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1 Executive Summary 

Impacts due to near-Earth objects (NEOs) - asteroids and comets whose orbits can evolve to 

cross Earth’s - constitute a natural hazard that can cause the extinction of humans and many other 

species. It is well documented that NEO impacts have already catastrophically altered Earth’s 

evolution by rendering the dinosaurs extinct1 and could have played a role in the four other major 

mass extinction events preserved in the geologic record. However, we now possess the technical 

means to prevent most impacts if the potential impactor is detected sufficiently far in advance. 

While the probability of a devastating event in our lifetimes is low, it is not negligible, and the 

potential consequences are so catastrophic that society is well justified in addressing the threat.    

For example, in June 2020, asteroid 2020 LD, estimated to be between 50-200 m, passed inside 

the orbit of the Moon moving at 27 km/sec relative to the Earth. Had this asteroid impacted, the 

energy would have been the equivalent of ~200 megatons of TNT, producing a crater 3.5 km across 

and leveling buildings more than 20 km from the impact point. Ideally, we would want ample 

warning of such an impact – at least months and preferably years – so that we could take action to 

mitigate the impact. But with our current NEO survey capabilities, asteroid 2020 LD was not 

discovered until two days after its close approach to Earth. 

The first pillar of planetary defense is thus to find and track NEOs. Plans have been formulated 

to carry out large-scale sky surveys to detect large numbers of objects, thus greatly reducing the 

impact hazard uncertainty. Yet these surveys are not adequately funded, despite public support2, 

direction to NASA from Congress3, National Academy studies4,5, and a White House plan for 

NEOs.6 The public indicates that this activity should be one of NASA’s top two priorities.2  

Objects with diameter D>1 km are capable of causing global disasters, but smaller objects with 

140m < D <1 km can cause wide regional damage (i.e. of order the size of Southern California) 

with significant loss of life and severe political, social, and economic problems.7,8 We have yet to 

find approximately 2/3 of the NEOs with D >140 m in diameter.9,10,11 The first priority of 

planetary defense should therefore be to complete a survey of NEOs that can cause regional 

damage (D >140 m). Completing the survey is a prerequisite to averting a rare but potentially 

catastrophic natural disaster. Hazard mitigation has been demonstrated to be easier the farther in 

advance a hazardous asteroid can be found. We have the necessary technology now, so we should 

complete this work in the next decade and should not defer this important task to another 

generation. NASA is the world leader in this area by funding the surveys that have discovered 

>95% of all known NEOs to date. 

The second pillar of planetary defense is to characterize potential threats. Ground- and space-

based surveys designed to meet the D>140 m objective will provide high-quality orbits as part of 

their baseline cadences. The level of orbital knowledge delivered by these surveys is generally 

sufficient on its own to determine whether or not a particular object is of concern. But for very 

close predicted approaches (<<1 lunar distance), more accurate follow-up astrometry, particularly 

from Earth-based radar facilities, is required. We must also study NEO physical properties since 

they vary widely and can profoundly affect impact damage. By studying NEOs using photometry, 

spectroscopy, and radar, we can determine sizes, shapes, cometary activity, and composition. 

These properties are needed to plan a mission to intercept the body and to destroy it or change its 

orbit. In cases where it is difficult to observe an individual object directly, the characteristics of 

the NEO population will need to be used to estimate its most likely properties. 

The third pillar of planetary defense is to mitigate the impact hazard by deflecting an asteroid 

off a predicted impact course with Earth. Efforts should be made to examine and demonstrate 
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methods of deflecting and disrupting NEOs. A range of techniques is possible, but because the 

choice and scope of technique depends on what is known and the time available until impact, high 

priority must be placed on gathering key parameters such as orbit, diameter, density, etc. 

The fourth, and final, pillar of planetary defense is coordination. Any real-world planetary 

defense activity is, in practice, a global exercise. Activities that test global coordination of 

scientific and operational readiness of planetary defense frameworks must be exercised regularly. 

