approach used
in Optimal Estimation (OE) algorithms (Rodgers 2000). At the
same time, Multi-term LSM has some distinct and practically
useful differences with OE approach that will be discussed below.
Specifically, OE is absolutely equal to a particular case of Multi-
term LSM when only direct a priori estimates are used as
constraints, meanwhile the Multi-term LSM approach allows
rather straightforward application of much more refined a
priori constraints.

FIGURE 3 | Illustration of the effect from multi-pixel smoothness constraints (2-D case). The illustrations show the solutions chosen for Eq. 2.1.2 alone (no other
data inverted simultaneously) by the iterative retrieval from the same initial guess under different a priori smoothness constraint. Each panel corresponds to different set of
a priori limited derivatives that shown by equation on the top of each panel.
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In probability theory and statistics, Bayes theorem describes
the probability of an event, based on a prior knowledge of
conditions that might be related to the event (e.g., Idie et al.,
1971). In a similar way, any retrieval can be considered as a
modification of prior knowledge about unknowns by adding
information from indirect measurements f p(a). Such vision
can be expressed mathematically using MML formalism.
Namely, in situation when available a priori information can
as expressed as a priori estimates ap statistically independent of
the measurements f p, the a priori estimates ap can be described by
Likelihood Function i.e., PDF function P(a|ap) that is
independent of the Likelihood Function of the measurements
P(f(a)|f p). Then, correspondingly the Likelihood Function
written if both a priori estimates ap and measurements fp are
available as a joint PDF P(a|f p, ap) can be presented as the
product of P(a|ap) and P(f(a)|f p):

P(a|f p, ap) � P(f (a)∣∣∣∣f p)P(a|ap). (2.1.25)

Correspondingly, the MML for such a situation can be written as
follows:

P(a|f p, ap) � P(f (a)∣∣∣∣f p)P(a|ap) � max . (2.1.26)

In most practical cases, it is reasonable to assume that there is
some a priori knowledge ap about unknowns a (even if only quite
uncertain). Following such logic, Eq. 2.1.25 can be considered as
a rather basic MML formulation as suggested by studies of
Rodgers (2000) where it is also called the OE technique. In the
simplest linear case, the OE solution corresponds to the solution
of the following linear system:

(KTC−1K + C−1
a )a � KTC−1f p + C−1

a ap. (2.1.27)

This OE technique is rather popular for designing linear
optimized estimators for constraint inversion in remote
sensing applications and it is often considered as a universal
approach for integrating a priori constraints in the retrieval.
However, in this regard, Multi-term LSM can propose a
somewhat different view on the definition of a priori
constraints that can be more convenient in some practical
situations. Indeed, the Multi-term LSM Eq. 2.1.13 can be
formally considered as an equivalent of Bayesian or OE
formulations. Namely, the first and second terms on the right-
hand side of Eq. 2.1.13 become:

P(f (a)∣∣∣∣f p) � ∏K
k�1

P(f k(a)∣∣∣∣f pk)P(a∣∣∣ap), (2.1.28)

where PDF of ap is defined as

P(a∣∣∣ap) � ∏N
n�1

P(f an(a)∣∣∣∣f a,pn ) (2.1.29)

For the cases where all PDFs are normal functions, the PDF
P(a|ap) on the left side can be described only by the ap covariance
matrix Ca, while the right side is a product of several PDFs, each
of them given for a different function f an(a) and is defined by the
mean vector f a,pn and its covariance matrix Ca. Correspondingly,
for many practical applications, using Eq. 2.1.26 directly and

finding the ap covariance matrix Ca directly is not easy and even
nearly infeasible. In this regard, a Multi-term LSM equation that
considers an a priori PDF as a product of several different PDFs of
a priori constraints is significantly more convenient for a number
of practical situations. For example, Eq. 2.1.17 that was quite
naturally defined above in the frame of Multi-term LSM can be
obtained from optimum estimation Bayesian Eq. 2.1.25 by
assuming the following ap and Ca:

ap � ⎛⎝caW
−1
a +∑K2

n�1
cnΩn

⎞⎠−1

caW
−1
a (ap − ap) (2.1.30)

and

Ca � ε21⎛⎝caW
−1
a +∑K2

n�1
cnΩn

⎞⎠−1

(2.1.31)

respectively. Indeed, Eq. 2.1.28 are exactly the two key terms of
Multi-term LSM expression introduced in the form of Eq. 2.1.13.
Obviously, that such ap and Ca can only be constructed using
considerations of P(a | ap) and a product of many PDFs as
shown in Eq 2.1.28, 2.1.29. Constructing such ap and Ca could
probably be useful in some situations, but generally is not
necessary and often may even be impossible. For example,
even the one of the simplest pioneering Phillips formulas
written for the linear case:

(KTCf
−1K +Ωm)a � KTCf

−1f p, (2.1.32)

Can be derived from OE Bayesian Eq. 2.1.27 assuming ap and
Ca as:

ap � 0p and Ca � Ω−1
m . (2.1.33)

However, Ωm is a smoothness matrix (generally defined as
Ωm � GT

mGm, e.g. Dubovik, 2004) that has det � 0, and
therefore defining matrix Ca explicitly as given in Eq 2.1.30,
2.1.31 is an ambiguous and unachievable task. Evidently, more
complex Multi-term LSM based equations such as Eq 2.1.18,
2.1.22 can also be presented in the OE form, however the
derivations of those equations in the first place from PF
would not be feasible.

Finally, we would like to note the substantial conceptual
difference between the Multi-term LSM approach and the OE
approach. Indeed, themain idea of themulti-term LSM concept is
the consideration that a priori estimates are equivalent to the
measurements. In other words it is expected that a priori data can
be characterized by their PDF and be treated equivalently to
actual measurements. This is a different premise than the main
idea of the Bayesian statistics approach, which assumes that the
developer should always utilize a priori information about the
entire solution before attempting the retrieval. Thus, this
Bayesian assumption implicitly suggests having an a priori
estimate for the entire unknown state vector as a starting
point of developing the retrieval algorithm. With that in mind,
the developer may feel a necessity to use at least some values as a
priori estimates; for example, using his/her best guess about the
possible solution even without having full justification for using
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these estimates. As a result, if no objective link of the assumed a priori
information has been established, the Bayesian approach becomes
vulnerable to subjective assumptions of the developer (which
somewhat contradicts to the principle of scientific objectivity).
Thus, in spite the fundamental mathematical equivalence of Multi-
term LSM and OE, the differences in the base concepts may have
essential influence on forming specific methodological guidelines that
may lead significantly different practical recommendations.

It is interesting that from a historical prospective, Ronald
Fisher was among the opponents of the Bayesian statistics and
promoted development of MML as an alternative strategy (see
Fisher, 1956; Agresti and Hitchcock, 2005). Fatefully, the highly
popular OE approach promoted by the textbook Rodgers (2000)
is often considered as an equivalent of MML by remote sensing
community (especially by inexperienced readers taking the text
book as introductory coarse in retrieval methodology), and it
somewhat promotes the Bayesian ideas.

2.2 Further Aspects of Inversion
Optimization
The optimality of MML and LSM concept is a key methodological
aspect used for realizing numerical inversion in GRASP. In this
respect, it is necessary to remember that this optimality can be
achieved under certain conditions that need to be respected;
otherwise applying the MML and LSM concept may lead to
unsatisfactory results.

2.2.1 Logarithmic Transformation as Rigorous
Approach to Account for Non-Negativity of Measured
and Retrieved Positively Defined Parameters
One of the situations where this aspect requires specific attention
relates to securing the positive solutions in the retrieval of non-
negative characteristics. Historically, the straightforward use of
LSM-based linear constrained inversion could generate negative
values for physically non-negative characteristics in some
applications, and this created contradicting situations wherein
empirical, largely intuitive algorithms (Chahine 1968; Twomey
1975) performed better than algorithms based on rigorous
principles of statistical optimization. Such results reduce the
trust and interest of the inverse algorithm developer
community in studying the rather complex statistical
estimation formalism and utilizing it in practical applications.
At the same time, as was discussed by Dubovik and King (2000)
and Dubovik (2004), after some adjustment of hypothesis about
error statistic and correct application of the concept, the MML
and LSM provide very fruitful solution recipes for such situations.

Specifically, as suggested by Dubovik et al. (1995), Dubovik
and King (2000) and Dubovik (2004) the non-negativity
constraints can be included in the statistical estimation
concept by applying lognormal noise assumption in the
retrieval optimization. This assumption of lognormal noise
(instead of conventional normal noise) leads to implementing
inversions in logarithmic space, i.e., to employing a logarithmic
transformation of the forward model. Retrieval of logarithms of a
physical characteristic (instead of absolute values) is an obvious
way to avoid negative values for positively defined characteristics.

However, the literature devoted to inversion techniques tends to
consider this apparently useful tactic as an artificial trick rather
than a scientific approach to optimize solutions.

Such above misconception is probably caused by the fact that
the pioneering efforts on inversion optimization by Phillips
(1962), Tikhonov (1963), Twomey (1963) and many of later
theoretical considerations (e.g., Hansen, 1992) were devoted to
solving the Fredholm integral equation of the first kind, i.e., a
system of linear equations produced by a quadrature. Examples
include the retrieval of aerosol size distribution (King et al., 1978)
or temperature profile of the atmosphere (Rodgers, 1976) by
inverting spectral dependence of optical thickness. Considering
optical thickness as a function of the logarithm of the aerosol
concentrations or temperature profile requires replacing initially
linear equation f � K a by nonlinear one fj � fj(ln ai). On the face
of it, such a transformation of linear problems to non-linear ones
is not enthusiastically accepted by scientific community as an
optimization. On the other hand, in cases when a forward model
is a nonlinear function of the retrieved parameters (e.g.,
atmospheric remote sensing in cases when multiple scattering
effects are significant), the retrieval of logarithms is more easiily
accepted as a logical approach. Besides, non-linear Chahine-like
iterative methods where proven to be efficient for inverting linear
systems while Dubovik et al. (1995) and Dubovik and King (2000)
have shown that under some assumptions these methods are
equivalent to LSM formulated for logarithms.

Rigorous statistical considerations also reveal some
limitations of applying Gaussian function for modeling
errors in the measurement of positively defined
characteristics. Indeed, the curve of the normal distribution
is symmetrical and therefore the assumption of a normal PDF
is equivalent to the assumption of the principal possibility of
obtaining negative results even in the case of physically non-
negative values. For such non-negative characteristics as
intensities, fluxes, etc., the choice of the log-normal
distribution for describing the measurement noise seems to
be more correct due to the following considerations:

1) log-normally distributed values are positively-defined;
2) there is a number of theoretical and experimental reasons

showing that for positively defined characteristics the log-
normal curve (multiplicative errors) is the best for modeling
random deviations in non-negative values [see the discussion
of statistical experiments in the textbook of Tarantola (1987)].

In addition, from the practical viewpoint, using the lognormal
PDF for noise optimization does not require any revision of
normal concepts and can be implemented by simple
transformation of the problem to the space of normally
distributed logarithms. Therefore, there is a clear basis for
considering log-normal PDF for measurements of
fundamentally non-negative characteristics f (such as
intensities, for example). Correspondingly, logarithmical
transformation can be applied to the initial system of
equations, i.e.,:

f p � f (a) + Δf p → ln f p � ln f (a) + Δ ln f p, (2.2.1)

Frontiers in Remote Sensing | www.frontiersin.org October 2021 | Volume 2 | Article 70685114

Dubovik et al. Multiple a Priori Constraints, GRASP Algorithm

https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


where Δlnf p is a vector of measurement errors Δ ln fj
p � ln fj

p −
ln f realj that have Normal PFD P(lnf(â)| lnf p). In reality the actual
measurements as those of intensity are often really obtained using
receivers with logarithmic responses.

In principle, MML or LSM do not directly assume distribution
of errors in the final solution and formally in the unknowns a. At
the same time, based on known properties of MML solution (see
Edie et al., 1971), the MML or LSM estimates are also
asymptotically normally distributed. It is obvious then, that
MML or LSM estimates ai have asymptotically normally
distributed errors; thus estimate based on normal PDF P(â |
lnf p) cannot provide zero probability for ai < 0 even if ai are
positively defined by nature. On the other hand, the retrieval of
logarithms lnai instead of absolute values ai eliminates the above
contradiction, because the LSM estimates of lnai would have the
normal distribution of P(lnâ | lnf p) (i.e., lognormal distribution
of ai that assures positivity of non-negative ai). In fact, the
necessary conditions for optimality of MML and LSM is that
the first derivatives of the measurements with the respect to the
unknowns should be limited in the whole considered range of
their variability (see Edie et al., 1971). In this respect, if measured f
and retrieved a characteristics are positively defined dfj/dai are
not limited when ai → 0 or fj → 0 and do not exist for negative ai
and fj. Correspondingly, application of MML and LSM in such
conditions would not lead to asymptotically optimum solutions.

Thus, if the unknowns are positively defined parameters, there
is a clear rationale in retrieving logarithms of unknowns instead
of their absolute values, since the log-normal statistics
(multiplicative errors) are more natural for them. Moreover, if
both measured f and retrieved a characteristics are positively
defined, the function lnf(lna) should likely be “well–behaved”,
i.e., both the function and the derivatives dlnfj/dlnai should exist
and be limited in whole range of the variability of both lnf and lna.
Correspondingly the application of MML shouldn’t be
questioned. It can be noted here, once again, that Dubovik
et al. (1995) and Dubovik and King (2000) demonstrated that
the efficient (Chahine 1968; Twomey 1975) iterative procedures
can be derived using LSM in logarithmic space.

Thus, accounting for non-negativity of solutions and/or non-
negativity of measurements in GRASP is implemented by using of
logarithms of unknowns (ai → lnai) and/or measurements (fj →
lnfj). Some empirical or semi-empirical parameters that can have
negative values but bounded by a value, e.g. “-a”, are made
positively defined by adding a constant value “shift” -“b”, so
that the a+b is always >0 and logarithmic transformation for
these parameters is possible.

2.2.2 Non-Linearity of Forward Problem and
Levenberg-Marquardt Optimization of Iterative
Solution
Most of theoretical derivations for inverse problems in general,
and especially for statistically optimized inversion, are discussed
for linear functional dependencies such as those proposed by the
Fredholm integral equation of the first kind. At the same time the
majority of practical remote sensing applications deal with the
interpretation of observed characteristics that have non-linear
dependence with sought parameters. Therefore, for algorithm

users it is often difficult to comprehend the potentials of different
optimization approaches and identify the most appropriate
retrieval development strategy. In this regard, most (and
nearly all) considerations of the statistical optimization are
based on the fact that in a small vicinity of the actual solution,
variations of the observations are related linearly with the
variation of the atmospheric parameters to be retrieved.
Indeed, since the uncertainties in the observations are
expected to be small, the optimization of statistical properties
of the solution is done in the linear approximation even in non-
linear algorithms. Moreover, the general numerical solution of a
non-linear problem is formulated as an iterative procedure
wherein the solution corrections are obtained by solving the
problems in the linear approximation. Therefore, there is a
very significant similarity in the equations used for inverse
algorithms in linear and non-linear cases. The main difference
is that non-linear inversion algorithms are almost always iterative
and need to converge to a solution from a chosen initial guess.
The achievement of convergence is an inherent necessity for the
development of successful iterative solutions. Although the
iterative solutions can be used for solving both linear and
non-linear systems, the successful convergence of the
algorithms is a more profound and a broader issue for non-
linear inverse problems.

