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ABSTRACT

The paleogeography of the Meso-Neoproterozoic Rodinia supercontinent remains
debated partly because many stable cratons still lack reliable paleomagnetic data for this period.
A new geochronological and paleomagnetic study was conducted on the NNW-trending Manso
dyke swarm of southern West Africa (Ghana) to clarify the position of this unconstrained
continent in Rodinia. Two U-Pb apatite ages of 857.2 +£ 8.5 Ma and 855 = 16 Ma agree with
one previous baddeleyite age, indicating a ~860 Ma emplacement age for the Manso dykes. A
characteristic remanent magnetization (ChRM) was isolated by stable single to pseudo-single
domain (SD-PSD) magnetite. Well constrained site mean directions obtained for 13 dykes lead
to a mean direction for the Manso dyke swarm of D= 181.9°, I, =-77.2° (N = 13, a5 = 7.6°,
k = 30.6), yielding a paleomagnetic pole at 177.6°E, 28.3°S, (Ag¢s = 12.7° K = 11.6). Two
clusters of opposite inclination pass a reversal test (C-class) and the primary origin is supported
by a positive baked contact test, satisfying all the seven R-criteria to provide the first West
African Tonian key paleomagnetic pole. This key pole indicates a polar latitude for the West
Africa craton was during the emplacement of the ~860 Manso dykes. A compilation of reliable
paleomagnetic poles for West Africa, Baltica, Amazonia and Congo-Sao Francisco cratons
suggests that these cratons were together between ~1200 and 800 Ma in a long-lived
WABAMGO configuration. We suggest that the collision of this block with Laurentia along
the Grenvillian-Sunsds orogens closed the external Nuna Ocean and formed Rodinia by

extroversion.

Keywords: West Africa, Neoproterozoic, Tonian, Rodinia, paleomagnetism.
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1. INTRODUCTION

The Earth’s geodynamics at the Mesoproterozoic—Neoproterozoic transition was
marked by the making and unmaking of the Rodinia supercontinent, which duration and

configuration are still subject of debate (Condie, 2002; Dalziel, 1997; Evans, 2009; Hoffman,

1991; Li et al., 2013; Li et al., 2008; Meert, 2001; Meert and Torsvik, 2003; Merdith et al.,

2017; Moores, 1991; Pisarevsky et al.. 2003; Sears and Price, 1978; Wen et al., 2018; Wingate

et al., 2002). In all models, Laurentia is considered as the central piece of Rodinia, surrounded
by passive margins during the late Neoproterozoic, in a similar way to the place occupied by

the African plate during the Phanerozoic (Bond et al., 1984; Hoffman, 1991). Regarding the

paleomagnetic database for Rodinia, Laurentia has a substantial number of reliable
paleomagnetic poles between ~1270 and 1000 Ma, but the ~1000-800 Ma interval lack of high-

quality data (Evans, 2009). Around Laurentia, the models place Baltica along the northeastern

coast of Laurentia/Greenland in the northern hemisphere or, as an alternative, in an inverted

position (Hartz and Torsvik, 2002). Siberia is considered to be close to Laurentia but its relative

orientation and distance are debated (Li et al., 2008; Piper, 2007; Pisarevsky and Natapov, 2003;

Sears and Price, 1978; Sears and Price, 2000). The most reported position for Siberia is facing

the (present-day) northwest margin of Laurentia (Dalziel, 1997; Hoffman, 1991; Li et al., 2008;

Pisarevsky and Natapov, 2003). But an alternative position in the southern hemisphere near the

North China craton was also proposed (Evans, 2009). Considered as neighbors in most

supercontinents (Columbia, Rodinia and Pangea), these three cratons are defined as the “strange
attractors” by Meert (2014). The Amazonia, West Africa and Rio de la Plata cratons are
unconstrained by palaeomagnetic data during the ~1000—-700 Ma interval, but they are usually

placed in proximity to western Laurentia (Evans, 2009). Coherence between these blocks but

with slight differences in orientation in different reconstructions led Meert (2014) to call them

the “spiritual interlopers”. Note that at the peak of Rodinia continental assembly at ~950-850
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Ma, only four continents (Baltica, Sdo Francisco, North China, and Siberia) exhibit robust

paleomagnetic data (Merdith et al., 2017). This emphasizes the still scarce paleomagnetic

database for Rodinia event in its "golden age".

The peak of continental Rodinia assembly precedes a drastic change in paleolatitude
from a high-latitude for the Rodinian landmasses to a low-latitude paleogeography, which

occurred at ~800 Ma, before its breakup at ~750 Ma (Li et al., 2008). This rotation began after

the emplacement of a large superplume beneath the polar landmasses at ~840 Ma, triggering

large magmatism and rifting (Li et al., 2003). Recently, some authors argued that these events

can be better explained by a Tonian inertial interchange true polar wander (IITPW), but its
amplitude, characteristics (single shift or TPW oscillations), and duration are debated (Jing et

al., 2019; Li et al., 2004; Maloof et al., 2006; Niu et al., 2016; Swanson-Hysell et al., 2012).

From an environmental point of view, no glacial deposits were observed in the landmasses

during the polar position of Rodinia at ~950-850 Ma (Li et al., 2013), but more constrained are

needed since climatic models depends strongly on the Tonian (1000-720 Ma) paleogeography

(Donnadieu et al., 2004). The ~812—-790 Ma interval is characterized by the Neoproterozoic

Bitter Springs Anomaly (BSA), a large negative §'°C excursion which can be associated with
some indicators of increasing oxygenation of the ocean and atmosphere during the radiation of

early eukaryotes (Swanson-Hysell et al., 2015b).