We therefore recommend the creation of a NASA Planetary Defense Mission Program that 

would be adequately funded by ~$200-250M/year over the next decade, to be reassessed in the 

next Decadal Survey. This would enable the launch of a discrete set of missions that will complete 

the survey of larger NEOs and will validate reconnaissance and mitigation techniques with small- 

to medium-sized missions. This program is essential so that:  

• Hazardous NEOs will be detected well in advance of any potential impacts that may occur;  

• NEO physical properties will be characterized well enough to enable effective mitigation; 

• A set of mitigation techniques will be thoroughly validated experimentally on the diversity 

of NEOs that may be encountered before being deployed under time-critical circumstances.  

This investment will at best enable us to prevent a catastrophic natural disaster and will at a 

minimum rule out the anxiety caused by a poorly understood potential impact scenario, leaving us 

with a much greater understanding of the origins, evolution, and contents of our solar system.  

This level of funding will support the current surveys, characterization facilities, international 

collaborations, and research programs into the effects of impacts on the biosphere (roughly 

$40M/year in total for all); will support the completion of DART; and will support the completion 

of NEOSM and the survey of D>140 m NEOs (roughly $100M/year for 5 years to launch), 

followed by one mid-sized characterization mission (~$70M/year for 5 years) and one mitigation 

demonstration mission beyond DART (~$100M/year). See the Decadal white paper by Barbee for 

details. The President’s FY21 budget proposes to cut planetary defense from its current level of 

$150M/year to <$100M/year. In this scenario, the survey for larger NEOs is not completed for 

many decades, and future characterization or mitigation missions beyond DART are unlikely. 

2 Introduction 

Earth resides in a region of the solar system occupied by a continuously resupplied swarm of 

rocky and/or icy fragments that originate from the solar system’s earliest days. Small NEOs, 

meters across, impact Earth quite frequently and are disintegrated harmlessly in the upper 

atmosphere. Sizeable NEOs, kilometers in size, impact the Earth less frequently. Sixty-five million 

years ago, a 5-10-km object impacted Mexico, leading to the extinction of dinosaurs and ~50-75% 

of all species.1 The Chesapeake Bay is marked by an 85 km-wide crater caused by an impact 35 

million years ago.12 The 1908 major fireball and subsequent 10 megaton explosion over Tunguska, 

Russia, likely the result of an asteroid or comet several tens of meters in diameter, leveled trees 

over 2000 sq km. More recently, the 2013 fireball over Chelyabinsk, Russia injured 1600 people, 

even though it was only ~20 m.13,14 Such events have motivated studies of appropriate responses.  

Studies7,8 have found that while large impactors capable of causing global destruction are far 

less numerous than their smaller counterparts, they should nonetheless be the first objective of 

NEO surveys because of the tremendous damage that even a single impact could cause. Efforts 

have therefore focused on finding the largest objects and determining orbits with sufficient quality 

to ensure that no significant chance of impact exists over ~100 years.  

The U.S. Congress-mandated NEO searches were initially focused on the NEOs larger than 1 

km15 because these could potentially cause the extinction of a significant fraction of all life on 
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Earth. To date, >90% of these have been discovered.11 Subsequently, asteroid surveys shifted their 

focus to discovering >90% of NEOs with D>140 m, since that would identify 90% of the risk from 

sub-global impacts.7,8 The task of reaching this goal by 2020 was codified into law in 2005 by 

Congress as the George E. Brown, Jr. (GEB) Act (Public Law 109-155 Sec. 321).3 

At the present time, only roughly 1/3 of NEOs with D≥140 m has been identified. Current 

surveys such as the Catalina Sky Survey16, PanSTARRS17, NEOWISE11, ZTF18, and ATLAS19 

cannot reach the >90% completeness for NEOs with D>140 m required by the GEB Act for at 

least several decades due to their limited sensitivity and field of regard. More capable NEO survey 

systems are required.5,8 This goal was reiterated in the National Near-Earth Object Preparedness 