The solution of system Eq. 2.0.1 provided by Eq 2.0.6, 2.0.7 is
written via iterations that can be used in both situations when
fi
a(a) are linear or non-linear. In fact the square system f(a)� f*
for the case of a non-linear fi

a(a) can be solved using Newtonian
iterations: ap+1 � ap − K−1

p (f (ap) − f p), where Kp is the Jacobian
of f(ap). The minimum of Eq. 2.0.4 corresponds a zero gradient
∇Ψ(a) � 0 and can be found as ap+1 � ap − (K∇Ψp)

−1∇Ψ(ap),
where K∇Ψ,p is the Jacobian of ∇Ψ(ap). For Eq. 2.1.5 one can
write:

∇Ψ(ap) � KT
pC

−1(f (ap) − f p), (2.2.2)

and

K∇Ψ,p � KT
pC

−1Kp +Dp ≈ KT
pC

−1Kp. (2.2.2)

The elements of matrixDp include second derivatives of f(a
p) and

therefore can be neglected. Thus, under the above assumption Eq
2.0.6, 2.0.7, provide a so-called Quasi-Newtonian solution
minimizing the quadratic function Eq. 2.0.4 for the case with
non-linear functions f(a) (a more detailed discussion can be
found in Dubovik (2004) and various text books on numerical
methods, (e.g., Tarantola, 1987):

ap+1 � ap − (KT
pC

−1Kp)−1KT
pC

−1(f (ap) − f p). (2.2.3)

Implementing a non-linear inversion by Newton-like methods
requires assurance of iteration convergence. Iteration by Eq 2.0.6,
2.0.7may not converge at all or converge to a wrong solution. The
convergence difficulties may be caused by inadequate choice of
the initial guess and/or limitations of the linear approximation
used for the iterative guess correction. Indeed, for strongly non-
linear functions fj(a), the minimized form Ψ(a) may have a
complex structure with several minima. The analysis of this
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structure is desirable prior to inversion. However, when three or
more unknowns are to be retrieved, such analysis is practically
infeasible. Usually, researchers repeat retrievals with a set of
initializations and select the best solution. The initializations
and the criteria for selecting the best solution are commonly
established based on the physical constraints of the application,
experience, and intuition of the developers. Also, a convergence
of non-linear solutions can be improved by modifying Eq. 2.0.7.
The most established modification of Gauss-Newton iterations is
widely known as the Levenberg-Marquardt method (Ortega and
Reinboldt 1970; Press et al., 1992):

ap+1 � ap − tp(KT
pC

−1Kp + γDp)−1KT
pC

−1(f (ap) − f p), (2.2.4)

where matrix Dp and the coefficients 0 < tp ≤ 1 and γ ≥ 0 are
selected empirically to provide convergence. The matrix Dp is
predominantly diagonal (unity matrix is often chosen as Dp) and
addition of the term γDp to K

T
pC

−1Kp in Eq. 2.2.1 is analogous to
using a priori estimates in linear inversions. Specifically, the
matrix KT

pC
−1Kp can be singular on some of p-th iterations

even if it is non-singular in the vicinity of the solution.
Adding the term γDp to KT

pC
−1Kp helps to pass the iteration

process through the areas of KT
pC

−1Kp singularities. As pointed
out by Press et al. (1992), the Levenberg-Marquardt formula
generalizes the steepest descent method. Namely, Eq. 2.2.4 can be
reduced to the steepest descent method by defining matrix Dp in
Eq. 2.2.4 as the unity matrix I and prescribing a large value to the
parameter γ, i.e., γ Dp = γ I >> Kp

TC−1Kp. Thus, Eq. 2.2.4 always
converges with appropriate selection of γ.

The multiplier 0 < tp ≤ 1 in Eq. 2.2.4 is invoked mainly to
decrease the length of Δap, because the linear approximation may
overestimate the correctionΔap. Usually, tp is decreased by a factor
(e.g., by 2, as done in GRASP) until a conditionΨ(ap+1) <Ψ(ap) is
satisfied. Underestimation of Δap does not lead to a convergence
failure and may only slow down the arrival to a solution. The
addition of the term γDp also reduces Δap. Correspondingly, using
both γ Dp (γ > 0) and 0 < tp ≤ 1 in the same iteration may seem
redundant because both operations reduce Δap. However, using
the multiplier tp is straightforward (compared to adding γDp) and
sufficient in the application with moderately non-linear forward
model with non-singular KT

pC
−1Kp. On the other hand, if the

matrix KT
pC

−1Kp is singular in some points ap, using tp ≤ 1 does
not help and the inclusion of constraining term γDp is necessary.
Thus, the use of both tp and γDp modifications in Levenberg-
Marquardt (Eq. 2.2.4) complement each other in practice.

The above-mentioned similarity of predominantly diagonal
matrixDp in Eq. 2.2.4 to a priori estimates term on the left side of
Eq. 2.1.18 is used in GRASP following earlier methodological
consideration by Dubovik and King (2000) and Dubovik (2004).
These considerations are based on the fact that employing linear
approximations for non-linear functions f(a) in Eq 2.0.6, 2.0.7
may result to a converge failure. Therefore, in case of inversion of
Multi-term equations (as in Eq 2.1.8, 2.1.14), if some of fk(a) are
linear, it seems logical to expect less problems with convergence.
This idea is elaborated by considering linear constraints applied to
non-linear iterations (Dubovik (2004)). In principle, although, Eq
2.1.8, 2.1.14 are constrained by a priori (presumably linear)

terms, solution âp may fail to converge similarly to basic
Newton-Gauss iterations by Eq 2.2.23, 2.2.3. This is because
at initial iterations (p � 1,2, . . .) the influence of a priori terms
in the constrained non-linear iteration are minor and the
constrained iterations do not significantly differ from a non-
constrained iteration. This is especially clear from Eq 2.1.8,
2.1.9 which are written via weighting matrices and shown
explicitly for single-pixel inversion in Eq. 2.1.17. Indeed, if
the initial guess is far from the solution, the values (f j(a

p) − f j
p)

are large and the measurement term dominates in the
minimized quadratic form Ψ(ap) over a priori terms
because the values of Lagrange multipliers γ2 and γ3 (see
Eq. 2.1.9) are typically small. A priori terms start to matter
only when fitting differences (f k(a

p) − f k
p) reach the level of

measurements accuracy characterized by the standard
deviation ε1. Therefore, some increase of a priori terms at
initial iterations may improve the performance of Eq 2.0.6,
2.0.7 and from Eq 2.1.8, 2.1.9. This idea is exploited by the
following considerations. Each p-th iteration in Eq 2.1.8, 2.1.9
assumes the solution of the following overdetermined linear
system:

f k(Δap) � f pk(ap) − f pk + Δf pk0
f k(Δap) ≈ Kk,p(Δap) � f pk(ap) − f pk + Δf mes

k + Δf link ,

(k � 1, . . . ,K)
(2.2.5)

whereKk,p is the Jacobimatrix of the first derivatives from fk(a) in
the vicinity of ap and Δf linp denotes the errors of using the linear
approximation of (f k(a

p) − f pk) in the vicinity of ap.

The difference of Eq. 2.2.5 with Eq. 2.1.2 is that it includes
linearization errors Δf lin and therefore accounting for Δf lin can be
introduced into Multi-term LSM. If Ψ′(ap) is defined using
weighting matrices (Eq 2.1.8, 2.1.9) then using ε21 + (ε1,lin)

2

instead of ε1
2 in Lagrange multipliers definition can be used for

optimizing the contributions of measurements and a priori terms.
The value of the Δf1lin variance is not known in each point ap, but
can be estimated from the value of the residual, i.e., analogously to
Eq. 2.1.11 one can write:

ε̂21 + (ε̂1,lin(ap))2 ≃ 2Ψ′(ap)∑k�1,...,KNk − Na
� 2Ψ′(ap)
Nf p + Na − n

. (2.2.6)

Using this equation, Eq. 2.1.9 can be re-written for non-linear
iterations:

γk(ap) �
ε̂21 + (ε̂1,lin(ap))2

ε2k
≃

2Ψ(ap)
ε2k(∑k�1,...,KNk − Na). (2.2.7)

This definition of Lagrange multiplier accounts for higher
linearization errors at earlier iterations. In the close vicinity of
the solution a′, where Δf1lin is close to zero, Eq. 2.2.7 is reduced to
Eq. 2.1.9. Hence, utilizing “adjustable” ck (k≥2) in Eq. 2.1.9
improves the convergence while the final solution retains the
same statistical properties.

Practice of using GRASP has shown that the convergence
optimization employing adjustable Lagrange multipliers by
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Eq. 2.2.7 is often quite efficient. At the same time, it is not
always sufficient; for example, there are situations when there
is no linear or not at all a priori constraints in Eq. 2.1.13 and
correspondingly in Eq 2.1.14, 2.1.17, etc. Nonetheless, it is
clear that Δap should be limited, especially at the initial
iterations when the linearization error is the largest. In such
case, the determination of Δap in the iterative procedure can be
considered as the solution of the following modified
(compared to Eq. 2.2.5) system as:

{Kk,pΔap � f pk(ap) − f p + Δf p + Δf linp
Δap,p � 0p + Δa (2.2.8)

Correspondingly, using this additional requirement on limiting
Δap, an additional term will be introduced in Eq. 2.1.8:

⎛⎝∑K
k�1

ckK
T
k,pWk

−1Kk,p +Dp,Δa⎞⎠Δap � ∑K
k�1

ckK
T
k,pWk

−1Δf pk, (2.2.9)

where matrix Dp,Δa is diagonal matrix with the elements:

{Dp,Δa}ii � cp,Δai �
ε21
ε2Δai

. (2.2.10)

The variance ε2Δai can be determined, for example, assuming that
whole known range of each parameter ai variability should be
covered by 3ε2Δai , i.e., ai,max − ai,min ≈ 3εΔai. Also, in practical
applications, the impact of the correction Δap is always scaled
by a factor tp: ap+1 � ap+1 − tpΔap, similarly as it is applied in
Eq. 2.2.4.

Thus, the inversion in case of non-linear fk(a) and/or fi
a(a)

is implemented within the frame of Eq 2.0.6, 2.0.7 and
include Levenberg-Marquardt like optimization of
convergence using coefficient tp shown in Eq. 2.2.4. Also,
for optimizing the convergence of solution weights of the a
priori terms can be enhanced at earlier iterations (as shown in
Eq. 2.2.7 and additional term Dp,Δa can be used as shown in
Eq 2.2.9, 2.2.10.

2.2.3 Consistency of Multiple a Priori Constraints
The simultaneous utilization of multiple a priori constraints
certainly relies on the assumption that all a priori constraints
are consistent and do not contradict each other. For example, if
a group of parameters ai (i � 1, . . . , Ni) represent a physical
function ai � y(xi), one cannot use an irregular (highly
unsmooth) a priori estimate function ai

p � ya(xi) as a priori
estimate and simultaneously apply smoothness constraints on
the retrieved solution. Obviously, if all a priori constraints are
defined based on readily available data or information, no
contradictory constraints should appear. However, if some of
the constraints are set based on some ill-defined
considerations, some erroneous a priori assumptions could
occur in practical situations.

In order to detect the possible anomalies in the a priori
assumptions or appearance of strong biases in the forward
modeling, the value of the remaining miss-fit function Ψ(a)
given by Eq. 2.1.5 should be monitored. As a result of the
inversion its resulting value should agree with the expected

noise assumptions and converge as provided by Eq 2.1.7,
2.1.11. In case of using Multi-term LSM formulation, the
value Ψk(a) is a sum of several terms:

2Ψ(a) � 2∑K

k�1Ψk(a) � ∑K
k�1

(fk(a) − f pk)TCk
−1( f k(a) − f pk)

� min →∑K

k�1Nk − n.

(2.2.11)

The value of each term is expected to reach its asymptotic limit:

Ψk(a) ≈ Nk
∑K

k�1Nk − n∑K
k�1Nk

�����������→(∑K

k�1Nk ≫ n)Nk. (2.2.12)

Obtaining significantly different values of Ψk(a) from the
expected value based on the assumptions made should
considered as an indicator of anomaly that is likely related
with in incorrect assumption made about known covariance
matrix Ck or with other unidentified problems. Indeed, both
overestimation and underestimation of accuracy of a priori
assumption may have negative effects on the retrieval results.
For example, if accuracy of a priori information is overestimated
the desired accuracy of observation fit may not be achievable. On
the other hand, if a priori information underestimated, the
corresponding a priori terms would become very small and
overall miss-fit function may have reasonably small values
while some other terms can be under-fitted. In such situation
the overall retrieval results and/or estimations of the accuracy of
these obtained results may be inadequate.

2.2.4 Accounting for Measurements Redundancy
Accounting for data redundancy is another complex issue in
implementing optimized inversion that is somewhat related to
the consistency of the assumptions. This issue is of high practical
importance, although it is not often addressed in inversion
methodologies. For example, infinite enhancement of spectral
or/and angular resolutions in remote sensing observations will
not lead to accuracy improvements in the retrievals above a
certain level. Based on common sense a simple increase in the
number of observations Nk leads to an increase in number of
redundant measurements that do not help to improve the
retrievals. However, theoretical considerations do not assume
any “redundant” or “useless” observations. Performing N
straightforward repetitions of the same observation (with
established unchanged accuracy), simply means that the
variance of this particular observation fj should decrease by a
factor of N. Accordingly, the j elements of the corresponding
covariance matrix C should decrease and the errors of the
retrieved parameters should decrease appropriately, which
contradicts to sensibleness. For the Multi-term LSM approach
accounting for data redundancy is of particular importance.
Indeed, individual data points from observations of the same
type are usually comparable in accuracy. Therefore, it is unlikely
that inverting single source of data should lead to a
discrimination of some individual observations. In a multi-
source inversion, the situation is different because an increase
of the number of the observations in one of several inverted data
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sets would lead to an increase in the weight of this data set even if
the added observations were redundant from a practical point of
view. Indeed, in the minimized quadratic form of Eq. 2.2.11 the
higher the value of the k-th termΨk, the stronger the contribution
of k-th data set into the solution. In order to eliminate this
obvious dependence of Ψk on Nk, Dubovik and King (2000)
suggested that the accuracy of a single measurement degrades as
1/Nk for redundant observations if several measurements are
taken simultaneously, i.e.,:

ε2k(multiple) � Nkε
2
k(single), (2.2.13)

where the term “multiple” indicates that several analogous
measurements are taken simultaneously. Correspondingly, Eq.
2.1.9 can be written via accuracy of “single” measurement as
follows:

ck �
N1ε21(single)
Nkε2k(single). (2.2.14)

This definition of γk makes the relative contributions of the terms
γk Ψk in Eq. 2.2.7 independent of Nk, and therefore equalizes the
data sets with different numbers of observation. The relationship
(2.2.13) assumes that εk increases as

���
Nk

√
for data sets with

“redundant” observations. Such an increase can be caused by the
fact that the number of various sources of random errors may
increase proportionally to a number of simultaneous
measurements. Indeed, an excessive increase of spectral or/and
angular resolution in remote sensing measurements may likely to
results into decrease of the quality of each single measurement
due to the increased complexity of the instrumentation and its
calibration, in a sense that each single measurement taken as a
part of the such complex observation likely has overall lower
accuracy that if it would be taken alone or as a part of smaller set
of observation. However, the assumption given by Eq. 2.2.13 is of
intuitive character and may need to be verified in extensive
practical experience.

Thus, identification of the measurements redundancy in
practice is a difficult effort that strongly relies on the
experience of the developer. Nevertheless, it can be advisable to
consider data redundancy as a practical factor that may affect the
retrieval. Namely, if Eq. 2.2.13 gives a value much higher than the
level of expected measurement errors, then it is likely that noise
assumptions need to be verified. In such case the ratios N1/Nk can
be good indications of magnitude and directions of required
adjustments in εk

2 in order to address the possible excessive
domination of the large inverted data sets over smaller ones.
For example, the assumption (2.2.13) was successfully employed
in aerosol remote sensing retrievals (Dubovik and King, 2000),
where it helped to harmonize the contribution of large sets of
angular sky radiance measurements with much fewer observations
of spectral optical thickness. A similar principle was used in earlier
studies (Oshchepkov and Dubovik, 1993).

2.2.5 Asymptotical Character of MML and LSM
Optimum Properties
The Least Squares Method (LSM) is probably the most frequently
used numerical procedure for implementing the statistically

optimized solution of a system of equations. The LSM is used
in diverse applications and is the basis of a vast family of methods
interpreting indirect observations. As a result, most of the
practical equations for solutions and error estimates used in
the algorithms are directly or indirectly related to the LSM
formalism. At the same time, LSM is a specific case of MML
when the random noise in the data has a Gaussian distribution.

According to MML, the best estimates â of unknowns
correspond to the maximum of likelihood function (PDF)
P(f (a)

∣∣∣∣f p). The obtained solution â is statistically optimal in
many senses as discussed in the textbooks devoted to
fundamental statistics (Fourgeaut and Fuchs 1967; Edie et al.,
1971). For the MML solution:

- â is asymptotically non-biased <â> → areal;
- â is asymptotically consistent → areal;
- â is asymptotically efficient, i.e., variance of â converges to
the smallest possible value;

- â has asymptotically normal distribution âN ������→
N→∞

N(areal, I−1â ),
where Iâ is Fisher information matrix.

It should be noted however, that ML method has above
optimal characteristics if certain conditions are satisfied, e.g.,
first and second derivatives of the functions should exist and be
finite (e.g., see Fourgeaut and Fuchs, 1967; Edie et al., 1971). For
example, importance of satisfactions of these conditions in
practice was outlined in Section 2.2.1.