Therefore, a precise and reliable Tonian paleogeography is crucial to understand the
impact of the Rodinia supercontinent and the magmatic events it encompasses on the Earth’s
system. In this contribution, we performed a detailed paleomagnetic study on the ~860 Ma

Manso dyke swarm (Baratoux et al., 2019) associated with new U-Pb apatite dating to obtain

the first Tonian key pole for West Africa. Our first well constrained West Africa key

paleomagnetic pole allows us to propose the existence of a long-lived WABAMGO
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juxtaposition between West Africa, Baltica, Amazonia and Congo-S3o Francisco cratons,

which collision with Laurentia leaded to the Apex of Rodina supercontinent.

2. GEOLOGICAL SETTING

The West African Craton is composed of two Proterozoic Shields (Reguibat Shield in
the north and Leo-Man Shield in the south) stabilized at about ~2 Ga, and separated by the

Upper Proterozoic—Paleozoic sedimentary Taoudeni Basin (Black et al., 1979) (Fig. 1). The

Ghanaian Paleoproterozoic domain (within the Baoulé-Mossi domain) is composed of an
association of granitoids and five northeastern trending greenstone belts (Bole-Nagandi, Bui,

Sefwi, Ashanti, and Kibi-Winneba belts from west to east, respectively) (Feybesse et al., 2006)

(Fig. 1). These greenstones and the associated sedimentary basins were deformed during the

~2100-2000 Ma Eburnean Orogeny (Bonhomme, 1962). These two Proterozoic Shields

underlie Meso-Neoproterozoic Basins (Affaton et al., 1991). The older sediments of the Volta

basin (Lower Voltaian) in southern Ghana were deposited at ~1000 Ma. The southeastern limit
of the Volta basin is bordered by the development of the Dahomeyide belt, the southern

extension of the Pan-African belts (Affaton et al., 1991) (Fig. 1). These Neoproterozoic events

have strongly affected the northern West African Craton, where the sedimentary sequences and
dykes are folded and deformed along shear zones in the Anti-Atlas Orogen (Fig. 1) (Samson et

al., 2004), while the Leo-Man Shield in turn remained stable.

Twenty-six distinct dyke swarms were identified in the West African Craton by

aeromagnetic mapping according to their orientation (Jessell et al., 2015). In the Leo-Man

Shield, Paleoproterozoic—Mesoproterozoic dykes are represented by the ~1790 Ma Libiri

swarm, the ~1790 Korsimoro swarm, and the ~1520 Essakane swarm (Baratoux et al., 2019).

Paleomagnetic poles from greenstone rocks and Paleo- to Mesoproterozoic dykes were
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previously reported by Piper and Lomax (1973). Two Neoproterozoic dyke swarms from Ghana

were recently dated by U-Pb baddeleyite at 915 + 7 Ma for the N070° Oda dyke swarm, and

867 £ 16 Ma for the N355° Manso dyke swarm (Baratoux et al., 2019) (Fig. 1). A younger

generation of basaltic dykes was also recognized in the northeastern part of Ghana/southern
Burkina Faso with an U-Pb baddeleyite age of 198 + 16 Ma (Hounde dyke swarm) and was

related to the Central Atlantic Magmatic Province (CAMP) (Baratoux et al., 2019).

In this study, we sampled the ~860 Ma NNW-trending Manso dykes and one dyke
(GHO7) of the ~915 ENE- trending Oda dyke swarm (Fig. 1). The Manso dykes have mainly a
NNW-direction conjugated to a NNE-direction for some branches of the dyke swarm, and are
~50-100 m to the geophysical signature but their contact with the host rock was not observed
in the field. They are fresh, coarse to medium-grained dolerites composed mainly of plagioclase
and clinopyroxene (augite) with Fe-Ti oxides. Rare orthopyroxene, altered olivine, baddeleyite,

and sulfide were also observed (Baratoux et al., 2019). Fine-grained lamprophyre dykes

containing micas and some titanite occur in the Ahafo mine. These Neoproterozoic dykes are
undeformed, and they crosscut the Paleoproterozoic basement and Paleoproterozoic regional

tectonic structures.

FIGURE 1

3. METHODS

3.1. Sampling

Due to the dense vegetation and the occurrence of a thick ( up to ~30m) laterite cover, the
outcrops of mafic dykes in Ghana are restricted to the rivers, isolated blocks (Fig. 2A, B), and
fresh outcrops from mine pits. In March 2019 we sampled 121 oriented cylindrical cores using
a portable gasoline-powered rock drill, as well as eight hand-samples in the Ahafo mine pit

(Newmont Company), for a total of 16 sites. According to the field orientation, 15 dykes are
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from the ~860 Ma NNW-trending Manso dyke swarm and one dyke (GHO7) is from the ~915

Ma E-trending Oda dyke swarm (Antonio et al., 2019; Baratoux et al., 2019). The number of

samples by site (5-8) were restricted essentially due to agreement with local communities and
the mining company. Both cores and hand-samples were oriented using solar and magnetic
compasses, and no declination difference was observed. The 16 sites sampled cover a vast
geographical area (~41,500 km?) from the capital Accra in southeast Ghana to Sunyani in the

northwest via Cape Coast in the south (Fig. 1 & site coordinates provided in Table 1).
3.2. Geochronology