Strategy and Action Plan published by the White House in 20186 and supported by the Small 

Bodies Assessment Group, a community-based forum, over the past seven years.20  

3 The Era of Advanced Surveys   

The US National Academy of Sciences concluded that a space-based IR telescope with the 

specifications of the NEO Surveillance Mission (NEOSM), in combination with the Rubin 

Observatory (formerly LSST), would meet the GEB objective in ~10 years of surveying provided 

they are fully funded5. NEOSM will be NASA’s dedicated space-based asset for fulfilling the 

Congressional mandate, whereas the Rubin Observatory is a multi-objective ground-based 

telescope funded by the National Science Foundation and the Department of Energy that is not 

required to use a traditional NEO survey cadence.21 These advanced surveys will use wide field 

telescopes and very sensitive cameras to discover hundreds of thousands of new NEOs. This 

combination of assets is necessary for discovering >90% of NEOs with D>140 m, building upon 

the discoveries being made by the existing surveys. NEOSM can find 90% of NEOs with D>140 

m after 10-12 years by surveying near-Sun regions of the sky, and the Rubin Observatory looks 

closer to opposition. Experience has shown that a network of complementary surveys is best to 

ensure complete and highly reliable coverage, especially in the era of megasatellite constellations. 

Without these new capabilities, we will not approach this level completeness for decades. 

Once a NEO has been discovered, the hazard it poses must be quantified. If an object has a 

potential Earth impact, two immediate questions arise: 1) When will the impact occur, and 2) How 

much damage will it cause? The former requires extending the observational arc so that the orbit 

is well-constrained.22 The latter depends on impact energy, which scales as kinetic energy 𝐾𝐸 =
 1

2
𝑚 ∙ 𝑣2 ∝ 𝜌 ∙ 𝐷3 ∙ 𝑣2, where m is mass, v is impact velocity,  is density, and D is diameter. 

Determining D and v is therefore critical; v is determined from the orbit. Mass m can either be 

determined directly in rare cases23 or derived from a combination of D and . The thermal IR 

capability provided by NEOSM allows diameters to be determined for hundreds of thousands of 

objects.24 Roughly 1/3 of NEOs are extremely dark,9,11 so achieving >90% completeness for 

asteroids with D >140 m (corresponding to absolute magnitude H<23 mag – as opposed to the 

previously used H<22 mag) requires finding the dark objects25; NEOSM, with its IR camera, is 

well-suited to this task. The density of a potential impactor could be anywhere between that of 

water and metal, so measuring density is also key for assessing impact energy. Where optical and 

thermal IR data are available, albedo can also be determined, which helps constrain composition. 

Visible and near-IR colors can also provide links to albedo if detections in multiple filters are 

available with a cadence suitable for resolving rotational and shape degeneracies. The Rubin will 

return mostly visible and near-IR color photometry for larger NEOs that are observed repeatedly 

over the survey.26 The combined capability offered by both NEOSM and the Rubin Observatory 

will provide an unparalleled dataset for finding NEOs and characterizing the population.  
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4 What Remains to Be Learned About NEOs & Comets in the Era of Advanced Surveys?  

Once the GEB congressional mandate has been achieved, the remaining unknown risk lies with 

asteroids with diameters <140 m and with the long-period comets (LPCs)8. When survey 

completeness for NEOs >140 m is nearing 90%, another study similar to [7,8] should be 

undertaken to determine the appropriate next steps to address remaining impact risks.  