In addition, the MML solution keeps many optimal
characteristics even when there are a limited number of
observations. The optimum properties of MML are closely
connected with the Fisher information determination. For
instance, in the case of several estimated parameters (a is
vector-column) Fisher information matrix is used. This matrix
is formulated as a covariance matrix of logarithmic partial
derivatives of PDF; i.e., the Fisher matrix has the following
elements:

{Iâ}ii′ � ∫
Ra

. . .∫ z ln P
zai

z ln P
zai′

P da1 . . . daNa � 〈z ln Pzai

z ln P
zai′ 〉

Ra

,

(2.2.15)

where P � P( f (a)|f p) and the integration is done over all space
Ra of possible a. Here only the case of unbiased estimation is
considered (discussion including biased cases can be found
elsewhere, e.g., Edie et al., 1971). The Fisher matrix defines
the accuracy limits for estimates â. Namely, if we use vector â for
estimating any other value b linearly dependent on a (i.e., b � ga,
g is a vector-line of the coefficients – first derivatives), we have
the estimates b̂ � breal + Δb with the variance limited by the
Cramer-Rao inequality:

〈(Δb)2〉 � g Câg
T ≥ g Iâ−1gT, (2.2.16)

where Câ is the covariance matrix of â. The MML produces the
vector â of estimates âiwhich are jointly effective in the sense that
their covariance matrix Câ corresponds to the equality in Eq.
2.2.16. Thus, Fisher information has a clear practical meaning
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and it can be easily evaluated using MML estimates covariance
matrix (as it is given by Eq. 2.2.15), i.e.,

Iâ � C−1
a,MML. (2.2.17)

There are some exceptions when Eq. 2.2.17 is not correct, but those
cases are rather of interest for theoretical investigations than for practice
[for the details and discussion see Edie et al. (1971)]. It should be noted,
that the Fisher definition of information ismore suitable for using in the
optical and remote sensing fields than the popular Shanon’s definition.
For instance, the entropy (information in the randomvalue about itself)
of each particular estimate âi is often considered for optimization of
inversion algorithms; namely, the solution with the maximum of
entropy is accepted as optimum. Let us consider the conceptual
definitions of entropy in Shanon’s and Fisher’s methodologies. The
entropy according to Shanon [details see in Shannon and Weaver
(1949) or in review by Kolmagorov (1987)] is defined as

Z(P(âi)) � ∫(−log2 P(âi))P(âi) dai →Nbits. (2.2.18)

where P(âi) is PDF of âi, Nbits is the number of bits (binary digits)
needed to represent the number of distinct estimates that could have
been obtained. This formalism of information quantity uses logarithm
with the base 2 and has a very suitable meaning for digitalization of
information. This Shanon information formalism is widely used in the
modern remote sensing and applied optics literature for evaluating
information content of the measurements (e.g. see Peckham 1974;
Rodgers 2000; Purser and Huang 1993, etc.). However, the
experimental physics, the meaning given by Fisher information
formalism sounds more useful. According to this formalism the
entropy of Z(P(âi)) shows the accuracy of âi determination and
instead of Eq. 2.2.18 one can write:

Z(P(âi)) � ∫(z ln P(âi)
zâi

)2

P(âi) dâi

� ∫(− z2 ln P(âi)
zâ2i′

)P(âi) dâi � 1

〈(Δâi)2〉. (2.2.19)

Correspondingly, if we consider all possible estimates âi obtained
from initial data f p, the estimate given by MML will have the
maximum entropy. (NOTE that the second derivative of PDF is
used in Eq. 2.2.19 for the emphasis of the similarity to Eq. 2.2.18,
although in mathematical sense this definition is equal to Eq.
2.2.15 (see Linnik 1962; Edie et al., 1971).

It should be noted that all above properties of MML and LSM
have asymptotical character. Strictly speaking this means that the
measurement f p is repeated N time for observing exactly the same
situation characterized by parameters areal, and with N → ∞ the
asymptotical properties can be observed. Correspondingly, the PDF
P(â | f p) is a composition of (N→∞) PDF of singe observations f pi :

P(â|f p) � P(â|f p1)P(â|f p2) . . . P(â|f pN) � ∏
i�1,...,N→∞

P(â|f pi ).
(2.2.20)

In practical remote sensing, it is very difficult to meet the
situation when exactly the same measurements can be repeated
large number of times for unchanging atmosphere. For

example, in satellite remote sensing, a single observation
would correspond only to the one state of the atmosphere,
and any next satellite overpass over same site would strictly
speaking observe a different atmosphere. In such situation, one
can probably consider that each satellite measurement
f p(xj,yk,ti, . . .) is a already a results of large number of
records of electromagnetic interaction acts between the
sensor and the atmosphere, to the extend that the
measurement errors were significantly averaged in f p(xj,yk,ti,
. . .) to be inverted and the situation meet the requirements
necessary for approaching asymptotical limits.

On the another hand if one studies the climatology of the
atmospheric state a(x,y,t, . . .) from extensive observations, it is
possible to consider that the asymptotical properties can be
expected in the resulting climatology that is based on the well-
established extensive record of the observations f p(xi,yj,tk, . . .)
obtained in generally the same conditions of measurement noise
formation:

P(â|f p(x, y, t, . . .)) � ∏
N(i,j,k)→∞

P(â|f p(xi, yj, tk, . . . )). (2.2.21)

2.2.6 Optimization of Time Performance (Jacobian
Calculations, etc.)
Some practical features were implemented in the GRASP
algorithm for optimizing speed of the retrieval. A particular
attention was devoted to the optimization of the calculations of
the Jacobians that is the most time consuming component of
Newton’s retrieval algorithms. For example, for those
parameters that didn’t change at the previous iteration the
Jacobians may not need to recalculated at each iteration (as
this realized in GRASP for some applications). Also, as was
discussed by Dubovik and King (2000) and Dubovik et al.
(2011) the successful retrieval can be achieved by using the
approximate and quick calculations of the Jacobians. In this
respect GRASP can implement the calculations of atmospheric
radiances with different accuracy, for example, by using
analytical single-scattering approximation or multiple
scattering regime of different acuracy [e.g., by adjusting the
number of the terms in the expansion of the phase matrix and
in the quadrature of directional integration, as discussed by
Dubovik et al. (2011)]. Correspondingly, the simulation of
Jacobians can be executed in GRASP with lower accuracy using
faster calculations.

Additionally, as mentioned above the implementation of
the PC analysis in the multi-pixel formalism (Xu et al., 2019)
will be integrated into GRASP. This approach can also reduce
significantly the calculation time in some situations, e.g., in
processing of high spatial resolution satellite observations.

2.3 Error Estimates
Estimations of the retrieval errors in GRASP are based on LSM
equations expressed for the case of Multi-term solutions written
via weighting matrixes. Both the contribution of random and
systematic error components are estimated as follows (see
Dubovik, 2004):
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CΔâ � CΔâ,ran + abiasabias
T , (2.3.1)

CΔâran � 〈Δâran(Δâran)T〉

� ⎛⎝∑K
k�1

KT
kC

−1
k Kk

⎞⎠−1

≈ ⎛⎝∑K
k�1

ckK
T
kW

−1
k Kk

⎞⎠−1

ε̂21, (2.3.2)

âbias � ⎛⎝∑K
k�1

ckK
T
kW

−1
k Kk

⎞⎠−1⎛⎝∑K
k�1

ckK
T
kW

−1
k b*k⎞⎠, (2.3.3)

where Jacobians Kk are calculated in the small vicinity of the
point asolution, bk denotes the bias vector in the k-th data set fk.
and ε̂21 is estimated from the resulting miss-fit of the data using
Eq. 2.1.11.

Estimation of not only random retrieval error but also error
retrieval bias âbias is very important for the adequate evaluation of
retrieval uncertainty, especially whenmultiple a priori constraints
are used. For example, for the case of single-pixel retrieval given
by Eq. 2.1.17 CΔâ(ran) is expressed as:

CΔâran ≈ ⎛⎝∑K1

k�1
ckK

T
kW

−1
k Kk + caW

−1
a +∑K2

n�1
cnΩn

⎞⎠−1

ε̂21. (2.3.4)

Analyzing this equation one can see rather obvious tendency: the
higher the contributions of the second and the third terms the
smaller the random errors are. Correspondingly, the more a
priori constraints are used the lower the random errors of the
retrieval. However, in practice a priori constraints can be
unintentionally inadequate and introduce some systematic
uncertainties, i.e., biases. In principle, there is no guaranteed
approach for detecting those biases unless comprehensive
analysis and validation of the retrievals have been done.
Nonetheless, some biases can manifest themselves via misfit of
measurements Δf biask � f k(a

solution) − f pk or misfit of a priori
constraints. For example, for Eq. 2.1.17 the bias can be
introduced by a priori estimate apbias � (asolution − ap) or
unsmooth features in the retrieved solution:
asmooth
n,bias � Ωnasolution ≠ 0. Correspondingly, the bias for single-

pixel retrieval is estimated as:

âbias ≈ ⎛⎝∑K1

k�1
ckK

T
kW

−1
a Kk + caW

−1
a +∑K2

n�1
cnΩn

⎞⎠−1

⎛⎝∑K1

k�1
ckK

T
kW

−1
a Δf biask + caW

−1
a apbias +∑K2

n�1
cna

smooth
n,bias

⎞⎠. (2.3.5)

In this equation the contribution of a priori estimates to bias is
probably the most significant in many applications since it is
never possible to have fully accurate a priori values (widely used
in OE approaches) for constraining the retrieval. In a similar way,
the a priori biases are estimated in the case when multi-pixel a
priori constraints are used.

The Levenberg-Marquardt optimization of the
convergence, discussed in Section 1.3.2 may also introduce
a bias. Indeed, this optimization makes the iterations
converge from given initial guess to fit the data even if the
basic linear system is singular. Therefore, once Levenberg-
Marquardt optimization is used there is an evident
dependence on the initial guess that can bias the solution.

In order to take this into account Eq 2.3.2–Eq 2.3.3 are
modified as follows when Levenberg-Marquardt
optimization is used in the retrieval, where is defined by
Eq 2.2.9, 2.2.10:

CΔâran ≈ ⎛⎝∑K
k�1

ckK
T
kW

−1
k Kk +Dp,Δa⎞⎠

−1

ε̂21, (2.3.6)

and

âbias � ⎛⎝∑K
k�1

ckK
T
kW

−1
k Kk +Dp,Δa⎞⎠

−1⎛⎝∑K
k�1

ckK
T
kW

−1
k bpk

+Dp
Δa(asolution − ap�0)⎞⎠. (2.3.7)

Finally, in practice the users may not need directly the
retrieved parameters a but their functions m(a) that can be
calculated from the retrieved parameters. For example,
GRASP retrieves parameters of aerosol microphysics
(particle sizes, refractive indices, etc.) but users need
Aerosol Optical Depth AOD. For such situation, GRASP is
designed to provide a set of such diverse indirect
characteristics with the possibilities of providing the
unsertainties calculated as:

CΔm̂≈ M(CΔâran + âbiasâ
T
bias)MT � MCΔâranM

T +Mâbias(Mâbias)T

� CΔm̂
ran
+ m̂biasm̂

T
bias, (2.3.8)

whereM – is the is the matrix of first derivatives {M}ji � zmj

zai

∣∣∣∣asolution ,
mj is j-th element of vector m.

Finally, the effect of biases in the measurements on the solution
bias âbias is accounted for in Eq. 2.3.5 based on the assumption that
the presence of biases is manifested in the non-zero miss-fits Δfbiask .
Indeed, in many cases when systematic errors are present in the
inverted measurements or in the physical forward model used in
the inversion, the accurate matching of inverted data can’t be
achieved [e.g., see illustrations provided by numerical sensitivity
tests for AERONET retrievals by Dubovik et al. (2000)]. At the
same time, there are many situations when biases in the
measurements may not significantly affect the residual (Eq.
2.1.11) and the miss-fits Δf biask . For example, it is rather evident
that the retrieval of aerosol SSA from AERONET ground-based
measurements is highly sensitive to the calibration biases in the
direct Sun measurements, while the fitting of these direct
measurements is always quite accurate [see discussion by
Dubovik et al. (2000)]. The effects of such measurement biases
can be estimated by implementing proxy numerical tests applied to
the measurements perturbed by possible biases. For example, the
recent approach for evaluation of AERONET retrieval errors for
the operational products is estimated using a series of ∼27
numerical proxy inversion tests with the sets of perturbations in
both input measurements and auxiliary input parameters (Sinyuk
et al., 2020). A similar strategy can be used for evaluation of
potential effects of undetected biases. Specifically, the bias term
(âbias) (âbias)

T in Eq. 2.3.1 can be estimated as:
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abiasabias
T → 〈abiasaTbias〉bias proxy set (2.3.9)

where the values of the retrieval biases are estimated as an average
effect from a preselected set of possible biases in measurements
and auxiliary inputs.

3 GRASP FORWARD MODEL

The “forward model”module in the code implements simulations
of the inverted remote sensing observations. The GRASP
“forward model” is rather universal, i.e., can simulate a large
variety of remote sensing observations (passive and active
observations obtained from ground and space). The technical
realization of different parts of forwardmodel is already discussed
in details in precedent publications (e.g., Dubovik, et al., 2011;
Lopatin et al., 2013; Lopatin et al., 2021; Torres et al., 2017;
Derimian et al., 2016; Li et al., 2019, etc.), therefore in this Section
the discussion will be focused on different organizational aspects
of the overall structure of GRASP forward model with the
objective of showing users the main retrieval possibilities that
have been already realized or can be relatively easy added to the
software if needed. GRASP forward model consists from several
distinct modules (Figure 4): Multiple Scattering, Aerosol single
scattering columnar/volume properties, Aerosol vertical profile,
Surface reflectance and Gas absorption calculations. These blocks
are semi-independent in the sense that each block can be changed
or entirely replaced with no or minimal effect on the other parts
of the “forward model” routine. For example, GRASP “forward
model” allows for the choice of phenomenological and physical
approaches/models used for simulating surface reflectance (see
Dubovik et al., 2011). As will be discussed below there is a very
high flexibility in setting aerosol models. Moreover, even the
radiative transfer block accounting for multiple scattering has a

rather standardized inputs/outputs and can be replaced if
required by other radiative transfer routines. At the same time,
each module has some very convenient customized features that
may not be available in other analogous software packages and
scientific codes.

Radiative transfer calculation accounting for multiple
scattering effects in GRASP is implemented by on-line
radiative transfer calculations using 1-D Successive Order of
Scattering method. The scientific basis of this approach is
documented in the paper by Lenoble et al. (2007). At the
same time, some custom features are implemented in the
radiative transfer module of GRASP as described by Dubovik
et al. (2011). For example, the truncation procedure described by
Waquet and Herman (2019) has been realized. The truncation
procedure consists in removing the forward scattering peak
observed in the phase function of large particles (few microns)
or cloud droplets, due to diffraction. This approximation allows
faster calculations for both total and polarized radiances and, as
shown by Waquet and Herman (2019) maximal errors due to the
used approximations do not exceed 0.001 for the degree of linear
polarization for optical thickness smaller than 2.0, which is a
sufficient accuracy for the most applications based on
polarimetric measurements. In addition, several possibilities of
using a number of trade-offs between the accuracy and the speed
of the successive order of scattering method has been realized in
GRASP (see Dubovik et al., 2011): including the possibilities of
changing the number of terms M used in the expansion of the
phase matrix into Legendre polynomials, the number of terms
N used in Gaussian quadrature for zenithal integration,
number of numerical layers in vertical atmosphere
properties integrations, etc. Moreover, very recently the
atmospheric correction approach was realized in the GRASP
forward model. This approach decouples the radiative transfer
effects of the atmosphere and surface in a rather original way

FIGURE 4 | General organization of forward model and its connection with the numerical inversion in the GRASP algorithm.
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and provides a simplified but still an accurate way of solving
the radiative transfer equation (Litvinov et al., 2018). It
provides sufficient accuracy for the atmospheric correction
and high flexibility for further developments such as including
adjacency effect, surface topology effect as well as the effect of
cloud shadowing.

In addition, recently the radiative transfer module of GRASP
has been extended by taking into account for the radiation
coming from the thermal emission of the different
atmospheric components and the surface (Herreras et al.,
2020). In this realized implementation of the original 1-D
Successive Order of Scattering numerical scheme by Lenoble
et al. (2007) the source functions were extended to include
Planck emission function. This modification allows for
accounting the radiation coming from both scattering and
emission origin in single and multiple scattering regimes. This
new RT scheme accounting for emitted radiation has been
validated against the reference radiative transfer code based on
the discrete-ordinated method by Stamnes et al. (1988). The
difference in the radiance, expressed in terms of brightness
temperature, obtained from both codes under the same
conditions is on average below 0.006 K. This difference is
substantially below of the radiance accuracy of the most
common instruments operating in thermal IR spectral range,
like IASI (Blumstein et al., 2004) or CALIPSO IIR (Garnier et al.,
2012) with an accuracy around 0.1 K. Thus, this realized RT
development opened opportunity to apply GRASP approach for
realizing atmospheric retrieval using both photometric and
hyperspectral observations in visible and thermal IR
spectral range.

The total surface reflectance matrix BRDM in GRASP code
is modelled using Surface reflectance BRDF and BPDF.
Specifically, as described in detail by Dubovik et al. (2011),
4 by 4 BRDM matrix is modelled using two terms M � Mdiff +
Mspec, where diffuse unpolarized term Mdiff has only one non-
zero element {Mdiff}11 modelled using semi-empirical BRDF
function and specular reflection term is represented by
Freshnel reflection function scaled by selected BPDF
coefficient. Nevertheless, GRASP can operate also with
more physically based models of the BPDF (Litvinov et al.,
2012) when physical constraints can be imposed by the surface
structure and composition. In general, both BRDF and BPDF
can be calculated in GRASP using a variety of subroutines
representing different models (Dubovik et al., 2011; Litvinov
et al., 2011a; Litvinov et al., 2011b; Litvinov et al., 2012). The
retrieval relies on water-land mask and uses either models of
land or water surface reflectance. In the mixed observed pixels,
both the properties of land and water surface reflectance
models are retrieved and summed up in the 1-D radiative
transfer using land/water fraction.