Two samples (GHOS5 and GH16) were selected for U-Pb geochronology on apatite. Apatite
separation was performed in the Géosciences Environnement Toulouse (GET, France)
laboratory. Hand-samples were crushed and sieved to collect the mineral fraction below 400
um. The low-density minerals and clay fraction were removed using a Wilfley table. Heavy
minerals were then isolated using heavy liquids (tetrabromoethane and diiodomethane, with
respective densities of 2.967 and 3.325 g/cm?). Magnetic minerals were consequently removed
with a Franz magnetic separator. Finally, the apatite grains were handpicked using a binocular
microscope before being mounted into epoxy puck and polished. U-Pb data were acquired at
the Isotopic Geochemistry Laboratory in Federal University of Ouro Preto (UFOP, Brazil) using
a 193 nm HelEX Photon Machine coupled with a ThermoScientific Neptune Plus Multicollector
(LA-MC-ICP-MS). A beam spot size of 85 pm was used with beam energy densities of 6 J/cm”
2, and a 6-Hz repetition rate. During apatite U-Pb measurement sequences, the 91500 zircon

(Wiedenbeck et al., 1995) was used as a primary reference standard, while the Durango apatite

(McDowell et al., 2005), the 401 apatite (Thompson et al., 2016), and the Madagascar apatite

(Thomson et al., 2012) were used as secondary reference material in order to correct for matrix

match effects as well as to constrain and verify the corrections accuracy and reproducibility.

Data reduction and correction was carried out with the SATURN package of the laboratory of
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Ouro Preto. Apatite U-Pb ages of the studied samples are reported as isochron ages calculated
as lower-intercepts on a Terra-Wasserburg Concordia diagram using the Isoplot 4.15 software
(Fig. 2) (Ludwig, 2009). The grains analyzed from each sample are igneous co-genetic apatites.

Initial common Pb value was anchored to a 2°’Pb/2%Pb value of 0.898 (Stacey and Kramers,

1975) according to the U-Pb baddeleyite (ID-TIMS) crystallization age of 867+16 Ma

(Baratoux et al., 2019). All the apatite isotopic data, at 2c¢ level, are reported in the
supplementary material 1. Additional information on the analytical conditions, and the Terra-
Wasserburg Concordia diagrams of reference materials, are provided in the supplementary

material 2.
3.3. Paleomagnetism

Oriented blocks were drilled in Geosciences Montpellier (France). Preparation of
standard specimens (2.2 cm height) and alternating field (AF) demagnetization for a pilot study
were carried out at the GET (Toulouse, France) using a JR5-A spinner magnetometer and a
LDA-3 AF demagnetizer (AGICO) in a MMLFC shielded room design to reduce the effect of
ambient magnetic field (<200 nT). For the remaining samples the characteristic remanent
magnetization (ChRM) was isolated by stepwise AF and thermal demagnetization performed
in a magnetically shielded room with ambient field <500 nT at the Laboratorio de
Paleomagnetismo of the University of Sao Paulo (USPMag, Brazil). An AF pre-treatment until
10 mT was performed before thermal demagnetization, to eliminate an eventual low-coercivity,
viscous component. AF and thermal demagnetizations were performed using a vertical 2G-
Enterprises™ DC-SQUID magnetometer with a RAPID automatic sample changer (Kirschvink

et al., 2008). Stepwise thermal demagnetization of 50°C (until 500°C) and 20°C (until 700°C)

were carried out using a TD-48 furnace device. Only principal component analysis (PCA)

(Kirschvink, 1980) was used to determine the remanence directions using orthogonal vector

diagrams (Zijderveld, 1967). Site mean directions and paleomagnetic poles were calculated by
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Fisher’s (1953) statistics using the PALEOMAC package (Cogné, 2003). Paleogeographic

reconstructions were performed using the GPlates software (Miiller et al., 2018). Magnetic

mineralogy was investigated under optical microscopy and using a Scanning Electron
Microscopy (SEM JEOL JSM 7100F TTLS LV — EDS/EBSD) at the Centre de Micro
Caractérisation Raimond Castaing (Toulouse, France). High-temperature thermomagnetic
curves (susceptibility versus temperature) were conducted at the Toulouse, France) in an argon
atmosphere using a CS-3 apparatus coupled to the KLY-3 Kappabridge (AGICO, Brno, Czech.
Republic). In addition, hysteresis loops, isothermal remanent magnetization (IRM) and first-
order reversal curve (FORC) for selected samples were performed at the LABGeo, Instituto
Oceanografico, University of S3do Paulo (Brazil) using a MicroMag-VSM, Model 3900
(Princeton Measurements Corporation). FORC diagrams were processed using the Forcot

software (Berndt and Chang, 2019).

4. RESULTS

4.1. Geochronology

The GHOS site is situated near Cape Coast, between the towns of Yamoransa and Biriwa
(southern Ghana) (Fig 1). It is a 20-50m wide dyke disintegrated into several blocks of coarse-
grained relatively fresh dolerite, with ~0.5 cm of weathering crust (Fig. 2A). The second dated
site GH16 is located within the Bechem city (SE of Sunyani) (Fig.1). Multiple blocks of metric
size (in situ) were observed in an open area (Fig. 2B). The dyke is a coarse-grained dolerite

showing a fresh doleritic texture (i.e. intergranular subophitic).

Apatites from the doleritic samples (GHOS5 and GH16) exhibit a nearly perfect euhedral
prism shape (Fig. 2C, D) with grain size ranging between 90 and 300 um. The isotopic data

obtained for the GHOS dolerite sample displays variable proportions of common Pb with
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207pb/2%Ph values varying between 0.32 and 0.53. The anchored lower intercept age for this
sample is 857.2 £ 8.5 Ma with a MSWD of 2.2 using 17 apatites (Fig. 2C). Sample GH16
(dolerite dyke) displays variable proportions of common Pb with 2’Pb/?Pb values between
0.45 and 0.64. Data for this sample define an anchored lower intercept age of 855 + 16 Ma with
a MSWD of 2.4 using 13 apatites (Fig. 2D). The unanchored plots give identical ages for GHO5
and GH16 respectively within the error of 841 + 31 Ma (MSWD = 2.2) and 833 + 66 Ma

(MSWD = 2.5), respectively, but the anchored ages were preferred following Chew et al.