 

4.1 Future Survey and Warning Strategies 

The next surveys that might be undertaken would depend on the statistics revealed by the Rubin 

and NEOSM. These surveys will quantify the slope of the size-frequency distribution (SFD) down 

to tens of meters, including any breaks, allowing for robust comparison with bolide data in the ~1 

m range27,28,29 and studies of lunar cratering. The SFD slope is very uncertain in the range 10 m < 

D < 100 m, leading to large (factor of ~30) uncertainty in the total number of objects in this size 

range.9,30 NEOSM and Rubin will also reduce the uncertainty in comet SFD measurements; 

present-day knowledge comes from studies of dozens of objects to ~150 objects.31,32,33 

Should small NEOs turn out to be more numerous than expected, surveys focused on providing 

short-term warning on timescales of hours or days (e.g. ATLAS34, Flyeye35) may need to be 

augmented to provide warning for objects approaching from the daytime sky. For such small 

objects, longer warning times allowing for deflection may not be feasible but days of warning may 

be sufficient to carry out civil evacuation. Backyard astronomers will have a role to play in follow-

up of new discoveries through small, networked, automated digital telescopes.36 

 

4.2 Astrometric Follow-Up 

NEOSM and Rubin are designed with self-follow-up cadences suitable for ensuring that most 

NEOs can be recovered on subsequent apparitions (and NEOSM can be pointed at specific targets 

of interest). However, follow-up will remain a high priority even after 90% of NEOs with D>140 

m are discovered to ensure that uncertainties in the timing and location of any potential impacts 

are thoroughly understood. As NEOs like Apophis, Bennu, and 1950 DA demonstrate, there will 

always be objects where the uncertainty region of the asteroid’s position crosses the Earth or passes 

through dangerous orbit-changing near-Earth gravitational “keyholes”, requiring careful follow-

up to verify the timing and location of impacts. Telescopes dedicated to astrometric follow-up and 

ranging in aperture size and geographic distribution will be needed, building on the capabilities 

provided by e.g. Spacewatch37, LGOCT, and others, but expanding capability to track objects with 

an average visual magnitude of V~24 mag. See white papers by Seaman, Taylor, and Virkki. 

 

4.3 Characterization 

4.3.1 Remote Sensing in the Visible and Infrared 

Remote sensing is the most effective method to rapidly characterize of NEOs, allowing 

researchers to sift through large numbers of objects quickly to identify the most hazardous objects. 

The combination of thermal IR data from NEOSM and optical colors from the Rubin will provide 

basic characterization for most detected NEOs. NEOSM will produce highly reliable NEO 

detections and robust diameters and constraints on shape and spin state within days or weeks of a 

discovery. From thermal IR observations in two bands, it is sometimes possible to infer a metallic 

composition and/or derive an estimate of thermal inertia.38,39 As discussed in Section 3, when 

visible light observations are available for a NEOSM-detected object, the albedo can be 

determined as well, which loosely correlates with taxonomic type.40 Rubin ultraviolet to near-IR 
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detections will provide sparse colors (i.e. colors assembled from observations spanning ~months 

to years), which link to asteroid taxonomy.  

However, it is vital to understand the range of parameters among the NEOs and their source 

populations for cases where observational opportunities are limited.41,42,43 Follow-up using 

ground-based large aperture visible, near-IR, and radar telescopes are essential for determining 

taxonomy, mineralogy, porosity and internal strength, the presence of satellites, refinement of spin 

state and shape models, etc.43,44,45 See white papers by Raymond, Milam, Taylor, and Virkki.  

 

4.3.2 Characterization and Follow-up with Radar Assets 

Accurate astrometry of close-approaching NEOs from NEOSM and Rubin will significantly 

increase the targets that can be studied in detail with radar. Radar observations are pinpoint-

targeted and require advance knowledge of an object’s sky position. Because radar observations 

provide high precision line-of-sight distance and velocity measurements, they significantly 

improve the astrometry of objects; however, due to the 1/r4 decrease in received echo power with 

distance r, objects must be correspondingly closer relative to an optical/IR telescope to be detected. 