For the ocean surface the reflection is mainly governed by the
wind speed at sea level as suggested by the Cox-Munkmodel (Cox
and Munk, 1954). This model is employed in most applications
including polarimetric observation (e.g., Deuzé et al., 1999; Deuzé
et al., 2001; Herman et al., 2005; Xu et al., 2016; Xu et al., 2017,
etc.) and also used in GRASP (see Dubovik et al., 2011 and some
details in; Fougnie et al., 2019).

In a contrast, the reflection matrix from land surfaces may
differ very strongly from location to location. Therefore, in the
many algorithms interpreting satellite observation over land, the
key aspect is correct determination of appropriate surface
reflectance model and appropriate parameters. A number of
BRDF models developed for surface reflectance description
from remote sensing measurements are included into GRASP
algorithm: Rahman-Pinty-Vestarte (RPV) model (Rahman et al.,
1993), kernel-driven semi-empirical models (Ross-Li sparse,
Ross-Li dense, Ross-Roujen models (Ross, 1981; Li and
Strahler, 1992; Roujean et al., 1992; Wanner et al., 1995),
physically-based models for bare soil and vegetated surfaces
(Litvinov et al., 2012) as well as physically-based models for
snow and ice (Kokhanovsky and Zege, 2004; Kokhanovsky and
Breon, 2012). For polarimetric remote sensing these BRDF
models are combined in GRASP algorithm with models for
surface polarized reflectance (BPDF models). Most of the
existent BPDF models are based on the Fresnel equations of
light reflection from the surface. For example, Nadal and Bréon
(1999) have proposed simple two-parameter non-linear function
of the Fresnel reflection for characterization of atmospheric
aerosol over land surfaces based on POLDER observations of
land surface reflectance. Maignan et al. (2009) have introduced a
new linear BPDF model with only one free parameter and
demonstrated that this simple model allows a similar fit to the
POLDER measurements as a more complex non-linear model by
Nadal and Bréon (1999). For accurate description of polarimetric
measurements like RSP (Research Scanning Polarimeter)
airborne instrument, a three-parameter semi-empirical model
was proposed by Litvinov et al. (2011a) and Litvinov et al. (2011b)
(e.g., Rondeaux and Herman 1991, Nadal and Bréon, 1999;
Maignan et al., 2004; Maignan et al., 2009; Waquet et al.,
2009a; Waquet et al., 2009b; Litvinov et al., 2010; Litvinov
et al., 2011a; Litvinov et al., 2011b). Analysis of number of
airborne polarimetric measurements show minor spectral
dependence of polarized reflectance in the visible and infrared
spectral (e.g., Rondeaux and Herman 1991, Nadal and Bréon,
1999; Maignan et al., 2004; Maignan et al., 2009; Waquet et al.,
2009a; Waquet et al., 2009b; Litvinov et al., 2010; Litvinov et al.,
2011a; Litvinov et al., 2011b). At present time the parametrization
of surface polarized reflectance with Fresnel-based BPDF models
looks acceptable for existent polarimetric space-borne VIS and
NIR observations.

BRDF and BPDF models included in GRASP are capable to
reproduce reasonably the surface total and polarized reflectance
(Maignan et al., 2004; Maignan et al., 2009; Litvinov et al., 2011a;
Litvinov et al., 2011b) and have already been used for interpreting
observations by MISR, MODIS, POLDER and other instruments
(Justice et al., 1998; Martonchik et al., 1998; Govaerts et al., 2010;
Wagner et al., 2010).

The actual choice of BRDF or BPDF models in practical
application and retrieval approaches is always a subject of the
discussion and, very often, depends on user preference. For
global processing of different remote sensing measurements
(PARASOL, MERIS, OLCI, S5p/TROPOMI and other) with
GRASP algorithm the optimal balance between speed,
accuracy linearity and number of parameters was provided
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by the combination of Ross-Li sparse BRDF model (Ross,
1981; Li and Strahler, 1992; Wanner et al., 1995) and one
parametric Maignon-Breon model (Maignan et al., 2009).
Nevertheless, other possible combinations of different BRDF
and BPDF models are possible in GRASP algorithm and are
always the subject of the studies on increasing retrieval
performance.

Aerosol single scattering module is probably the most
elaborated module of the GRASP algorithm that proposes a
really large spectrum of different possibilities of approaching
modeling optical properties of atmospheric aerosols.
Indeed, in spite of the fact that GRASP is generally
pursuing the retrieval of both aerosol and surface
properties, it deeply relies on the heritage of aerosol
retrieval advances (Dubovik et al., 1995; Dubovik et al.,
2000; Dubovik and King, 2000; Dubovik et al., 2002;
Dubovik, 2004; Dubovik et al., 2006) implemented for
AERONET (see Holben et al., 1998) a worldwide network
of currently over 600 radiometer sites that generate the data
used to validate nearly all satellite observations of
atmospheric aerosols. Currently, for all remote sensing
applications aerosol can be modeled as a mixture of small
polydisperse particles of various shapes and composition
(Dubovik et al., 2006). Specifically, the optical properties of
homogeneous layer of aerosol are defined by layer scattering
and extinction optical thickness and by the elements of the
scattering matrix Pii΄(λ;Θ; h) that can be modeled with one or
several aerosol components using microphysical properties
of each component. Namely, as illustrated by Figure 5 each
component aerosol component represents a mixture of
particles with:

a) different size by defining the volume size distribution dVk(r)
d ln r ;

b) the different shapes using the mixture of randomly
oriented spheroids with the distribution of axis or
ratios dnk(ε)

d ln ε ;
c) spectral complex index of refraction nk(λ), Kk(λ) and

d) vertical profile of aerosol component volume concentration
dVk(h)
d ln h .

Correspondingly, τscat/ext and Pii΄(λ;Θ; h) of each homogeneus
layer are modeled as the following:

τscat/ext � ∑K
k�1

⎛⎝∫ln hmax

ln hmin

∫ln εmin

ln εmin

∫ln rmax

ln rmin

Cscat/ext(nk(λ); kk(λ); h; ε; r)
V(r)

dVk(h)
d ln h

dnk(ε)
d ln ε

dVk(r)
d ln r

d ln h d ln ε d ln r⎞⎠ (3.1)

and

τscatPii΄(λ;Θ; h) � ∑K
k�1

⎛⎜⎜⎜⎜⎝∫ln hmax

ln hmin

∫ln εmix

ln εmin

∫ln rmax

ln rmin

Cii΄(Θ; nk(λ); kk(λ); h; ε; r)
V(r)

dVk(h)
d ln h

dnk(ε)
d ln ε

dVk(r)
d ln r

d ln h d ln ε d ln r⎞⎟⎟⎟⎟⎠ (3.2)

Here, as illustrated by Figure 5, each component is described by the

size distribution dVk(r)
d ln r , shape distribution dnk(ε)

d ln ε , spectral complex

index of refraction nk(λ), Kk(λ) and vertical profile dVk(h)
d ln h , where λ

denotes wavelength, Θ – scattering angle, h - height of the layer, ε -
axis ratios of spheroid, and r denotes radius of volume equivalent
sphere and C(nk(λ);Kk(λ); h; ε; r) is a cross-section of extinction,
total or angular scattering of aerosol particle.

All these characteristics of aerosol component can be modeled
using approaches of different complexity.

Aerosol size distribution dVk(r)
d ln r - can be modeled:

• using a representation of the size distribution as a superposition
of triangular Ni bins by retrieving concentration of each bin
dVk(ri)
d ln r for each radii ri. This approach is used in AERONET
retrieval by Dubovik and King (2000);

• using a representation of the size distribution as a
superposition of log-normal Ni bins by retrieving

concentration of each log-normal bin dVk(ri)
d ln r . This

approach is described in Dubovik et al. (2011). Each log-
normal bin may have different position and width. This
approach is more appropriate when only very limited
number of bins is used;

• using a bi-modal log-normal approximation of the size
distribution. In this case the parameters of bi-modal log-
normal function are retrieved (see Dubovik et al., 2011). This
approximation is extensively used by Torres et al. (2017) for
inverting measured AOD.

• using the size distribution with the fixed shape of size
distribution (using any of above modeling approaches). In
this case only total volume of the aerosol component is retrieved.

Aerosol shape distribution dnk(ε)
d ln ε - is simulated assuming

aerosol as mixture of randomly oriented spheroids using of

FIGURE 5 | Illustration of modeling properties of each aerosol
component in GRASP algorithm that is represented as a mixture of
homogeneous particles that may have different sizes, spheroidal shapes,
complex refractive indices and vertical profiles of concentrations.
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pre-computed spheroid kernels software described by Dubovik
et al. (2006). The following approaches for modeling shape
distribution are realized using detailed shape distribution
defined as dnk(εi)

d ln ε � qk,i, where.

• qk,i is a fraction of k-th aerosol component particles with
axis εi.

• qk,i is a fraction of particles of k-th aerosol component with j-th
predetermined shape distribution. The definition of two or
more fractions can be defined in nearly arbitrary way within
the pre-calculated spheroid kernels by Dubovik et al. (2006).

For example, for AERONET (Dubovik et al., 2006) and POLDER
(Dubovik et al., 2011) retrievals only two fractions used qk,ε�1 -
fraction of spherical particles and qk,ε≠1 � 1 − qk,ε�1 - fraction of
non-spherical particles (with fixed shape distribution). In that case
only one parameter qk,ε�1 is retrieved. The non-spherical component
of aerosol in that case is simulated using axis ratio obtained by
Dubovik et al. (2006) from fitting the desert dust phase matrix
measurements by ensemble of spheroids [see detailed desctiption in
the paper by Dubovik et al. (2006) and Dubovik et al. (2011)].

Aerosol vertical distribution dVk(h)
d ln h can be defined in the

following ways:

• the profile is defined as an exponential profile dVk(h)
dh ∼ e−h/α.

The profile is normalized to unity and scale height α is
retrieved parameter.

• the profile is defined as Gaussian profile dVk(h)
dh ∼ e

−1
2
(h−h0)

2

σ2
h .

The profile is normalized to unity, the mean height h0 and
standard deviation σh can be retrieved.

• the profile is defined as a superposition of Ni triangular bins

by retrieving concentration of each bin dVk(hi)
d ln h � Ch,i for each

height hi. This is similar approach as used above for
modeling size distribution, more details and illustration
of the approach are provided by Lopatin et al. (2013)
and Lopatin et al. (2021).

It should be noted that as illustrated in Figure 5 the aerosol

shape dnk(εi)
d ln ε � qε,i and vertical dVk(hi)

d ln h � Ch,i distributions are
always retrieved in form of fractions. For example, for vertical

profile dVk(hi)
d ln h � Ch,i it is always assumed:

∑
i�1,...,Nh

Ch,i � 1 (3.3)

Using the above constraint, the following Nh-1 values are
retrieved in GRASP:

ai � Ch,i+1
Ch,1

(i � 1, . . . ,Nh − 1) (3.4)

Correspondingly,

Ch,1 � 1

(1 + ∑
i�1,...,Nh−1

ai) and Ch,i+1 � Ch,1 ai(i � 1, . . . ,Nh − 1)

(3.5)

The above is written for the case when the profile grid points are
constant, i.e.

Δi � ln hi+1 − ln hi � const (3.6)

If Δi is not constant then Eq. 3.5 should be rewritten as

Ch,1 � 2
1 + ∑

i�1,...,Nh−1
ai(Δi + Δi+1) (3.7)

Size distribution can also be retrieved using fractions of particle
different sizes:

ai �
dVk(ri+1)
d ln r
dVk(r1)
d ln r

(i � 1, . . . ,N r − 1) (3.8)

However, in that case, together with Nr -1 ai parameters the total
concentration Cr is also retrieved:

Cr � ∑
i�1,...Nr

dVk(ri)
d ln r

(3.9)

Retrieving Cr and Nr-1 ai parameters allows for separating the
parameter defining the total amount of particles with the set of
parameters ai defining shape of size distribution.

Complex index of refraction: n(λ)-real and k(λ) -imaginary
parts of the refractive index can be defined using several different
strategies:

• the spectral values n(λi) and k(λi) are retrieved for each
wavelength in similar way as it is realized for AERONET
(Dubovik and King, 2000) and POLDER (Dubovik et al.,
2011) retrievals;

• the spectral values n(λi) and k(λi) are modeled as a
homogeneous mixture of different aerosol components
mixed internally. At present there are two possibilities in
GRASP [see details in Li et al. (2019)]:

i)- several aerosol components with known spectral
dependencies n(λ) and k(λ) are mixed internally using
Maxwell-Garnett effective medium approximation: the
particles are composed of black carbon, brown carbon,
absorbing insoluble, non-absorbing insoluble embedded
in a soluble host.
ii)- several aerosol components with known spectral
dependencies n(λ) and k(λ) are mixed internally
proportionally to the volume fraction of each
component including black carbon, brown carbon, iron
oxide, non-absorbing mineral dust, etc.

• the spectral values n(λi) and k(λi) can be assumed and
fixed for each aerosol component.

The aerosol modeling options described above are suitable for
retrievals when such aerosol parameters as size, shape, spectral
refractive index and vertical distribution can be explicitly retrieved.
However, in the situations with limited information content
retrieval of those detailed characteristics could be challenging or
impossible. In such a situation, the aerosol single scattering
properties can be modelled as an external mixture of several
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aerosol components and the columnar properties of each
component:

τscat/ext � ∑K
k�1

Ck
vρ

k
scat/ext(λ) (3.10)

and

τscatPii’(λ;Θ; h) � ∑K
k�1

Ck
vρ

k
scat/ext(λ)Pk

ii’(λ;Θ; h) (3.11)

where ρkscat/ext(λ) and Pk
ii’(λ;Θ; h) denote the scattering/

extinction per unit of volume and phase matrix of each
aerosol component that are pre-calculated using complex
refractive index, size and shape distributions assumed for
each aerosol component. Correspondingly, only K
concentrations drive the modeling of columnar properties
of aerosol. The number of the retrieved parameters is
significantly reduced in this approach, which is helpful for
the observations with limited sensitivity to the size, shape
and refractive index of the aerosol particles. For example, as
will be discussed below this approach was successfully
employed in processing MERIS and POLDER satellite data
by GRASP. Also, as discussed by Lopatin et al. (2021) this
approach is rather suitable for processing vertically resolved
observations by lidar or airborne radiosonde data. In
applications to MERIS and POLDER satellite data, the
vertical aerosol distribution was assumed the same for all
the components and modeled as Gaussian or exponential
function, while in processing of vertically resolved
observations a detailed separate vertical distribution can
be retrieved for each aerosol component. In general, the
aerosol components are associated with optically distinct
types of aerosol based on particle sizes, scattering and
absorption capabilities, etc. For example, in GRASP
applications to MERIS, POLDER, lidar and radiosonde
data, the aerosol components were defined based on
AERONET climatology by Dubovik et al. (2002) and
Smirnov et al. (2002), the exact definitions are discussed
by Lopatin et al. (2021). At the same time, these components
can be easily redefined and modified in frame of GRASP
software.

Thus, aerosol in GRASP retrieval can be represented as rather
sophisticated mixture of one or several aerosol components that
can differ by particle size distribution, shape distribution, vertical
profile and complex index of refraction. All these characteristics
can be either assumed and fixed or retrieved. The complexity of
modeling each of these characteristics depends on the
information content of observations used in each specific
GRASP application.

Gaseous absorption can also be fully accounted in GRASP
forward modeling of atmospheric radiances. The possibility of
rigorous accounting for atmospheric gases absorption was
recently incorporated with the help of the team from Free
University of Berlin with an objective to explore the synergy
between photometric and spectrometric observations and
combined retrieval of properties of both atmospheric

aerosol and gases. The rationale of such an approach is in
improving the accuracy of atmosphere components
characterization. Indeed, the gases and aerosol affect
radiation very differently, and, therefore, very different
measurements are used for their retrieval. For example,
Figure 6 illustrates a typical spectral dependence of
extinction by atmospheric gases, and fine (radius < ∼ 0.5
micron) and coarse (radius > ∼ 0.5 micron) aerosol particles
using complex refractive index of quartz. It is clear from this
illustration that absorption of atmospheric gases has much finer
spectral features than aerosol, especially in visible spectral range.

Therefore, in practice most commonly the retrievals of
aerosol and gases are separated. In general, radiometers are
used to make measurements in only a few selected spectral
“window” channels with minimal gaseous absorption with the
purpose to characterize aerosol properties. In a contrast, the
gaseous retrievals tend to rely on the hyper-spectral features of
gaseous absorption observed by spectrometers, with aerosol
contribution subtracted as smooth “background”. In these
regards, the current version of GRASP allows joint retrieval
of both aerosol and gases from joint spectrometric and
photometric observations.

Equation 3.12 illustrates the modeling of the transmitted
radiances on the properties of atmospheric aerosol, gases and
molecular scattering for cloud-free atmosphere.