(2011).
FIGURE 2
Supplementary material 1
Supplementary material 2
4.2. Paleomagnetic results

Natural remanent magnetization (NRM) values for the dolerite dykes vary between ~0.1
and 9.8 A.m’'. Samples showing scattered NRM directions and higher intensity values of 270~

555 A.m™! (e.g. GHO7A, B) were discarded, most probably due to lightning effects.

An extremely stable magnetic component was reached for the NNW-trending Manso
dolerite dykes after removing a secondary/viscous component. Linear behavior is generally
observed with two well-defined segments in the Zijderveld plots with a “high
coercivity/temperature component” revealed above AF values of 17 mT (Fig. 3A, E, and F) and
temperature values range of ~540-580°C (Fig. 3B, C, and D). These unblocking temperatures
(Tu) point toward magnetite as the main carrier of the high-temperature component. Calculated
by PCA analysis, a characteristic remanent magnetization (ChRM) is revealed for a first cluster

(A+) of five sites showing a northern direction with a positive inclination (Fig. 3A, B). A second
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cluster (A-) is composed of eight sites with a ChRM of southern direction with a steep negative

inclination (Fig. 3C, D, and E).

A total of 165 specimens (13 sites) was used to calculate the Manso pole using the high
coercivity-temperature component (Fig. 4A). Using the sites with positive inclinations (Dm =
16.6°, In = 76.7°, n = 5, k = 21) and the sites with negative inclinations (Dm = 172.8°, I = -
77°,n =8, k =37.1), the Manso dyke swarm passes a reversal test with a critical gamma of
16.2° and a difference of 5.4° between normal and reverse axes (reversal test of C-class)

(McFadden and McElhinny, 1990). 163 specimens show a secondary component with low

inclination (Fig. 4B), and the subsequent secondary site-mean direction is Dy = 345.5°, Iy = -
1.4° (095 =21.1°, k =4.8) (Fig. 4C). The Manso pole (13 sites) was calculated using the 5 sites
of positive inclinations and the 8 sites of negative inclinations (Fig. 4C) giving a site mean
direction of D, = 181.9°, I, = -77.2° (095 = 7.6°, k = 30.6), yielding to a paleomagnetic pole

located at 28.3°S and 177.6°E (A95 = 12.7° K =11.6) (Table 1; Fig. 4C, D)

An iterative cutoff of 37.6° was determined using the 13 sites with no site exclusion

(Vandamme, 1994), yielding a VGP dispersion (S-value) of 23.8° (Fig. 4D). High dispersion is

expected for results with high inclination values as suggested by paleosecular models of

latitudinal dependence of S (e.g. Model-G from McFadden et al. (1988)). The A95 for the

Manso pole is equal to 12.7° which is comprised within the A95 envelope (4.3°-16.3°) of

Deenen et al. (2011) (see Fig. 4D). Altogether, these characteristics suggest that our sampling

of the Manso dolerite dykes average the paleosecular variation.

Though based on a single site (GH07), a stable ChRM of steep negative inclination and
southwestern direction was obtained for the ~915 Ma E-trending Oda dyke, similar to the A-

cluster of the Manso dykes (Fig. 3F) providing a VGP at 21°S and 222.3°E.
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FIGURE 3

FIGURE 4

TABLE 1

4.3. Baked contact test

Due to the weathering cover, host rocks could only be sampled in the Ahafo mining pit
(Newmont Company) in the Sefwi Belt (Fig. 5), to attempt a baked contact test (BCT). Fig. SA
shows the sampled outcrop where two undeformed lamprophyre dykes (GH11 as illustrated in
Fig. 5B, and GH12) are cutting the granodiorite host rock deformed during the ~2000 Ma

Eburnean orogeny (Feybesse et al., 2006). Two oriented blocks (OB3 and OB4) were collected

for the GH12 dyke (Fig. 5A). To attest the primary origin of the magnetization carried by the
dyke GH12, we sampled one oriented block (OB6) within the baked zone into a two- branched
dyke. The oriented blocks OB7 and OBS8 were sampled at ~1 m and ~30 m respectively from
the GH12 dyke. Thermal demagnetizations revealed a high unblocking temperature interval
(Tuwp) 0f 520-620°C and high stability for the ChRM of the baked host rock at the contact (OB6)
with a site-mean of D, = 117.9° and I, = 80.3° (095 =4.9°, k = 112.8) (Table 1; Fig. 5C, D).
The host rock at the contact shows the same ChRM direction of the GH12 dyke (Dm = 87.9° I,
=86.8°, 095 =4°,k=100.2) (Table 1; Fig. 5C, D). The secondary components are close to the
present field with a northwestern direction and a low inclination for the dyke and the host rock.
At ~1 m from the dyke, the OB7 block shows a significantly different behavior where thermal
and AF demagnetizations reveal a more unstable magnetization (Fig. 5C), nevertheless
magnetic vectors were defined for this block with two specimens providing a direction close to
the dyke’s direction and two specimens showing a western direction with low positive
inclination (Fig. 5C). This western direction was also disclosed for the oriented block collected

at ~30 m from the contact (OBS). Differently from the OB7 block, specimens from the OBS8
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block are well-clustered (Dm = 291.3° I, = 31°, 095 = 7.6°, k = 46.7) with a stable ChRM until
~500°C. This baked contact test can be considered as positive and attests to the primary origin

of the extremely stable ChRM disclosed in the Manso dykes.