Radar measurements can improve knowledge of asteroid orbits, prevent loss of newly discovered 

objects, and increase the window of reliable predictions of trajectories by decades to centuries.46 

Radar can also provide measurements of spin state, radar albedo, porosity, and satellites. 

Sometimes, radar can resolve objects well enough to detect boulders and craters. Repeated radar 

ranging observations over years to decades enables measurement of the orbit-altering Yarkovsky 

effect47. When combined with thermal data obtained from an IR telescope such as NEOSM, these 

data can constrain the mass of an asteroid.22,48 The advanced surveys will provide a wealth of 

targets for future examination with radar. Maintaining the funding of the only two key radar 

facilities, Arecibo Observatory and Goldstone Solar System Radar, is crucial for planetary 

defense. See white papers by Rivera-Valentín, Virkki, Taylor, and Lazio. 

 

4.3.3 Research and Modeling Program 

A strong research and analysis program is an essential part of NASA’s planetary defense efforts. 

The geophysical properties of NEOs (density, internal structure, cohesion, regolith, shock 

propagation, shape, etc.) affect both potential hazard (e.g., atmospheric breakup vs. intact ground 

impact) and potential mitigation. Given the extremely limited data on the outcome of NEO impacts 

on Earth, one of the best means we have to understand potential impact threats and develop 

effective planetary defense techniques is computational modeling. Modeling tools to properly 

interpret the effects of impacts from different types of objects should be validated against 

laboratory measurements; see white papers by Fayolle, Ishii, Jacobson, and Stickle for details. 

 

4.3.4 In-Situ Missions 

Remote sensing can provide a robust set of basic parameters for a great many objects, but should 

an individual NEO be detected with a significant probability of impact, plans for in-situ 

reconnaissance missions must be mature with flight-proven instruments ready for potentially very 

rapid deployment. NASA and other international space agencies have gained considerable 

expertise from missions to small bodies such as NEAR-Shoemaker49, Dawn50, Hayabusa51, 

Hayabusa252, OSIRIS-REx53, and Chang’e-254. Missions currently in development such as 

DART55, Near-Earth Asteroid Scout56, Hera57, and the Comet Interceptor mission58 will provide 

further experience. Development of small spacecraft and high-fidelity miniaturized science 

payloads that can be quickly deployed in flyby or rendezvous missions to gather an expanded set 
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of NEO physical properties and detailed maps is essential. Missions that demonstrate these 

capabilities should be considered options for a planetary defense mission line. NASA should take 

advantage of upcoming frequent potential low-delta-V encounters with NEOs discovered by 

NEOSM and Rubin to refine lower cost, rapid missions and instrument suites (see white papers by 

Barbee, Binzel, Castillo-Rogez, Raymond, and Haynes). 

 

4.4 Infrastructure and International Collaboration 

NASA has responded to the issue of NEOs by creating the Planetary Defense Coordination 

Office (PDCO) in 2017, serving as the lead U.S. agency for this topic. Systems for automatically 

computing orbits and impact probabilities have also been put into place.59 Links to other U.S. 

agencies and international partners are being strengthened due to the issue’s global nature. The 

White House’s NEO Preparedness Plan is an important planning document that makes similar 

recommendations to this white paper, and NASA’s PDCO has engaged with the international 

community: The PDCO participates in the United Nations Committee for the Peaceful Uses of 

Outer Space60 and communicates with voluntary members of the International Asteroid Warning 

Network61 for remote sensing of NEOs. The Space Mission Planning Advisory Group62, chaired 

by ESA’s Planetary Defence Office, brings nations together to study potential mitigation missions. 

These efforts ensure that a global plan exists for NEOs among scientists, policy makers, and 

communications experts. NASA’s PDCO has led both tabletop and observational campaigns to 

exercise global planetary defense assets and should continue conducting regularly.45 

ESA’s planetary defense activities center on follow-up, performing independent orbit 

determination, and providing an observer spacecraft for NASA's DART mission. Arriving a few 

years after the DART impact, it will determine surface properties of the impacted object. ESA is 

also developing the 1.2 m Flyeye telescope to observe mostly small NEOs. 