I(λ, h) ∼ ∫λmax

λmin

Ω(λ)I0(λ)

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝
e
−m⎛⎜⎜⎝∫h

0

⎛⎝∑Ngas

i�1
Ni(h)Cgas

i,abs(λ,T(h), P(h)) + Caer
ext (λ, h) + Cmol

ext (λ, h)⎞⎠dh⎞⎟⎟⎠
+mult scat

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
dλ �

� ∫λmax

λmin

(Ω(λ)I0(λ)(e−m(τgasabs(λ)+τaerext (λ)+τmol
ext (λ)) +mult scat))dλ (3.12)

where Ni(h) is profile of i-th gas concentration, the cross-section
of gaseous absorption Cgas

i,abs(λ,T(h), P(h)) depends on
temperature (T) and pressure (P) and Ω(λ) denotes spectral
filter function. At the moment, GRASP forward model can
account in monochromatic calculations for any gas in any
spectral range for a maximum of ten different gaseous
species simultaneously using a line-by-line approach. The
calculations of the radiative flux calculations realized in
GRASP [as described by Derimian et al. (2016)] also account
for such details as dependence of water vapor absorption cross
section on its concentration due to continuum (e.g., see Kato
et al., 1999). The vertical profiles of pressure and temperature
are to be provided as an additional and necessary input for line-
by-line calculations. In order to speed up the calculations, the
look-up-tables with the absorption spectral information for
each considered gas species are used. These look-up-tables of
absorption values are usually pre-calculated for a wide range of
pressures, temperatures and wavelengths and stored into look-
up-tables that are later called in the retrieval. As a result, only a
renormalization to the required concentration and a simple
interpolation to the defined pressure and temperature profile are
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needed to obtain the gas absorption profile. In order to obtain
these pre-calculated values the CGASA line-by-line model
(developed by the Institute for Space Sciences, Free
University Berlin) is used. Notwithstanding, the look-up-table
format is readable, easy to understand and it is open to the users
to include their own look-up-tables which fulfill their
requirements.

However, direct spectral integration of line-by-line fine structure
requires consideration of a very large number of channels with full
accounting for multiple scattering for each channel. Such direct
implementation of the spectral integration has high accuracy but is
highly time consuming. Therefore, an alternative methodology
called a “k-distribution approach” (see Doppler et al., 2014) is
also been integrated into GRASP forward model to speed up the
integration time. The accuracy of this methodology is somewhat
reduced compared to line-by-line procedure but sufficient for most
remote sensing applications. The k-distribution methodology relies
on the same basic assumption of smooth aerosol spectral behavior
and reduces the number of multiple scattering runs for the spectral
integration to about 10 or even less instead of thousand. Specifically,
the approach sorts the gaseous absorption coefficients “k”within the
spectral function to a limited set of bins (∼10) by the magnitude of
the coefficients and then implements only a single multiple
scattering run for each “k” bin.

It should be noted that the calculation of the k-distribution
kernels themselves are generated externally and need to be
prepared as input prior using k-distribution modeling in GRASP.
The dependence of GRASP on external sources to use this technique
can be considered as a drawback. At the same time, the fully
standardized format of this input information in GRASP allows
the utilization of a vast variety of different principles (Uncorrelated,
TOA-correlated, Layer-Correlated, etc.) and algorithms that can be
used to calculate k-distribution parameters. The user can select the
specific methodology to match the specific requirements in each
situation and is not forced to use one specific approach.

Thus, depending on available measurements and information
both the profiles of gaseous concentrations as well as temperature
and pressure can be determined.

4 MULTI-TERM LSM: RETRIEVAL
PRACTICE USING GRASP

GRASP algorithm was designed as generalized approach that
could be used in diverse remote sensing applications (see
introduction by Dubovik et al. (2014)]. Indeed, the Multi-term
LSM approach employed for numerical inversion and forward
model allowing simulations of transmitted and reflected radiation
in the atmosphere allows an efficient exploitation of the GRASP
algorithm for diverse applications for atmospheric remote
sensing including retrieval of detailed properties of aerosol
particles from laboratory and in situ observations, as well as
from ground-based, airborne and satellite passive and active
remote sensing observations. GRASP also retrieves detailed
properties of underlying surface reflectance from down-
looking satellite and airborne observations. In addition, due to
very general principles realized for inversion and forward model
calculations, GRASP application scope is expected to be
significantly expanded, so that it can be used for applying
both radiometric and hyper spectral observations in a wide
spectral range from ultra violet (UV) to thermal infrared
(TIR) and retrieving not only aerosol and surface properties
but also properties of atmospheric gases and clouds. Some
applications for retrieving properties of hydrosols can also be
envisioned.

4.1 Laboratory and In Situ Observations of
Aerosol Single Scattering
Laboratory and in situ instrumentation generally can provide
more detailed and elaborated measurements of radiances
transmitted and diffused by a sample of air volume or surface
area compared to the remote sensing using ground-based,
airborne or satellite measurements. For example, using
laboratory and in situ instruments most of the single
scattering characteristics, τscat/ext and the elements of scattering
matrix Pii΄(λ;Θ; h) can be directly measured. Using the approach
described by Eq 3.1, 3.2 these characteristics can be simulated by

FIGURE 6 | The displayed extinction for fine (radius < ∼ 0.5 micron) and coarse (radius > ∼ 0.5 micron) aerosol particles was calculated using complex refractive
index of quartz.
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GRASP based on known microphysical aerosol properties
(particle size distribution, shape parameter, etc.). Inversely, if
measurements of τscat/ext and/or Pii΄(λ;Θ; h) are available, the
microphysical properties of the aerosol can be retrieved by
GRASP.

The retrieval of aerosol microphysical properties from the
measurements of the phase matrix Pii΄(λ;Θ; h) elements at
several wavelengths (together with or without τscat/ext) is the
base for more challenging remote sensing satellite and ground-
based observations. Indeed, such angular remote sensing
observations from satellite and ground-based instruments
are less detailed and affected by complex multiple scattering
effects.

The angular measurements of Pii΄(λ;Θ; h) in a wide range of
scattering angels (∼from 0° to 180°) at several wavelengths contain
practically maximal information about aerosol microphysical
properties, especially if these angular measurements are
complimented with spectral measurements of total scattering
or extinction σscat/ext of the aerosol sample. Therefore, the
retrieval of practically all aerosol characteristics can be
expected from such detailed measurements. For example, in
studies by Dubovik et al. (2006) such properties as detailed
size and shape (axis or aspects ratios) distributions were
retrieved together with spectral complex index of refraction
from laboratory measurements of aerosol samples phase
matrices. In the framework of GRASP software, the inversion
of full scattering matrix (6 elements) at any wavelengths and for
any angular range selection together with the spectral
measurements of σscat/ext(λ, h) is realized. In addition, the
measurements of any simple functions of Pii΄(λ;Θ; h) and
σscat/ext(λ, h) can be easily added if required. For example, the
measurements of total absorption σabs(λ, h), backscattering
β(λ, 180°, h) or total scattering σscat(λ,Θmin,Θmax, h) in the
selected range of scattering angles: Θmin ≤Θ≤Θmax can be
included in the set of inverted single scattering properties with

GRASP. From the practical viewpoint the inversion of the phase
function P11(λ;Θ; h) (or angular scattering σscat(λ, h)P11(λ;Θ; h))
and linear polarization P12(λ;Θ; h) at several wavelengths
(together with or without τscat/ext) is one of the most popular
applications. Indeed, most of passive remote sensing techniques
using angular information based on the measurement of
atmospheric radiation characterized by I(λ;Θ; h) element of
Stocks vector (e.g., see Mishchenko et al., 2006) and linear
polarization characterized by Q(λ;Θ; h) and U(λ;Θ; h)
elements of Stocks vector. In single scattering approximation,
I(λ;Θ; h), Q(λ;Θ; h) and U(λ;Θ; h) measured at the top or
bottom of the atmosphere depends only on P11(λ;Θ; h) and
P12(λ;Θ; h). Some other elements of phase matrix contribute
to I(λ;Θ; h), Q(λ;Θ; h) and U(λ;Θ; h) only via rather complex
multiple scattering interactions of solar radiation with the
atmosphere. Therefore, the single scattering contributions of
P11(λ;Θ; h) and P12(λ;Θ; h) often dominate passive
radiometric and polarimetric remote sensing measurements.
Correspondingly, the retrieval of aerosol microphysical
properties from the measured phase function P11(λ;Θ; h)
together with (or without) linear polarization P12(λ;Θ; h) at
several wavelengths can be considered as a base for a more
challenging remote sensing satellite and ground-based
observations.

Therefore, the development of aerosol property retrievals from
angular measurements of the phase function and linear
polarization helps to obtain understanding of a retrieval’s
potential and to design relevant remote sensing approaches. In
these regards, in the framework of GRASP the potential for a wide
diversity of retrievals can be evaluated on the basis of single
scattering sensitivity tests. For example, there are a number of
cases where the phase function and linear polarization was
measured directly and used for the retrieval of detailed aerosol
properties with the help of the GRASP approach, including
studies by (Dolgos and Martins, 2014; Espinosa et al., 2017;

FIGURE 7 | The results of a study using GRASP to characterize the size and refractive index of monodisperse polystyrene spheres from multiwavelength polar
nephelometer measurements. (A): scattering matrix element measurements (circles) at 473, 532 and 671 nm obtained from a PSL sample along with the corresponding
GRASP fits (solid lines). (B): retrieved real part of the refractive index, alongside three prior measurements of PSL refractive index (Ma et al., 2003; Sultanova et al., 2003;
Jones et al., 2013). The embedded subplot in the upper-right corner shows the GRASP retrieved size distribution (blue) alongside the manufacturer’s specified
central radius (red dashes) and ±0.5σ distribution width (red dots).
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Espinosa et al., 2019 W. R.; Puthukkudy et al., 2017; Schuster
et al., 2019, etc.). A demonstration of one such retrieval study
using measurements of polystyrene (PSL) spheres from Espinosa
et al. (2017) is shown in Figure 7.

In addition, such remote sensing observations such as aerosol
optical depth or lidar backscattering measured from the ground
are sensitive mainly to single scattering aerosol properties and
generally modeled using the single scattering approximation. The
application of GRASP for these observations will be
considered below.

4.2 Ground-Based Passive Observations
GRASP approach is developed based on the heritage of
AERONET retrieval developments by Dubovik and King
(2000), Dubovik et al. (2000) and Dubovik et al. (2006).
Therefore, GRASP can be used for inversion of AERONET-
like radiometric ground-based observation data in a similar
way as it is done in AERONET operational aerosol retrieval.
Therefore, applying GRASP to such data should provide
essentially similar retrieval results. At the same time, even
though GRASP has adapted the main conceptual elements

from the AERONET retrieval, the actual algorithm is different,
therefore some minor differences can be observed even in the
identical application.

The potential of applying GRASP to radiometric ground-
based observations lies in the possibilities of trying and
evaluating new retrieval concepts. Indeed, as described above
in Theory of Multi-Term LSM Inversion, GRASP allows one to use
a variety of the retrieval setups. For example, in difference with
AERONET operational retrieval, it is possible to attempt deriving
more detailed shape distribution, to employ multi-component
aerosol mixture with different refractive indices for each
component, to approximate size distribution by log-normal
functions, etc. The examples of such diverse AERONET
inversions can be found in a number of published studies. Li
et al. (2019) demonstrated the retrieval of aerosol properties from
AERONET observations assuming aerosol as a mixture of
different aerosol components. As it was demonstrated this
approach allows adequate modeling of aerosol AERONET
observation and the retrieved results provide some inside on
aerosol composition. Torres et al. (2014) made extensive analysis
of aerosol retrieval sensitivity to geometrical configuration of

FIGURE 8 | The application of GRASP-AOD for inverting direct Sun and Moon observations. (A): illustration of daily AERONET and nocturne Moon photometer
AOD observations in Dakar site during April 14, 15, 2014. The vertical dashed lines correspond to almucantar observations; (B): the compassion of size distributions derived by
GRASP-AOD approach from AOD obtained from direct Sun and Moon observation with regular AERONET inversions (Torres et al., 2014). The comparison of retrieval of aerosol
properties byGRASP fromAODonly data (GRASP-AOD) and fromAODdata together with themeasurement of radiances in the aureole in applying the retrieval to 2 years of
the ARONET data over Granada site. (C): the correlation of retrieved RVcc from AOD data (GRASP-AOD) with full AERONET retrieval. (D): the correlation of retrievedmean volume
radius of aerosol coarse mode (RVcc) from AOD and radiances in the aureole data (GRASP-AUR) with full AERONET retrieval (Torres and Fuertes, 2020).
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ground-based sun/sky-radiometer observations. This study was
conducted using GRASP algorithm, and employed different
assumption of aerosol vertical variability in the series of
synthetic tests. In more recent studies the GRASP based
methodology was established for retrieving aerosol properties
from only direct Sun AERONET observation of optical
thickness. Torres et al. (2017) describe the “GRASP-AOD”
approach in details and Torres and Fuertes (2020) demonstrate
extensive application of the method to AERONET AOD
observations. GRASP-AOD uses the assumptions of bi-modal
lognormal size distribution and provides AOD of fine and
coarse aerosol modes (AODF and AODC). The results of
comparisons by Torres and Fuertes (2020) have shown that
GRASP-AOD provides AODF and AODC comparably good
and sometimes even better accuracy than the established
retrieval approaches by O’Neill et al. (2003) and Perez-Ramirez
et al. (2015). In addition, GRASP-AOD provides information
about aerosol size distribution including concentrations,
standard deviations, median and effective radii of total, fine and
coarse modes of aerosol size distributions. These retrieved aerosol
properties agree well with the results of full AERONET retrieval
performed for the same AOD observations.

GRASP also can be used for inverting diverse non-
AERONET observations from ground or AERONET
observations that generally included in AERONET
processing. For example, Torres and Fuertes (2020)
demonstrated aerosol retrieval using direct Sun AOD
observation combined with the sky-radiances measured in
solar aureole. Such retrieval showed to provide superior
about aerosol size distribution compare to GRASP-AOD
only retrieval and can be applied to the AERONET data
acquired in partially cloudy environment. Roman et al.
(2017, 2021) applied GRASP for aerosol retrieval from the
measurements by lunar aureole with a sky camera. Torres
et al. (2017) and Popovici et al. (2018) have applied GRASP-
AOD approach for interpretation of AOD observations by
lunar-photometer. The upper panel of Figure 8 illustrates the
size distribution by GRASP-AOD from AOD observations by
lunar-photometers. The lower panel of Figure 9 illustrates

the improvements in the aerosol retrieval by inverting
radiances measured in solar aureole together with AOD
data compare to inversion of AOD data only (Torres and
Fuertes, 2020).

It is important to underline that GRASP allow rather
straightforward use of ground-based radiometric observations
in the retrievals using synergy with other ground-based, satellite
or air-borne observations. For example, the combined processing
of ground-based radiometric and lidar observations as will be
discussed in next sections.

Finally, as described in Theory of Multi-Term LSM Inversion,
several new modules were integrated into GRASP forward model
for making it possible to simulate both photometric and
hyperspectral observations in visible and thermal IR part of the
spectrum. Therefore, at present GRASP is ready for a processing
not only photometric but also spectrometric ground-based
observations in wide spectral range. Specifically, very recently
first tests have been done with application of GRASP to
combined inversion AERONET type radiometric observation
together with CLIMAT thermal TIR radiometer (Legrand et al.,
2000; (Brogniez et al., 2003) or PANDORA spectrometer (Herman
et al., 2015). These developments are yet at early stages, nonetheless
the first test indicate high potential for these new applications. For
example, AERONET/CLIMAT retrieval will allow the retrieval of a
consistent aerosol optical characteristic in wide visible-TR spectral
range and synergy inversion of joint AERONET and PANDORA
observations is promising for improved simultaneous retrieval of
aerosol and such atmospheric gases as NO2 and Ozone (Herreras-
Giralda et al. in preparation). These applications were overall
realized and tested with synthetic data, where NO2 are retrieved
simultaneously with aerosol. Figure 9 illustrates the synthetic
retrieval applied to a combined data set including almost 150
Pandora channels ranging from 400 to 440 nm, and the four
standard AERONET channels (440, 675, 870 and 1,020 nm). In
this application GRASP algorithm successfully operates with the
hyperspectral features of gas absorption and the smooth aerosol
optical characteristics. The real data inversion results of this
combined retrieval of aerosol and NO2 have been done using
DIVA (see Synergetic Retrievals and Other Diverse GRASP

FIGURE 9 | The illustration of the inversion dynamics evolution through at the different iterations. (A): fitting of direct Sun hyperspectral observations of Pandora.
(B): evolution of the retrieved AOD values.
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Applications) platform and initial validation has been done against
independent algorithms as AERONET, for aerosol, and PGN
(Pandonia Global Network) (Herman et al., 2009; Tzortziou
et al., 2012) for gas related products.

Thus, GRASP is being expanded for retrieval of also atmospheric
gases in addition to aerosol and surface. Moreover, some very recent
developments are initiated to include cloud retrieval in GRASP
framework. Theretofore, to reflect this development, it is appropriate
to rename GRASP as Generalized Retrieval of Atmosphere and
Surface Properties instead of Generalized Retrieval of Aerosol and
Surface Properties.