FIGURE 5

4.4. Magnetic mineralogy

Most opaque phases show composite texture of ilmenite-magnetite and probably

titanomagnetite (Haggerty, 1991). Fig. 6A shows a representative magnetite with ilmenite

lamellae in a coarse-grained dolerite dyke (GH16). Intergrowth textures with ilmenite
exsolutions are generally related to a stable thermoremanent magnetization (TRM) which

supports our interpretation of the paleomagnetic results (Evans and Wayman, 1974). Fig. 6B

shows three thermomagnetic curves, two for the Manso (GHO8 and GH14) and one for the Oda
dyke (GHO7). The sample GHO8A shows a curve with a reversible behavior between the
heating and cooling steps whereas the cooling curve for samples GH14B3 and GHO7B3 are not
perfectly reversible. All samples show a Curie temperature (T¢) at about 560—580°C, and a
Hopkinson peak for GHO8 and GH14 just below T. (Dunlop, 1974), characteristic of fine-
grained pure magnetite. The Day plot (Fig. 6C) and FORC diagrams (Fig. 6D) indicate domain
states mainly in the stable single-domain (SD) to pseudo-single domain (PSD) fields. Values of
Mrs/Ms higher than 0.10, and the strong proportion of 60—40 % of single domains magnetite in
the Day plot are consistent with the narrow unblocking temperatures above 540°C. FORC

diagram of sample GHO8H1 is typical of the PSD behavior (Roberts et al., 2014), with SD-like

magnetite dominance of the magnetic assemblage as shown by the peak value of ~25 mT with
closed contours on the Hy = 0 axis (Fig. 6D). Conversely, the GHO3M1 sample show a strong
proportion of multi-domain (MD) grains mixed with SD grains as suggested by a large

coercivity distribution on the Hy axis. This SD/MD behavior is also confirmed by the position
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of GHO3MI in the Dunlop (2002) mixing curves of the Day plot (Fig. 6D). GH15 sample fall
in the MD field of the Day diagram which suggests a strong proportion of MD-like magnetite
in the magnetic assemblage, consistent with the strong decay of ~50% of its NRM at 10 mT
during AF pre-treatment (Fig. 3B). The host rocks fall into the PSD domain for samples at the
contact, whereas samples far from the contact fall into the MD field of the Day plot (Fig. 6C),
suggesting a less stable behavior for these rocks. This further confirms that the host rock at the

contact was mineralogically affected and re-heated during the dyke’s intrusion.

FIGURE 6

S. DISCUSSION

1.1. Reliability of the Manso paleomagnetic pole (R-criteria)

The Manso paleomagnetic pole was calculated with 13 sites of NNW- trending mafic dykes

in Ghana and satisfies all seven criteria of the revised “R” reliability index (Meert et al., 2020).

(R1) The Manso dyke swarm is well-dated by multi-method radiometric dating with one U-Pb
baddeleyite (ID-TIMS) age of 867 = 16 Ma (**’Pb/?%Pb weighted mean age) (GHO8) (Baratoux

et al., 2019) and two identical (within error) U-Pb apatite ages of 857.2+8.5 Ma (GHO05) and

855 £ 16 Ma (GH16) (Fig. 2). Given that the U-Pb apatite system (Chew and Spikings, 2015)
has a lower closure temperature (550-350°C) than the U-Pb baddeleyite system (700—-1100°C)

(Heaman and [eCheminant, 2001), these identical ages within error suggest the U-Pb apatite

system recorded the age of crystallization. Using the U-Pb baddeleyite >’Pb/?*°Pb weighted

mean age of 867 = 16 Ma (or the Concordia age: 855 + 10 Ma) (Baratoux et al., 2019) combined

with the two new U-Pb apatite ages, a mean age of 858.6 + 6.7 (856.1 +6) Ma can be calculated
for the emplacement of the NNW-trending Manso dyke swarm. (R2) ChRM directions were
isolated on 13 sites (165 specimens) by thermal and AF demagnetizations and no difference
was observed between the two demagnetization methods. Moreover, all vectors were well-

defined by stable linear segments reaching the origin (Fig. 3), and analyzed by PCA analysis
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using Zijderveld plots and equal-area projections (Kirschvink, 1978; Zijderveld, 1967). Our

new Manso pole is characterized by a value of precision K of 11.6, above the lower limit of 10

proposed by (Meert et al., 2020). In addition, the A95 of 12.7° is comprised within the Deenen

et al. (2011)’s interval (4.3°-16.3°) showing that the pole averages the paleosecular variation

(Fig. 4D). No VGPs were excluded by the iterative cutoff of Vandamme (1994). (R3) The

magnetic properties of these mafic dykes confirm their remanent magnetization is carried by a
magnetic assemblage dominated by SD-like magnetite (Fig. 6). (R4) A positive baked contact
test for the GH12 dyke confirms the remanence is primary. In addition, a primary origin is also
suggested by the narrow and high unblocking temperatures (Tu) (540—580°C) of the Manso
dykes which are above those of the undisturbed U-Pb apatite system (550-350°C). (R5) These
undeformed dykes were sampled in a vast geographic area in Ghana considered as stable and
without evidence of deformation related to the Pan-African belts or younger tectonic events.
Moreover, geochronological and paleomagnetic results of distant sites (e.g. between GHO5 and
GH16, which are 233 km apart from each other) support a strong regional consistency in our
results. The younger events in the area were associated with the magmatic activity of the Central
Atlantic Magmatic Province (CAMP) and the Atlantic rifting between Africa and South

America (Baratoux et al., 2019). These events produced a low-temperature regional influence

of <120°C (Fernie et al., 2018), not sufficient to affect the primary magnetization of the dykes.