Given the international nature of the potential hazard from NEOs, the political, cultural, and 

sociological differences around the world, and the fact that natural disasters can disproportionately 

affect marginalized communities, effective planetary defense requires trained experts from a broad 

range of backgrounds, experiences, and contexts. Thus, a commensurately diverse, representative, 

and equitable planetary defense workforce is essential. Plans to create this workforce must be 

made to ensure that trained experts from different communities are included and take the lead in 

making decisions that can affect them. See white papers by Rivera-Valentín and Ritchey. 

5 What Would We Do If a High-Probability Potential Impactor Were Discovered? 

In the event that an object with a significant chance of a major impact is discovered, the next 

steps will depend critically on what is known about it, and when these data becomes available. The 

most appropriate mitigation option depends on the lead time and asteroid mass/size.4 NEOSM is 

specifically designed to discover and characterize NEOs years to decades in advance of a potential 

impact, facilitating a range of possible mitigation strategies assuming it is funded. For kinetic 

impactors, NASA’s Deep Impact mission63 probed impact processes on a comet, and the upcoming 

DART technology demonstration mission, coupled with Europe’s Hera reconnaissance mission, 

will shed light on the effects of kinetic impacts on ~100-m sized S-complex asteroids. JAXA’s 

Hayabusa2 mission has successfully excavated a 10-m crater on the primitive asteroid Ryugu.64  

As surveys fill in our knowledge of the potential impactors, additional mitigation tests should 

be carried out, including e.g. using gravity tractors or laser ablation to perturb orbits. Kinetic 

impacts on a larger scale and on different targets (varied spectral classes, porosities, sizes) could 

also be undertaken; see white papers by Barbee. However, mitigation experiments should not be 

https://www.nasa.gov/planetarydefense/
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prioritized ahead of the basic task of finding, cataloging, and characterizing NEOs. Unless we find 

the impactors, we cannot deflect them. Without knowledge of a potential impactor’s likely physical 

properties, the outcome of a deflection attempt would be very uncertain. The best course of action 

is to adequately fund both surveying and mitigation testing at the level of ~$200-250M/year. 

6 What Can Be Learned About the Solar System in the Era of Advanced Surveys? 

NEOSM and Rubin will deliver a wealth of data informing us about the origins and evolution 

of our solar system. In addition to delivering data on hundreds of thousands of NEOs and thousands 

of comets, these surveys will discover millions of more distant small bodies. Populations of rare 

objects such as Earth Trojans and interior-to-Earth-orbit objects can be studied in detail. 

By finding the most hazardous population of asteroids the advanced surveys will identify a 

much larger set of accessible asteroids. The OSIRIS-REx and Hayabusa2 missions have revealed 

in exquisite detail the strange top-shapes and rugged, boulder-rich surfaces of primitive asteroids 

Bennu and Ryugu (both of which were discovered by NEO surveys), and pristine samples returned 

from them will yield new insight into their compositions. The ability to return pristine samples 

from a larger and compositionally diverse set of objects will help to fill out our understanding of 

volatile-rich objects, possibly supporting in-situ resource utilization (see white paper by Milam). 

7 Conclusions 

Preparation for disaster will save lives. We can ensure that we are not caught by surprise by an 

asteroid or comet impact, and we have the technology today to greatly reduce the hazard. The 

resources required are reasonable by the standards of the U.S. Government. Sufficient funding to 

complete the survey of large NEOs within a decade needs to be made available. A planetary 

defense program funded at the level of approximately $200-250M/year will enable discovery of 

>90% of asteroids large enough to cause significant destruction; allow us to keep watch for long-

period comets; develop a deep understanding of Earth-crossing objects; and mature the tools and 

techniques so that we have the best chance to ensure that a dangerous impact does not occur.  
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