4.3 Ground-Based Active Observation and
Synergy With Passive Observations
Initially the possibilities of processing active lidar observation
were integrated into GRASP by Lopatin et al. (2013) as part
synergetic GARRLiC (Generalised Aerosol Retrieval form
Radiometer and Lidar Combination) retrieval that inverts
simultaneously the photometric and lidar observations.
Since then GARRLiC/GRASP has been employed and
discussed in numerous studies (Benavent-Oltra et al., 2017;
Benavent-Oltra et al., 2019; Benavent-Oltra et al., 2021; Hu
et al., 2019; Tsekeri et al., 2013; Tsekeri et al., 2017; Roman

FIGURE 10 | An example of GaRRLiC/GRASP retrieval columnar and vertical aerosol properties from a combination of ground-based radiometer and
multi-wavelength lidar, LR denotes lidar ratio, RRI and IRI denote real and imaginary refractive indices respectively.
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et al., 2018; Titos et al., 2019; Molero et al., 2020; Parajuli et al.,
2020; Konsta et al., 2021 etc.). Moreover, it is currently
being employed for operational processing of such
combined data in the frame of the European ACTRIS
infrastructure (https://www.actris.eu/). The standard
GaRRLiC approach by Lopatin et al. (2013) inverts spectral
lidar data together with sun/sky scanning AERONET like
radiometer, and the detailed columnar size distributions,
and spectral complex index of refraction can be retrieved
for two fine and coarse aerosol components together with
two vertical profiles of their concentration can be derived as
illustrated by Figure 10.

While the original GARRLiC scheme was limited to the
specific observational set of multi-wavelength elastic scattering
lidar together with AERONET-like sun/sky-radiometer
observations, the area of GRASP application was
significantly extended during last years and now covers a
variety of active and vertically resolved observations that
can be processed. For example, at present GRASP can be
applied for interpretation of such vertical observations of
atmosphere as profiles of extinction, backscatter, normalized
elastic and inelastic lidar signals, profiles of volume and
particle depolarization. In addition, a possibility of lidar
only retrieval was introduced in GRASP together with
several technical retrieval details improving processing of
vertically resolved observations (Lopatin et al., 2021).

Thus, at present GRASP allows simulation and inversion of
point or vertical observations of the profiles of backscattering,
extinction, 6 elements of scattering matrix. In addition, several
characteristics that are simple functions of the above scattering
characteristics were introduced as a potential input data for
GRASP. Specifically, both the elastic and inelastic lidar
measurements can be inverted by GRASP. The lidar
equation for ground-based observations is realized as the
following:

L(λ, h) � A(λ)β(λ, h) exp⎛⎜⎜⎜⎝− 2∫Z(h)

Zmin

σ(λ, z)dz⎞⎟⎟⎟⎠, (4.3.1)

where σ(λ, h) denote extinction and β(λ, h) backscattering profiles.
The extinction profile includes aerosol, molecular scattering and
gaseous absorption components σ(λ, h) � σa + σm + σg and
backscattering includes aerosol and molecular components
β(λ, h) � βa + βm’, A(λ) is the instrumental constant, z(h) is
lidar path related with the atmospheric altitudes of target h,
ground level hBOA and zenith angle of lidar inclination ΘL as
z(h) � h−hBOA

cos(ΘL)
. Here both backscattering and extinction profiles

depend of aerosol properties. The ambiguity in separation of the
backscattering by the layer and extinction of the lidar signal by
underlying layers is considered as the key challenge in the
interpretation of elastic lidar signals. The lidar systems using
inelastic scattering address that ambiguity by measuring the
following signal:

Linel(λ, h) � A(λ, λ′)βinel(λ, h) exp⎛⎜⎜⎜⎝ − ∫Z(h)

Zmin

(σ(λ′, z) + σ(λ, z))dz⎞⎟⎟⎟⎠ (4.3.2)

where scattering, λ′ – wavelength of exciting impulse that triggers
inelastic backscatter at wavelength λ, βinel(λ, h) inelastic
backscattering of atmosphere, A(λ, λ′) is known calibration
constant. The shift λ′→ λ in inelastic backscattering βinel(λ, h)
could be a result of gaseous molecules emission frequency shifts
due rotations and vibrations of molecules and can be rather
accurately estimated based on known characteristics of emitted
lidar impulse and atmospheric gases. Therefore, neglecting the
differences in aerosol extinction at λ′ and λ,σa(λ, h) can be
considered as the only fully unknown characteristic in Eq.
4.3.2 and can be obtained from Linel(λ, h) by rather
straightforward transformations. The measurements of such
advanced lidar systems as HSRL are usually converted to the
backscatter β . . . (λ, h) and extinction profiles σ . . . (λ, h) (Hair
et al., 2008; Rogers et al., 2009, etc.) that can be used as an input to
GRASP algorithm for conducting a full aerosol retrieval.

Another characteristic measured by advanced lidars with
polarimetric capabilities is the profile of volume and aerosol
particle depolarization. The profile of particle depolarization
can be estimated from the ratio of lidar returns L⊥ and L‖
obtained with from emitted polarized light beams as following
(Freudenthaler et al., 2009):

δ � L⊥(λ, h)
L‖(λ, h) �

β⊥(λ, h)
β‖(λ, h)

� P11(λ, 180°, h) − P22(λ, 180°, h)
P11(λ, 180°, h) + P22(λ, 180°, h),

(4.3.3)

where the subscripts “⊥” and “‖” indicate cross- and co-polarized
components correspondingly. Both profiles of aerosol
and atmospheric volume depolarization ratio can be used for
GRASP.

Thus, diverse vertically resolved observations discussed above
from a single instrument or in a combination with other
observations (e.g., a passive instrument) can be inverted by
GRASP. The number and type of aerosol parameters retrieved
depend on a chosen configuration of employed aerosol forward
model (see Theory of Multi-Term LSM Inversion) and a priori
constraints that should be chosen in accordance with the
information content of inverted data. For example, if only
observations of a single wavelength lidar are inverted, only
profile of one aerosol component can be retrieved using a
priori assumptions about most of other aerosol characteristics.
In case of inversion of observation from multi-wavelength
advanced lidar system, a number of parameters and scope of
retrieved aerosol information can be significantly extended. For
example, Lopatin et al. (2021) demonstrated simultaneous
retrieval of four profiles of different aerosol components from
such data (aerosol was modeled using Eq 3.10, 3.11). Lopatin
et al. (2021) provided more detailed discussion of GRASP
applications to inversion of vertically resolved observations
and numerous illustrations.

4.4 Satellite and Airborne Passive
Observations
One of the original motivations for initializing GRASP
developments was an idea of creating enhanced retrieval of
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aerosol from satellite observations by multi-angle polarimeter
such as POLDER. In fact, numerous theoretical and practical
studies have concluded that polarimetry is an approach that can
provide an accurate characterization of aerosols with the detail
and precision sufficient for many important applications
(Mishchenko et al., 1997; Mishchenko and Travis, 1997;
Hasekamp and Landgraf, 2005; Hasekamp and Landgraf, 2007;
Kokhanovsky et al., 2010; Knobelspiesse et al., 2012). On the
other hand, as discussed by Dubovik et al. (2019), the
interpretation of multi-angular multi-spectral polarimetric
(MAP) data is quite challenging from the fundamental
point of view. Indeed, polarimetry is highly sensitive to a
large number of atmospheric parameters, and accounting
adequately for all these sensitivities in the retrieval
algorithm is very demanding, especially in the satellite
applications where large volumes of data need to be
processed with a minimal delay, and for quite a long time
there were no available operational MAP product
demonstrating the practical advantages of MAP retrieval. In
these regards, GRASP was adapting AERONET retrieval
methodology and, in difference with conventional look-up-
table (LUT approaches) attempted highly advanced
statistically optimized fitting of satellite data implementing
rigorous search for the solution in a continuous space of
solutions. Such approaches are considered as the most
promising for satellite retrieval and with some technical
differences are deployed in other algorithms of new
generations developed for interpretation of MAP
observations (Hasekamp and Landgraf, 2007; Hasekamp
et al., 2019; Fu et al., 2020; Dubovik et al., 2011; Xu et al.,
2016; Xu et al., 2017, etc.). The challenges of realizing such
state-of-the-art algorithms lie in the fundamental difficulties
to adapt them optimally to the high sensitivities of MAP
instruments and in specific technical issues, such as, a need
of significantly more computational time than LUT algorithms
to simulate the satellite signal and the Jacobian derivatives
matrices online. In these regards, the developed structure of
GRASP algorithm allows realizing rigorous inversion of MAP
satellite observations. In addition, the GRASP software was
extensively optimized to reduce time of calculation and
adapted to practical application to real satellite observations.

At present, 18 months of POLDER-1 and -2 and 9 years of
POLDER-3 observations have been processed and several
versions of the retrieval product have been archived at the
AERIS/ICARE Data and Services Center (http://www.icare.
univ-lille1.fr) and GRASP-OPEN site (https://www.grasp-
open.com). For POLDER, GRASP utilizes radiance and
polarization observations from all available spectral
channels with minor gaseous absorption: 5 and 6 channels
for POLDER-1 and -2, and POLDER-3, correspondingly and 3
polarized radiances spectral channels for all instruments. The
retrieval uses a unique global set of constraints (no location-
specific assumptions) and a single initial guess globally. The
radiative transfer computations accounting for multiple
interactions of the scattered solar light in the atmosphere
are performed on-line. All GRASP retrievals were
performed at POLDER native resolution POLDER-1 and -2

at ∼7 km and POLDER-3 at ∼6 km. In the saved data archives,
the original POLDER/GRASP retrievals are stored at Level-1,
Level-2 and -3 products and are publicly available in the form
of daily, monthly, seasonal, yearly and climatological datasets.
The Level-2 data contain full resolution data filtered following
the established quality criteria. Level 3 data is aggregated into a
0.1° and 1° grid box using the sinusoidal projection from Level-
2 data.

GRASP allows a variety of different possibilities on modeling
aerosol scattering, surface reflectance and implementing
atmospheric RT calculations and due to various reasons
several different configurations of the atmospheric forward
model were used to generate aerosol products. For example,
the full POLDER-3/PARASOL data archive was processed by
GRASP using the three following retrieval configurations:
POLDER-3/GRASP «optimized», «high-precision» and
«models». The observations of POLDER-1 and -2, at present,
were processed using only a single GRASP/Models approach. The
«optimized» and «high-precision» differ only by the precision of
the RT calculations, while they use the same aerosol model driven
by aerosol size distribution, spectral values of complex index of
refraction, fraction of spherical particles and the aerosol scale
height (Dubovik et al., 2011). The «models» approach uses the
assumption of an external mixture of several aerosol components
(see Eq 3.10-3.11) and directly retrieved parameters include
aerosol concentrations and a scale height. In addition, recently
POLDER-3/GRASP aerosol product has been generated using
“component” approach (Li et al., 2019; Li et al., 2020a; Li et al.,
2020b). This approach retrieves the size resolved fractions of
aerosol components representing the different composition
species, such as black carbon, brown carbon, fine/coarse mode
non-absorbing soluble and insoluble, coarse mode absorbing and
aerosol water. The retrieved fractions drive the aerosol spectral
index of refraction in modeling of atmospheric radiances.
Figure 11 illustrates the climatology of aerosol component
columnar mass concentration derived from POLDER-3 over
East Asia region by the GRASP/Component algorithm.

Independently of which aerosol model approach all retrieval
data products contain the aerosol main aerosol characteristics
including spectral aerosol optical depth (AOD), aerosol
absorption optical depth (AAOD) and single scattering albedo
(SSA) as well as Ångström exponent (AE), spectral fine mode
AOD (AODF) and coarse mode AOD (AODC). Figure 12
illustrate the climatology of these parameters.

The main aerosol POLDER-3/GRASP products including
AOD, AE, AODF, AODC, SSA and AAOD were extensively
evaluated using validations against AERONET and comparisons
with the original POLDER algorithm (PARASOL/Operational),
and MODIS Collection 6 aerosol products. For example,
Schutgens et al. (2021) have evaluated GRASP/Models Level3
1-degree SSA against AERONET and compared with other
satellite SSA products. The studies recognized GRASP/ Models
as one of reliable and most extensive data SSA set. Chen et al.
(2020) have conducted the detailed validation of Level 3 0.1
degree products. The studies have shown that the POLDER-3/
GRASP retrieval provided reliable aerosol products. Specifically,
POLDER-3/GRASP spectral products including AOD for six

Frontiers in Remote Sensing | www.frontiersin.org October 2021 | Volume 2 | Article 70685132

Dubovik et al. Multiple a Priori Constraints, GRASP Algorithm

http://www.icare.univ-lille1.fr
http://www.icare.univ-lille1.fr
https://www.grasp-open.com
https://www.grasp-open.com
https://www.frontiersin.org/journals/remote-sensing
www.frontiersin.org
https://www.frontiersin.org/journals/remote-sensing#articles


FIGURE 11 | Climatology of aerosol component columnar mass concentration derived from POLDER-3 over East-Asia by the GRASP/Component approach: (A)
fine mode black carbon, (B) fine mode brown carbon, (C) coarse mode mineral dust.

FIGURE 12 | Climatological values of AOD (565), Angstrom exponent, SSA(670) and scale height for winter 2009 provided by POLDER-3/GRASP optimized
product.
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FIGURE 13 | The illustrations of the POLDER/GRASP product comparisons with AERONET data. Upper panel: the correlations of POLDER-3/Models AOD with
AERONET for several selected wavelengths (440, 550, 870 nm). Middle panel: the correlations of POLDER-1,2/GRASP AOD with AERONET for several selected
wavelengths (440, 550, 870 nm). Lower panel: the correlations of the detailed aerosol parameters retrieved by POLDER-3/GRASP/HP product, from left to right: AE,
AODF(550), AODC(550), SSA(865).
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wavelengths in the range 443–1,020 nm agree well with the
AERONET AOD measurements, e.g., for POLDER-3/Models
AOD correlation coefficients R are ≥0.86 over land and ≥0.94
over ocean with BIAS not exceeding 0.01 over land and 0.02 over
ocean for all wavelengths. The upper panel of Figure 13
demonstrates the correlations of satellite AOD with
AERONET for several selected wavelengths.

The data from POLDER-1 and -2/GRASP retrievals were not
included in the analysis by Chen et al. (2020), while the limited
comparisons are shown in middle panel of Figure 13
demonstrate that the quality of the POLDER-1 and -2/GRASP
retrievals are expected to be close to those of POLDER-3/GRASP
retrievals.

The comparisons with MODIS aerosol products showed that the
POLDER-3/GRASP AOD retrievals are very coherent with popular
MODIS data while also exhibit some important advancements. For
example, POLDER-3/GRASP retrievals provide more reliable
detailed aerosol parameters such as AE, AODF and AODC
especially over land and such parameters as SSA and AAOD that
are generally not available from MODIS-like instruments. The
validation of POLDER-3/GRASP products by Chen et al. (2020)
showed a robust correlation of the retrieved SSA andAAOD spectral
values withAERONET (440–1,020 nm), correlations increase for the
retrievals corresponding to the events with higher AOD. For AAOD
retrievals overall the BIAS did not exceed 0.01, suggesting that
POLDER-3/GRASP products can be used for making global
estimations of AAOD at such level of uncertainty. The lower
panel of Figure 13 demonstrates the correlations of the detailed
POLDER-3/GRASP/HP products. The detailed discussion can be
found in the study by Chen et al. (2020).

One key finding of Chen et al. (2020) analysis is that the best
retrieval of total AOD is provided by the simplest approach (GRASP/
Models) in which the retrieval is restrained to a superposition of
predefined aerosol components, significantly reducing the number of
free parameters for retrieval. The AOD retrieved frommore complex
GRASP/HP and GRASP/Optimized approaches over land has

notable bias (∼0.06–0.07 at 500). In these regards, the GRASP/
Component [that was not considered by Chen et al. (2020)]
provided apparently overall the most coherent total and detailed
aerosol properties. Indeed, the validation by Zhang et al. (2021) of
GRASP/Component POLDER-3 products against AERONET
showed that total AOD from GRASP/Component is close in
accuracy to GRASP/Models and higher in accuracy than AOD
form GRASP/HP and GRASP/Optimized. Also, the accuracy of
most of detailed aerosol products (AOF, AOC, AE) from GRASP/
Component approach is overall higher or close to that of best results
of GRASP/HP and GRASP/Optimized. For example, Figure 17
illustrates results for AOD, AODF, AODC and AE over land that
can be compared in Figures 13, 14.

Evidently, that future efforts on improving the GRASP retrieval
will be aimed at achieving accurate retrievals within one approach,
however the situation also reveals the challenge of developing a
unique approach that can provide a retrieval of all parameters with
highest accuracy from MAP observations. Indeed, multi-angular
polarimetric observations have sensitivity to different aerosol
properties, and therefore the MAP algorithms tend to be
designed for the retrieval of large number of parameters, while
in the situations with low aerosol presence the information from
observations may not be sufficient to retrieve all parameters
reliably. Moreover, POLDER like MAP observations have high
potential for essentially helping to improve extensive monitoring
air quality parameter that are vital for many evaluating the
dynamic of environment. For example, Wei et al. (2020)
demonstrated higher capacity of POLDER product than single-
view MODIS data for characterization of PM2.5 from space and
Wei et al. (2021) presented a methodology of POLDER/GRASP
products for deriving PM10 the characteristics that is generally
even more difficult to obtain from remote sensing than PM2.5.
Moreover, MAP and specifically POLDER/GRASP data provide
were used as additional constraints for improving global emissions
of the atmospheric components in chemical transport models (e.g.,
Chen et al., 2018; Chen et al., 2019; Elguindi et al., 2020). This

FIGURE 14 | The correlations of the detailed aerosol parameters retrieved by POLDER-3/GRASP/Component product, from left to right: AOD(550), AODF(550),
AODC(550), AE.
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supports the highly promising concept of synergizing satellite with
available modeled information for advancing satellite remote
sensing.