This is consistent with the secondary component calculated for most of dykes with a
corresponding pole located at 73.1°N, 244.8°E (Table 1), similar to the CAMP pole of 73°N,

244.7°E obtained for West Africa (Palencia-Ortas et al., 2011) (Fig. 4B). (R6) The Manso pole

passes a reversal test (McFadden and McElhinny, 1990) with 5 sites of positive inclination and

8 sites of negative inclination. (R7) The A95 envelope of Manso pole overlaps the robust B2

group (R = 6) of Robert et al. (2017) for volcanic units of ~550-530 Ma sampled in the Anti-

Atlas mountains, north of the West African Craton. Nevertheless, Meert et al. (2020) underline
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374  that comparison to younger poles should be discarded if the younger poles come from an
375  orogenic belt, which is the case with the B2 pole, calculated from units folded during the
376  Carboniferous—Permian Hercynian (or Variscan) orogeny (Robert et al., 2017). Therefore, a
377  remagnetization of the Manso dykes seems improbable because no evidence of deformation has
378  been documented in the study area, and our large spatial sampling discard any localized tectonic
379  rotations. Thus, we can consider that the Manso pole fulfills all the R7 criteria of Meert et al.
380  (2020). The ~860 Ma Manso paleomagnetic pole can thus be considered as a high-quality key
381  pole and can serve as the first Neoproterozoic reference for the paleogeography of West Africa
382  during Rodinia.

383 1.2. Testing the existence of the long-lived WABAMGO configuration in Rodinia

384 The Grenville, Sveconorwegian, and Sunsas orogens are typically used to reflect the
385  collision between Laurentia, Baltica and Amazonia between ~1200 and 1000 Ma assembling
386 the Rodinia supercontinent (Hoffman, 1991). This combination between these cratons is nearly
387 identical in several Rodinia reconstructions but was questioned by Meert and Torsvik (2003),
388  and more recently by Evans (2009) using an updated paleomagnetic database. Recently, Martin
389 et al. (2020) re-evaluated the isotopic signature of the long-lived Paleo— to Mesoproterozoic
390 accretionary orogens along the margins of Laurentia, Baltica, Amazonia, and Kalahari. In their
391  model, the core of Rodinia is defined by the Laurentia-Baltica-Amazonia-Kalahari connection
392 finally sutured during the Stenian. In the Rodinian reconstructions, West Africa is still
393  associated with the Amazonia Craton but without paleomagnetic constrains (D’Agrella-Filho
394 etal., 2016), we can use our new paleomagnetic results to test if a long-lasting connection is
395 paleomagnetically viable between Amazonia, West Africa and the paleomagnetically well-
396  constrained Baltica and Laurentia block.

397 A long-lived connection is usually proposed for Baltica and Laurentia between ~1760 Ma
398 and ~1270 Ma (Salminen et al., 2014). A large distance is observed across the APW path of
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Baltica between the mean 1265 Ma pole (BA1) (Pesonen et al., 2003), the Salla diabase VGP

(BA2) and the 1100-1050 Ma poles (BA3, BA4) (Table 2; Fig. 7A) (Mertanen et al., 1996;

Pesonen et al., 2003) and suggests fast drifting at that time. A similar trajectory is observed for

Laurentia with the Logan loop and the ~1105-1080 Ma Keweenawan track (LA1-LA2)

(Swanson-Hysell et al., 2019). Between ~1050 and 900 Ma the APW path of Laurentia was

defined as the Grenville loop and the same interval in Baltica was defined as the

Sveconorwegian loop, but its shape and motion are debated (Elming et al., 2014; Gong et al.,

2018). The best attempts to adjust the Grenville and Sveconorwegian loops are along an Euler

pole of 75.8°N, 264.2°E, -59.2° (Pisarevsky et al., 2003), or in a tighter fit of 81.5°N, 250°E, -

50° (Evans, 2009). However, Baltica rotated ~70° clockwise in relation to Laurentia between

the ~1800-1200 Ma NENA (Northern Europe-North America) configuration (Gower et al.

1990) and the ~1050-800 Ma Rodinia configuration (Salminen et al., 2009). If these

reconstructions hold true, they imply a single Laurentia-Baltica block between ~1050 and 800
Ma. Key 951-935 Ma mean poles for Baltica (BA6) confirmed this clockwise motion, but a
more complex shape for the APW path is proposed considering the ~971 Ma VGP of Blekinge-

Dalarma dykes (Group. B) (BAS) (Fig. 7A) (Gong et al., 2018). A late Svecornorwegian group

of poles (936-850 Ma) obtained for the Rogaland Igneous Complex (RIC) and the ~860 Ma
Hunnedalen dykes with a stable remanence of same polarity suggest a stable position for Baltica

at high latitude (BA7-BA11) (Walderhaug et al., 1999). The primary remanence of this group

is supported by an inverse contact test with the ~635 Ma Egersund dyke swarm (Walderhaug

et al., 2007).