In all above processings, the underlying surface reflectance
was retrieved simultaneously with the aerosol properties and
the detailed BRDF (Bi-directional Reflectance Distribution
Function) and BPDF (Bi-directional Polarization
Distribution Function) of ocean and land surfaces were
derived. Specifically, the parameters of “Ross-Li model”
BRDF and Maignan et al. (2009) BPDF models were
retrieved over land. Figure 15 demonstrates the
climatological surface reflectance properties retrieved from
POLDER-3.

The preliminary validations of POLDER surface reflectance
show a generally good agreement with other surface products as
those from MODIS, especially for such general parameters as
surface albedo. At the same time, for detailed BRDF properties
some differences are obvious for the Ross-Li model parameter
related with angular anisotropy of surface BRDF. For example,
Figure 16 illustrates the correlations of three Ross-Li model
BRDF parameters provided by POLDER-3/GRASP and
retrieved by MODIS. The correlations for 2-nd and 3-rd
parameters are significantly lower than for the first one. This
can be explained by high sensitivity of both POLDER andMODIS
observations to the total reflectance of the land surface, while the
sensitivity to the BRDF anisotropy, driven by 2nd and 3rd BRDF
parameters, is evidently higher for the multi-viewing POLDER
than for single-view MODIS measurements.

The reflective properties of ocean surface are modeled
analogously to earlier developments (Deuzé et al., 2001;

Herman et al., 2005; Tanré et al., 2011). The Fresnel’s
reflection on the agitated sea surface is considered by
using the Cox and Munk model (Cox and Munk, 1954).
The water leaving radiance term and the white cap
reflection are taken into account for by Lambertian
unpolarized reflectances (Voss et al., 2007). The whitecaps
reflectance are dependent on the wind speed at sea surface
(Koepke 1984). The seawater reflectance at short wavelengths
is not negligible and depends on the properties of the oceanic
waters. Thus, in POLDER-3/GRASP, the magnitude of
seawater reflectance at each wavelength and the wind
speed could be retrieved together with aerosol. The lower
panel of Figure 15 illustrates climatology of ocean surface
parameters retrieved from POLDER-3. More illustrations of
the chlorophyll, water leaving radiances and wind speed
retrievals and their comparison with MODIS results and
ECMWF reanalysis can be found in the paper by Frouin
et al. (2019). The detailed analysis of both land and ocean
surface reflectance properties provided by POLDER/GRASP
are ongoing and expected to be discussed in the
separate paper.

It is also important to emphasize that POLDER-3/GRASP
retrievals are based on rigorous optimized inversion that searches
for statistically optimized fitting in a continuous space of solution
without using widely used Look-up-Tables, unlike as most of the
conventional satellite retrievals. As a result, POLDER/GRASP aerosol
and surface reflectance products are globally-consistent based on
exactly the same aerosol modeling approach over land and ocean,
unique set of a priori constraints and initial guess, while retrieving
surface reflectance properties simultaneously with aerosol. As

FIGURE 15 | Climatological values (9 years averages) of surface reflectance properties retrieved from POLDER-3. (A): the land BRDF parameters. (B): the ocean
surface reflectance parameters.
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discussed by more in Dubovik et al. (2019) the similar type of
approaches is expected to become common and evolve further in
the coming era of multiple MAP instruments. In these regards, there
are several GRASP based developments for the future polarimetric
mission. For example, an operational aerosol retrieval algorithm for
future 3MI/EPS-SG polarimeter (Fougnie et al., 2019) has been
developed using GRASP (Marbach et al., 2020). There are also
some efforts to adapt GRASP for processing the observations by
the future DPC, Aerosol-UA, HARP2 missions. For example,
Figure 17 illustrates the application of the GRASP algorithm for
processing AirHARP (airborne Hyper Angular Rainbow Polarimeter)
observations made during the NASA ACEPOL 2017 campaign
(Puthukkudy et al., 2020a). GRASP retrieved AOD using the
AirHARP data is validated using the collocated AERONET and
HSRL2 measurements. Figure 17C shows a good agreement of
GRASP AirHARP retrieved AOD with the collocated AERONET
AOD observation with a maximum bias of -0.009 and mean absolute
error of 0.015 at 870 nm band. Comparison of GRASP retrieved AOD
withmeasurement ofHSRL2 lidar for a forest fire smoke plume shows
good correlation and agreement with a correlation coefficient of
0.940 at 532 nm (see Figure 17D). Furthermore, preliminary
aerosol retrievals based on the HARP CubeSat data using the
GRASP was presented at the AGU Fall meeting 2020 (Puthukkudy
et al., 2020b). There are also successful GRASP developments for
SGLI/GICOM-C and MISR observations (Fuertes et al., 2020).

GRASP approach has also been successfully applied to several
single-view satellite radiometers. For example, GRASP has been used
to process 10 years (2002–2012) of MERIS (MEdium Resolution
Imaging Spectrometer). MERIS is an imaging spectrometer operated
from Envisat satellite platform that scanned the Earth’s surface by
the so-called push-broom method. Linear CCD arrays provided
spatial sampling in the across-track direction, with the satellite’s

motion provided scanning in the along-track direction (Rast et al.,
1999). MERIS/GRASP retrieval provided aerosol and surface
reflectance retrieval product at 8 used channels 413, 443, 490,
510, 560, 665, 760 and 870 nm. The data were inverted at
resolution of 10 km in cloud-free conditions as determined by
original MERIS cloud-mask algorithm at latitudes below 60
degrees north and south. The retrieval of aerosol and surface
properties is conducted simultaneously. An external mixture (see
Eq. 4.3.3) of four aerosol components was used for modeling
aerosol. The surface BRDF as well as general retrieval approach
was similar to the POLDER/GRASP processing e.g., multi-pixel
concept was applied. The full list of the retrieved parameters, as well
as, Level 2 and Level 3 products of all derived parameters are
available at GRASP-OPEN website (https://www.grasp-open.com).

The MERIS/GRASP products were validated against
AERONET and compared to other satellite products. The
analysis has shown that MERIS/GRASP retrievals provided
robust and reasonably accurate results. For example, as
illustrated in Figure 18 MERIS/GRASP spatial distribution
of aerosol hot spots agrees qualitatively well with POLDER/
GRASP products. Figure 19 shows the global correlations of
MERIS/GRASP AOD(560) with AERONET data. The
correlations coefficients are ∼0.76 over land and ∼0.84 (over
ocean) with RMSE of 0.155 over land and ∼0.06 over ocean.
There is a rather small systematic bias of ∼0.03 over ocean.
However, over land the bias significantly higher: ∼0.09. The
origin of such high bias over land is being investigated and
expected to be addressed in ongoing efforts on updating
MERIS/GRASP product. The land surface products are
generally in good agreement with the products from other
satellite instruments, such as MODIS and POLDER. The lower
part of Figure 19 illustrates the global comparisons of

FIGURE 16 | The correlations of the land BRDF monthly average parameters retrieved for September 2008 from POLDER-3 and MODIS.
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retrieved DHR (Direct Hemispheric Reflectance) with values
provided by MODIS.

The GRASP is been also applied to other single or dual-view
radiometers. For example, at present there are several ingoing
GRASP based developments of algorithms and retrieval products
for Sentinel-3, Sentinel-4 and Sentinel-S5P, VENUS, PRISMA,
HIMAWARI, SGLI-2, etc.

It should be noted that while the estimations of the retrieval
errors were not generated as a part of POLDER/GRASP and
MERIS/GRASP products, but were included in all new and recent
developments. For example, Figure 20 illustrates the result of the
numerical tests, were the AOD was retrieved from synthetic
observation of S5P/GRASP AOD simulated over Banizoumbou
AERONET site (the random noise of ∼3% was added to the
simulations). It can be seen that the error estimates of satellite
data obtained based on Eq 2.3.1–Eq 2.3.7 and denoted by the
error bars agree well with assumed data. The detailed discussion

on performance of GRASP error estimation concept is provided
by Herrera et al. (2020).

4.5 Synergetic Retrievals and Other Diverse
GRASP Applications
As described above the GRASP is a versatile algorithm that
have been already used in a wide variety of applications
including diverse passive and active ground-based and
satellite observations as well as in situ and laboratory
observations. Figure 21 shows the overview diagram of
GRASP applications. The several key and mature
applications have been described above in this section. At
the same time, there are some other different but relevant
applications of GRASP that have been realized by different
studies. For example, GRASP has been used for processing
observations by moon-light sky-camera by Roman et al.

FIGURE 17 | The application of GRASP algorithm for processing AirHARP observations during the ACEPOL 2017 campaign (Puthukkudy et al., 2020a): (A) RGB
image of a forest fire smoke scene captured on 27th October 2017 18:16 UTC; (B) AOD map retrieved for different spectral bands data for the pixels shown in the red
rectangle; (C) Comparison of AirHARP-GRASP retrieved AOD with collocated AERONET; (D) Scatterplot of the AOD measured by HSRL2 with GRASP-AirHARP
retrieved AOD for a smoke plume on 7th November 2017 19:31 UTC. [Adapted version of the plots originally published in Puthukkudy et al. (2020b), CC BY 4.0].
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(2017), for utilization with the ceilometers by Roman et al.
(2018), for processing sun/sky aureole measurements by
Torres and Fuertes (2020), etc.

It is important to note that the full compatibility of all
retrievals inside of GRASP is fundamental base for the
developments of diverse synergetic retrievals. Indeed, in a case
if even very different observations of similar natural event are
available then the interpretation of these observations by GRASP
can be combined together in a single synergetic retrieval. It can be
mentioned here that the DIVA (Demonstration of an Integrated
approach for the Validation and exploitation of Atmospheric
missions) platform has been develop to promote and simplify
practical use of the GRASP synergetic capabilities (Fuertes et al.,
2019). The system operates in computer cloud and contains
loaded data from ground and space observation that can be
easily used for the exploration of new retrieval possibilities
such as the joint retrieval of the gas aerosol properties showed
in Ground-Based Passive Observations or the joint inversion of
ground-based radiometer and lidar observations discussed in
Ground-Based Active Observation and Synergy With Passive
Observations is only one example of such synergy. Similar
approach is also being developed for synergetic processing of
passive and active satellite observations. For example, GRASP
based approach has been used in extensive numerical tests in
frame of ongoing NASA Aerosol and Cloud, Convection and
Precipitation (ACCP) study. The ACCP initiative considers
deployment of coordinated observations by passive
(polarimeter, spectrometer, microwave radiometer) and active
(lidar and radar) sensors (https://science.nasa.gov/earth-science/
decadal-accp). Figure 22 illustrates the application of a GRASP-
based testbed realized by Espinosa W. R. et al. (2019) for
exploring the capabilities of synergistic passive and active
remote sensing using a combination of multi-angular
polarimeter and lidar observations considered in ACCP for
future deployment. The aerosol retrieval displayed in
Figure 22 demonstrates that a retrieval using total and
polarimetric radiances paired with HSRL lidar profiles can
yield accurate, mode-resolved extinction profiles in relatively
complex scenes. Retrievals of such quality are unachievable
with just lidar or polarimeter data alone.

When only using lidar measurements for deriving aerosol
properties, a different retrieval strategy can be adopted with
GRASP. Instead of fully and independently retrieving particle
microphysical and intensive optical properties, multichannel
lidar measurements can be used to quantify the contribution of
different aerosol components, that can be considered as
aerosol “types”, to the vertical concentration profile of
aerosols. The development of this approach in GRASP is
also discussed in detailed by Lopatin et al. (2021). Each
aerosol type may be assumed to be characterized by
climatological size distributions and refractive indexes,
which can also be used to infer effective aerosol properties
for the mixture of aerosol types. This is the approach adopted
by Cuesta (2021) to exploit the measurements of the future
satellite mission ACCP that will deploy an advanced lidar
payload providing for the first time multiwavelength,
multipolarisation and high spectral resolution capabilities.
This method is illustrated in Figure 23 for an example of
vertical distribution of five different aerosol types (the pseudo-
reality in Figure 23A) and forward calculations of lidar
measurements for 3 wavelengths (355 nm, 532 nm and
1,064 nm) with depolarization capabilities for each of them
and HSRL-derived particle backscatter and extinction profiles
measured in the UV and visible channels (Figures 23B–E).
This numerical application also considers instrumental noise
according to the ACCP lidar payload, a vertical resolution of
500 m and 50 km horizontal averaging, as well as perturbations
of the size distributions and refractive indexes with respect to
the climatological values of each aerosol type. The joint and
simultaneous fit of the 8 lidar-derived profiles allows the
retrieval of the profiles of the abundances of the 5 aerosol
types (Figure 23F) with almost negligible error with respect to
the supposed true (Figure 23A).

Also, it has been shown that multi-pixel approach realized
in GRASP is eventually useful for enhanced synergetic
processing of ground-based observations. It was
demonstrated that this principle can be rather efficient for
combining non-coincident but close in time observations, e.g.,
day- and night-ground-based measurements. For example,
Lopatin et al. (2021) demonstrated that combining the

FIGURE 18 | The AOD(560) retrieved by POLDER/GRASP (A) and MERIS/GRASP (B) for September 2008.
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daytime radiometric and photometric data with nighttime
observations by elastic or inelastic lidars and radiosondes
could be achieved. As illustrated in the scheme shown in
Figure 24 in such synergetic approach the aerosol
information from the morning and evening observations

helps to constrain the retrieval during the night. The same
approach was used by Parajuli et al. (2020) for generating
aerosol climatology base on synergetic processing of daytime
AERONET observation with day and night time observation
by MPL lidar. Somewhat similar but simpler strategy was used

FIGURE 19 | The illustration of MERIS/GRASP validation results globally. The upper panel: the correlations of MERIS/Models AOD(560) with AERONET globally for
entire MERIS archive: Left - over land, Right – over ocean. The lower panel: The correlations of DHR (Direct Hemispheric Reflectance) retrieved by MERIS/GRASP and
MODIS over land globally for September 2008, for several selected wavelengths (665 and 865 nm).
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FIGURE 20 | The correlations of S5P/GRASP AOD retrievals and their error estimates for the numerical tests, where the AOD was retrieved from synthetic
observations of S5P/GRASP AOD simulated over Banizoumbou AERONET site (the random noise of ∼3% was added to the simulations) for Summer 2019.

FIGURE 21 | The diagram illustrating current application of GRASP code.
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by Benavent-Oltra et al. (2019) for combining sun–sky
radiometric daytime measurements with nighttime lidar and
lunar photometry observations.

In addition, GRASP can be applied for synergetic aerosol and
surface properties retrieval from coordinated ground-based and
satellite observations. Indeed, the set of observations
containing both satellite and ground-based measurements
has substantial sensitivity to both contributions from
surface (especially over land) and aerosols that is not always
a case for satellite only or ground-based only data. The
advantages of such approach were already demonstrated by
Sinyuk et al. (2007).

In these regards, GRASP has very high flexibility in
synergistically processing diverse observations. First, GRASP
can process satellite only or ground-based only data including
both passive and active (lidar or radiosonde, etc.) observations
as illustrated by Figure 24. Second, using multi-pixel concept
GRASP can process not fully collocated or fully incident data
that substantially increases the number of situations where
synergetic retrieval can be used. In addition, GRASP supports
processing both up- and down – looking airborne observations
that can also be included into synergy processing as illustrated
by Figure 25. The concept and application of synergy
processing of airborne and ground-based observations has
been introduced and demonstrated earlier by Gatebe et al.
(2010).

It should be noted that synergetic processing of up- and
down-looking observations from ground, airplane and satellite
are useful not only for obtaining more accurate information
about aerosol and surface reflectance properties but also for
tuning different aspects of satellite retrieval algorithm. Indeed,
in many cases satellite observations have significant limitation

in the information content and additional assumptions are
needed in order to reduce the number of the retrieved
parameters. In these regards the joint synergic retrieval of
aerosol and surface properties by simultaneous inversion of
satellite and ground-based observations can be used for
validating and tuning these assumptions. For example,
Dubovik et al. (2011) has discussed the optimization of
aerosol size distribution representation for observations
with different information content. They suggested to use
simplified aerosol model for POLDER like satellite retrieval
with the size distribution approximated by 5 log-normal bins
with fixed median sizes and standard deviations. Moreover, as
discussed above even more constrained aerosol model was
used for processing POLDER data, where aerosol was
represented as external mixture (Eq 3.10-3.11) of several
aerosol components with fixed particles sizes, refractive
indices and shapes and only the concentration of the
components to be retrieved (see Chen et al., 2020; Lopatin
et al., 2021). The verification of the validity of the assumptions
taken can be checked using joint processing of satellite and
ground-based observations. For example, 5 bins size
distribution model and a mixture of aerosol components
were applied for processing Sentinel-S5P observations.
Figure 26 shows the results of joint inversion of collocated
Sentinel-S5P and AERONET observations using 3 different
models: 1) AERONET model with size distribution modeled
using 22 triangle size bins, 2) model using 5 log-normal bins
and 3) models representing aerosol by a mixture of predefined
components. The joint retrievals showed that all three
approaches allow rather accurate fitting of both AERONET
and Sentinel-S5P with the best fit for the most detailed model
and slightly degrading for the second and the third approaches.

FIGURE 22 | The results of synthetic tests of aerosol retrieval using a combination of polarimeter and HSRL lidar satellite data from a simulated scene containing a
bimodal smoke layer above a bimodal marine aerosol. Panel (A) illustrates GRASP’s ability to retrieve the fine (f) and coarse (c) mode extinction contributions in each of
the two layers over N � 85 tests under various polarimeter viewing geometries and instantiations of measurement noise. Panels (B) and (C) show the corresponding 1σ
distribution of simulated measurements and the corresponding GRASP fits for total aerosol extinction and backscatter, respectively. Panels (D) and (E) show the
simulated polarimeter measurements and fits for 3 of the 85 tested geometries: I (θs � 19°,φ � 85°), II (θs � 36°,φ � 35°) and III (θs � 58°,φ � 35°). Across all 85 tests, the
retrieved AOD, AODF and SSA had RMS errors of 0.003, 0.005 and 0.003, respectively.
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Moreover, the joint Sentinel-S5P and AERONET processing
did not reveal neither evident limitations in fitting of the
observations nor in agreement of the retrievals with
available aerosol or surface. Figure 26 demonstrates that all
three approaches can rather adequately reproduce all aerosol
properties that agree with standard AERONET aerosol results
including total AOD, and more detailed properties such as AE
(Angstrom Exponent) and SSA.

Finally, it should be emphasized that provided above
examples of joint retrievals are only selected set of the
most mature applications chosen to illustrate the broad
possibilities in realizing synergetic processing of diverse
remote sensing and in situ observations. The fact is that
all data that currently can be processed by GRASP algorithm
as those shown in diagram in Figure 21 can, in principle, be

processed jointly in diverse combinations provided the
observations were coordinated, i.e., taken in nearby
location and in sufficiently close (for chosen application)
moments of time. In future, the applicability of GRASP is
expected to be further expanded.

5 CONCLUSION

The potential of utilizing Multi-term (Least Square Method) LSM
approach for designing and improving retrieval algorithms in
remote sensing has been discussed and illustrated in application.
Both fundamental methodology of the approach and practical
realizations were reviewed and discussed. The Multi-term LSM
concept provides clear and efficient way of applying multiple a

FIGURE 23 | Multiwavelength high spectral resolution spaceborne lidar retrieval of the aerosol concentration profile as a function of aerosol type based on the
GRASP approach. (A) Pseudo-reality of aerosol concentration profiles for 5 selected types. Lidar measurements calculated with the GRASP forward model and adding
random noise for measured (crosses) and fitted (plain lines) profiles of (B) particle backscatter, (C) particle extinction, (D) attenuated total backscatter and (E) particle
depolarization ratio. (F) Retrieved concentration profiles from GRASP inversion quantified for the 5 aerosol types. Forward calculations of lidar-derived profiles are
provided for the available wavelengths (355 nm in blue, 532 nm in green and 1,064 nm in red) with noise equivalent to night-time conditions, vertical resolution of 500 m
and horizontal resolution of 50 km, as well as adding perturbations in the size distribution and complex refractive index of each aerosol type with respect to the fixed
aerosols properties used in the inversion.
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priori constraints that is not evident in the frame of Method
Maximum Likelihood (MML) and LSM formulations. Indeed, the
approach allows simultaneous application of diverse a priori
constraints in the same retrieval and opens many potentially
useful applications. For example, the AERONET retrieval of
aerosol from ground-based observations by Dubovik and King
(2000) used Multi-term LSM to apply several different a priori
constraints simultaneously on several retrieved characteristics.
As a result, AERONET retrieval uses a set of different
smoothness a priori constraints allowing elimination of
sharp variability in both retrieved aerosol size distributions
and in spectral dependencies of real and imaginary part of
refractive indices. Recently, Dubovik et al. (2011) and Dubovik
et al. (2014) have designed algorithm called GRASP
(Generalized Retrieval of Aerosol and Surface Properties)
with an objective of more profound exploration of the
Multi-term LSM approach in diverse remote sensing retrieval.

The following key methodological aspects of numerical Multi-
term LSM inversion realized in GRASP were reviewed and
discussed in the paper:

• It was outlined that the Multi-term LSM approach is fully
based on MML and LSM developments and, therefore, the
designed retrievals holds asymptotic optimality of the retrieved
parameters, in sense of their error variances asymptotic
approaching to the fundamental minimum accuracy
boundaries related with Fisher information definition.

• It was shown that Multi-term LSM has the same base with
Bayesian and Optimum Estimation (OE) (Rodgers 2000)
approaches and can be considered as fundamentally
equivalent methodology. At the same time, while Bayesian
and OE methodologies rely on explicit representation of a
priori constraints via a priori estimates of the state vector with
known covariancematrix,Multi-term LSM in a contrast allows
more flexible parameterization of a priori constraints, therefore
providing more freedom in designing practical constrained
inversion procedures.

• A possibility of including a priori knowledge about non-
negativity of measurements or retrieved parameters was
discussed and the statistical optimization of the inversion in
the logarithmic space was recommended for positively
defined values.

• Several details of realizing statistically optimized inversion
for non-linear forward models were discussed and it was
outlined that Levenberg-Marquardt non-linear inversion
scheme can be optimized using Multi-term LSM
optimization by considering linearization at each
iteration as errors and as part of measurement uncertainties.

• An issue of possible domination in the retrieval by a rather
similar and therefore possibly redundant observations was
considered. For minimizing the possible negative effect of
such domination, an assumption was adapted that the
variance of error per measurement in data set increases
proportionally to the total number of measurements in each
data set. Such assumption is expected to reflect the general
tendency of increasing overall uncertainty of a single
observation related with an increase of the efforts in
controlling more complex observation sets (with larger
number of observation points).

• Multi-term LSM approach is aimed for the use of multiple a
priori constraints assuming that different a priori
assumptions come from the real knowledge and therefore
consistent. The consistency of multiple a priori constraints
can be verified based on the comparison of achieved value
(“goodness of the fits”) of minimized quadratic term
corresponding to each a priori constraint with the value
expected based on the used assumptions.

• The estimations of the retrieval errors obtained in frame of
Multi-term LSM approach allows for evaluating the
contribution of measurement and a priori uncertainties
on the retrieval accuracy. The strategy for accounting for
the contribution of possible biases in the initial data or
forward model is also discussed.

The GRASP algorithm is a practical retrieval tool realized as an
open source software (https://www.grasp-open.com/). This paper

FIGURE 24 | The illustration of synergy processing of collocated but not
fully coincident ground-based observations using smoothness a priori
constraints on temporal variability of aerosol in frame of multi-pixel retrieval
approach by Dubovik et al. (2011).

FIGURE 25 | The illustration of combined ground-based and satellite
observations that can be processed synergistically by GRASP.
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provided detailed description of GRASP structure, discussed the
algorithm evolution and overviewed the key technical details and its
main applications. GRASP has twomain independent modules. The
first, numerical inversion, includes mathematical operations not
related to the particular physical nature of the inverted data (in
this case, remote sensing observations). The second, the forward
model, is developed to simulate diverse atmospheric remote sensing
observations, laboratory and in situ observations of light scattering
and absorption. The forward model unit of GRASP is designed to
simulate the interaction of electromagnetic radiation with

atmospheric particles such as aerosol and clouds. The forward
model of GRASP also accounts for gaseous absorption and for
multiple interactions of light scattered by atmosphere and reflected
by underlying surface using rigorous radiative transfer calculation in
approximation of plane-parallel atmosphere. It allows the simulation
of observations by diverse satellites, ground-based and airborne
radiometers, spectrometers and lidars, in situ polar- and
integrating-nephelometers, etc.

he independence of numerical inversion modules allows successful
utilization of features realized in numerical inversion in many practical

FIGURE 26 | The correlations of AOD obtained from combined S5P + AERONET observations using aerosol models of different complexity with AERONET data.
Upper panel: the correlation of obtained from combined S5P + AERONET with AERONET AOD measurements; The middle and lower panels: the correlations of
Angstrom Exponent (AE) and SSA obtained from combined S5P + AERONET observations using aerosol models of different complexity with AERONET only operational
results.
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applications. Moreover, the coordinated observations of different type
can be inverted simultaneously. This opens possibilities of exploring
diverse synergetic approaches. The possibilities of simultaneous
inversion of diverse combinations of multi-instrument observations
were discussed in the paper. For example, one of the most popular
GRASP synergetic retrieval is simultaneous inversion of passive
radiometric and active lidar observation acquired from ground,
satellite or airplane.

GRASP suggests using two rather distinct types of a priori
constraints. The a priori constraints for strictly coincident and
collocated observations are united in the group of “single-pixel”
constraints. These constraints include direct a priori estimates of
unknowns and smoothness constraints that can be applied for a
group of retrieved parameters representing continuous functions,
such as particle size or shape distributions, vertical profiles,
spectrally dependent index of refraction or parameters of
surface reflectance, etc. From the mathematic point of view, the
smoothness constraints are applied by using a priori estimates of
the first, second or third order derivatives of the retrieved function.
The second group includes a priori constraints for coordinated but
not fully coincident or/and not fully collocated observations are
called “multi-pixel” constraints. For example, if a large group of
satellite observations (“pixels” of the image) is inverted
simultaneously, the concept of multi-pixel constraints allows for
constraining the retrieval results by using known a priori limitation
of variability of the retrieved parameters in time and or space. For
example, in many satellite retrievals realized by GRASP the known
natural tendencies are used: variability of land surface reflectance is
quite limited in time while aerosol properties have an evident
horizontal continuity. The strength of all a priori constraints can be
different for each of the retrieved parameters. It should be noted
that a concept of multi-pixel retrieval opens extra possibilities for
synergetic processing of non-coincident or/and non-collocated
observations. For example, this concept was used for joint
processing of day- and night-time radiometric, photometric and
lidar observations. More complex constraints that currently are not
included neither in single- nor inmulti-pixel constraints could also
be realized in GRASP with some extra efforts if the need is
identified or by request.

GRASP has been successfully adapted for a number of practical
applications demonstrated in the paper. For example, the algorithm
was used to generate an advanced aerosol product from series ofmulti-
angular POLDER polarimeters. POLDER/GRASP retrieval provided
the values of spectral AOD and other detailed aerosol parameters
including Angstrom parameter, spectral AOD for fine and coarse
aerosol modes, as well as spectral AAOD and SSA. The spectral values
of land and ocean surface BRDF and BPDF were retrieved
simultaneously with aerosol. GRASP is used in preparation of
operational aerosol algorithms for the future 3MI/EPS-SG and
CO2M polarimetric missions. It was shown to provide solid aerosol
retrieval for multi-angular MISR observations. In addition, aerosol
AOD product from single-view MERIS/Envisat radiometer was
generated using GRASP. Finally, the algorithm is also being
adapted for AOD and surface reflectance retrievals from
observations by more recent and future satellites including OLCI/
Sentinel-3, Sentinel-4, TROPOMI/Sentinel- 5P, HIMAWARI, MISR,
SGLI/GICOM-C, etc.

GRASP has been used quite extensively for retrieving aerosol from
ground-based and in situ observations. For example, the algorithm
was used for polar- and integrating-nephelometric measurements of
angular aerosol scattering, total absorption and scattering for
retrieving aerosol size, shape and information about the
composition. One of the most popular GRASP applications,
known as GRASP/GARRLiC, is retrieval of both columnar and
vertical aerosol properties from a combination of collocated
passive radiometric and active lidar observations. Such GRASP/
GARRLiC approach is adapted by ACTRIS pan-European
research infrastructure as a part of operational data processing.
Recently similar synergetic processing was extended in the frame
of GRASP for joint inversion of active and passive satellite
observations. As a result, such GRASP configuration was
incorporated in a new aerosol retrieval testbed developed for
exploring the capabilities of synergistic passive and active remote
sensing in frame of NASA ACPP initiative.

Furthermore, in the frame of GRASP a new approach has been
developed for retrieval of aerosol chemical components directly
from satellite and ground-based measurements. The observed
aerosols are assumed to be mixtures of hydrated soluble particles
embedded with black carbon, brown carbon, iron oxide, and dust
or organic carbon insoluble inclusions and the volume fractions
of these components are derived along with aerosol size and
shape information. This component approach was successfully
applied to POLDER satellite and AERONET observations.

The paper also mentions other diverse less mature GRASP
applications that are under development or expected to be fully
realized in the near future. For example, GRASP is being
adapted for profound use of hyper spectral measurements
with an objective of using measurements of atmospheric
absorption for advanced retrieval of information about both
atmospheric aerosol and gases. In these regards, GRASP is being
expanded for retrieval of also atmospheric gases in addition to
aerosol and surface and, to reflect this development GRASP
should be renamed as Generalized Retrieval of Atmosphere and
Surface Properties.
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GLOSSARY

3MI Multi-viewing Multi-channel Multi-polarization Imaging

AAOD Aerosol Absorption Optical Depth

AATSR Advanced Along-Track Scanning Radiometer

ACCP NASA Aerosol and Cloud, Convection and Precipitation

ACEPOL Aerosol Characterization from Polarimeter and Lidar

ACTRIS Aerosol, Clouds and Trace Gases Research Infrastructure

AE Ångström Exponent

AERIS/ICARE Data and Services for the Atmosphere/Cloud-Aerosol-
Water-Radiation Interactions

AERONET Aerosol Robotic Network

Aerosol-UA Ukrainian space mission

AGU American Geophysical Union

AirHARP Airborne Hyper Angular Rainbow Polarimeter

AOD Aerosol Optical Depth

AODS Aerosol Optical Depth of Coarse aerosol mode

AODF Aerosol Optical Depth of Fine aerosol mode

BRDF Bidirectional Reflectance Distribution Function

BPDF Bidirectional Polarization Distribution Function

BRDM Bidirectional Reflectance Distribution Matrix

CAWA Advanced Synergy Aerosol products from MERIS and AATSR
observations

CGASA Coefficient of Gas Absorption

CLIMAT Conveyable Low-noise Infrared radiometer for Measurements of
Atmosphere and ground surface Targets

CNES Centre National d’Etudes Spatiales

CNRS Centre National de la Recherche Scientifique

CO2M Copernicus Carbon Dioxide Monitoring mission

DHR Direct Hemispheric Reflectance

DIVA Demonstration of an Integrated approach for the Validation and
exploitation of Atmospheric missions

DPC Directional Polarimetric Camera

ECMWF European Centre for Medium-Range Weather Forecasts

ENVISAT ESA’s Environmental Satellite

ESA European Space Agency

EUMETSAT The European Organisation for the Exploitation of
Meteorological Satellites

EPS-SG EUMETSAT Polar System - Second Generation

GARRLiC GeneralizedAerosolRetrieval fromRadiometer andLidarCombination

GCOM-C Global Change Observation Mission - Climate

GRASP Generalized Retrieval of Aersol and Surface Properties; Generalized
Retrieval of Atmosphere and Surface Properties (updated);

GRASP-ACE Development of GRASP radiative transfer code for the
retrieval of aerosol -microphysics vertical profiles from space measurements
and its impact in ACE -mission

HIMAWARI Geostationary satellites, operated by the Japan
Meteorological Agency

HARP Hyper-Angular Rainbow Polarimeter

HP High Precision

IDEAS Instrument Data Quality Evaluation and Analysis Service

LSM Least Square Method

MAP Multi-Angular Polarimeter

MAPP Metrology for aerosol optical properties

MERIS Medium Resolution Imaging Spectrometer

METEOSAT Geostationary Meteorological Satellites operated by
EUMETSAT

METOP European operational polar-orbiting meteorological satellite

METOP-SG METOP Second Generation

MISR Multi-angle Imaging SpectroRadiometer

MML Method of Maximum Likelihood

MODIS Moderate Resolution Imaging Spectro - Radiometer

MPL Micro Pulse Lidar

NASA National Aeronautics and Space Administration

NIR Near Infrared

NRT Near-Real-Time

OE Optimal Estimation

OLCI Ocean Land Colour Instrument

PC Principal Component

PGN Pandonia Global Network

PARASOL Polarization and Anisotropy of Reflectances for Atmospheric
Sciences coupled with Observations from a Lidar

PDF Probability Density Function

PM2.5 Fine particulate matter

POLDER POLarization and Directionality of the Earth’s Reflectances

PRISMA PRecursore IperSpettrale della Missione Applicativa, Italian space
mission

RPV Rahman-Pinty-Vestarte model

RRI Real part of Refractive Index

RSP Research Scanning Polarimeter

S5P Sentinel-5P

SENTINEL ESA family of Earth observation missions

SGLI Second Generation Global Imager

SSA Single Scattering Albedo

TIR Thermal Infrared

TOA Top of Atmosphere

TROPOMI TROPOspheric Monitoring Instrument

UV Ultra Violet

VENμS Vegetation and Environmental New micro Spacecraft

VIS Visible spectral range

QA4EO Quality Assurance framework for Earth Observation
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