West Africa is always associated with the Amazonia Craton in the Paleo-Mesoproterozoic

reconstructions but in a different position from the Gondwana link (Onstott and Hargraves,

1981). These cratons were juxtaposed with the Baltica in the South America Baltica (SAMBA)

connection with the possibility of a long-lived connection between ~1800 and 800 Ma
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(Johansson, 2009). An alternative reconstruction, using geological considerations, was

proposed with Kalahari-Congo, Sdo Francisco and India in the Umkondia supercraton at ~1110

Ma (Choudhary et al., 2019). Using the paleomagnetic poles of the ~1199 Ma Nova Floresta

formation (AM1) (D'Agrella-Filho et al., 2008) and ~1149 Ma Fortuna formation (AM2)

(Tohver et al., 2002) (Fig. 7A), a strike-slip migration of Amazonia along the Laurentia at

~1200-1150 Ma was initially proposed. But, a preliminary ~1110 Ma paleomagnetic pole for

the well-dated Rincon del Tigre Complex (AM3) (Teixeira et al., 2015) supports a moderate to

low latitude for Amazonia at that time (Patroni, 2015), which is incompatible with the model

of oblique collision proposed by Tohver et al. (2002). These AM3 pole for Amazonia supports

the model of Evans (2013) suggesting a clockwise rotation of the Amazonia and Baltica to
collide with Laurentia. For West Africa, paleomagnetic results were obtained from the

Mesoproterozoic units of the Adrar (NW- West Africa, Mauritania) (Morris and Carmichael,

1978; Perrin et al., 1988; Perrin and Prévot, 1988). Rooney et al. (2010) obtained a new Re-Os

age of ~1105 Ma for the Atar group previously estimated at 890—775 Ma. Based on the
similarity with younger directions some authors have suggested some remagnetization effects

(Perrin and Prévot, 1988; Tohver et al., 2006), but without further evidence that the primary

origin for their remanence cannot be ruled out. The characteristic component for those rocks is
carried by hematite and was revealed at high temperatures (>590°C). If the magnetization is
primary this allows to define a new Mesoproterozoic age of ~1105 Ma for the 19 pole (WAT)

calculated by Perrin and Prévot (1988) coeval to the ~1110 Ma Rincon del Tigre pole (AM3)

from the Amazonia Craton (Patroni, 2015) (Fig .7A). No data are available to define the APW

path for the Amazonia Craton in Early Neoproterozoic times, but our new ~860 Ma Manso pole
satisfies a maximum R-criteria to be considered as an anchor point for paleogeographic

reconstructions (Fig.7A; R = 7, this study).
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The Mesoproterozoic APW path for the Congo-Sao Francisco Craton is defined by the well-

dated Late Kibaran pole (C1) at ~1236 Ma (Meert et al., 1994b). A large shift is observed

between the ~1110 Ma pole from the Huile-Epembe dykes (Salminen et al., 2018) and the ~925

Ma poles from the Sao Francisco dykes (Salvador, Ilhéus, Oliveira) (Fig. 7A) D'Agrella-Filho

et al. (1990); (D’Agrella-Filho et al., 2004; Evans et al., 2016). The Congo-Sao Francisco

Craton is usually associated with the Rodinia supercontinent (Merdith et al., 2017), or in a

different view connected with the African blocks (D’Agrella-Filho and Cordani, 2017).

Similarities in length and shape of the APW paths for Baltica, Amazonia, West Africa, and
Sao Francisco-Congo cratons allow us to build a Master APW path between ~1200 and 850 Ma
for these continental units (Fig. 7A). This Master APW path suggests that these blocks were
nearby between ~1200 and 850 Ma, forming a single continental entity. This large continental
unit, hereafter referred to WABAMGO (West Africa-Baltica-Amazonia-Congo) is represented
in Fig. 7B. Geological domains, LIPs comparisons, and paleomagnetic data between Baltica,
Amazonia, and West Africa support a strong connection between these continents since the

Paleoproterozoic using the SAMBA model (Baratoux et al., 2019; D’ Agrella-Filho et al., 2016;

Terentiev and Santosh, 2020). Our model supports the presence of a long-lived accretionary

margin during the Mesoproterozoic times in the western part of Amazonia (Sadowski and

Bettencourt, 1996). The orientation of West Africa in relation to Amazonia in the SAMBA

model is paleomagnetically viable from ~2100 Ma until ~1400 Ma (D’Agrella-Filho et al.,

2016), but a later reorientation is necessary to fit with the classical ~550 Ma Gondwana
configuration. In the WABAMGO configuration, the West Africa-Amazonia connection is
close to this late Neoproterozoic configuration, suggesting this reorientation could have
occurred between ~1400 and 1200 Ma, during the breakup of the Columbia supercontinent. The
Sunsés and Sveconorwegian orogens can be correlated between Amazonia and Baltica in this

model (Fig. 7B). A large Early Tonian mafic magmatism is observed in the Sdo Francisco
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craton spanning from ~925 Ma to 850 Ma (Danderfer et al., 2009; Moreira et al., 2020). Similar

records of Tonian age magmatism have been reported for the Congo with the Sembé Ouesso

(Vicat and Pouclet, 1995), for Baltica with the ~850 Ma Hunnedalen dykes (Walderhaug et al.,

1999), for Amazonia with the ~809 Ma Makinet (ex-Tampok) dykes ((Delor et al., 2003), and
also for West Africa with the ~860 Manso and ~915 Oda dykes in the south of the craton

(Baratoux et al., 2019) and the ~880-850 Iguerda-Taifast dykes in the Anti-Atlas (Kouyaté et

al., 2013). An Early Tonian rifting is also documented for the northern part of the West African

Craton with the volcanoclastic deposits of the ~883 Ma Tachdamt Fm (Bouougri et al., 2020).

An Early Tonian rifting between the northern West Africa and the Sdo Francisco is thus
supported by the WABAMGO configuration (Fig. 7B). A rare “Grenvillian event” (~1000-920
Ma) documented within the WABAMGO juxtaposition is the Cariris Velhos tectonic event,
proving some continental reorganization and convergence at the edge of the mega block of the

Borborema Province was followed by a Tonian rifting (dos Santos et al., 2010; Neves et al.,

2020).

Our model also supports a “Grenvillian” source for zircons in northern West Africa

(Bouougri et al., 2020; Kalsbeek et al., 2008) with the proximity of the Grenvillian orogens to

the west such as Sunsds and Sveconorwegian and the associated small blocks (e.g. Oaxaquia,
Maya), and the Cariri Velhos event to the east. Major shifts in the sedimentation on the West
African Craton suggest a complete breakup of the WABAMGO from Baltica and Sao
Francisco-Congo after ~800 Ma with the development of subduction zones in northern West

Africa in the late Neoproterozoic (Triantafyllou et al., 2016). Following this model, the

proximity of the Congo-Sao Francisco and West Africa may explain the large displacements
along the major dextral Transbrasiliano lineament with the closure of the Pharusian Ocean

during the assembly of Gondwana in late Neoproterozoic times. The proposed long-lived
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WABAMGO juxtaposition is geologically and paleomagnetically viable between ~1200 and

800 Ma.

1.3. Implications for the Rodinia assembly

Using our new Master APW path for the West Africa-Baltica-Amazonia-Congo block, the
reconstruction at ~1110 Ma shows that the assembly of Rodinia is dominated by the V-shape

closure of the external Nuna Ocean (Li et al., 2019), or Grenville Ocean, (Sadowski and

Bettencourt, 1996), between the northern Laurentian blocks and the southern WABAMGO

(Fig. 8A). This hypothesis of the closure of this Ocean by accretionary orogens was previously

suggested on geological grounds (Cawood and Pisarevsky, 2017; Martin et al., 2020), but our

study add a paleomagnetic support. The Kalahari craton is positioned in Fig. 8 along the

southern tip of Congo (pos-A) as in (Salminen et al., 2018) or in its inverted position (pos-B)

with the Natal-Namaqua orogen facing the coeval Grenville orogen in Laurentia, in both cases

constrained by the ~1109 Ma Umkondo pole (K1) (Swanson-Hysell et al., 2015a). In the

preferred position B, the Kalahari craton will collide with the southern coast of Laurentia after
the closure of the external Nuna Ocean (Fig. 8B). Nevertheless, the Kalahari position is poorly
constrained in Rodinia, and is beyond the scope of this contribution. The orientation of West
Africa in the WABAMGO configuration (pos-A, Fig. 8B) differs from the SAMBA model, in
which the western margin of West Africa is associated to the southern part of Baltica.
Nevertheless, our new proposed configuration requires new Tonian high-quality poles for the
unconstrained cratons, especially Amazonia, and new Mesoproterozoic poles for West Africa
to confirm the relative orientation between Amazonia and West Africa. Discarding the ~1105

Ma WA pole, a position closer to the SAMBA model (Johansson, 2009) is paleomagnetically

plausible for West Africa (pos-B, Fig. 8B).

For the final paleogeographic configuration at 925-850 Ma we can compare the position of

West Africa derived from the Manso paleomagnetic pole with the available record of Laurentia
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and surrounding blocks (Fig. 8C). Three paleomagnetic poles are available for the northern
blocks of Rodinia. Laurentia can be constrained by the basal units from the Little Dal Group,
LA3 pole, which passes a fold test, and its age was recently constrained by high-quality

correlations between 892 and 849 Ma (Greenman et al., 2020; van Acken et al., 2013). One

pole for the Tarim (T1) at ~880 Ma (Wen et al., 2018), and one pole for North China at ~895

Ma (NC1) (Fu et al., 2015) complete the paleomagnetic database for the northern blocks of

Rodinia. Our model implies that Rodinia was formed by extroversion (Murphy and Nance,

2003), with the closure of an external Nuna Ocean between two large blocks, the southern
WABAMGO and the northern Laurentian block. Rodinia was finally assembled by a large

dextral motion of the Australia-Tarim blocks as suggested by Wen et al. (2018). The polar

location of the WABAMGO at ~900 Ma, together with the low-mid latitudinal distribution of
Laurentia and the blocks of North China, Tarim, Australia (?) confirms a pan-latitudinal rather

than an equatorially distributed supercontinent as suggested by Jing et al. (2019).

FIGURE 7

FIGURE 8

TABLE 2

6. CONCLUSIONS

New U-Pb apatite ages of 857.2+8.5 Ma and 855+16 Ma agree with the previous 867+16

Ma U-Pb baddeleyite age (Baratoux et al., 2019) confirming the extension of the Manso dyke

swarm to the north of Ghana. A ~860 Ma Manso key pole (28.3°S, 177.6°E, A95 =12.7°, R =
7) was calculated and represent the first high-quality paleomagnetic data in Early Tonian for
the West African craton. The remagnetization is considered as primary, passing a baked contact
test and a reversal test. The paleomagnetic database for West Africa, Baltica, Amazonia, and

the Congo-Sao Francisco cratons supports a long-lived continental unit between ~1200 and 800
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Ma, the WABAMGO juxtaposition. During the late Mesoproterozoic-Early Neoproterozoic
(~1200-900 Ma), the WABAMGO and the Laurentia were drifting southward. During this
migration, a clockwise rotation of the WABAMGQO in relation to Laurentia closed the external
Nuna Ocean causing the Grenvillian collisions suturing the Rodinia supercontinent. Thus, this
model favors with paleomagnetic support the formation of the Rodinia supercontinent by

extroversion.
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FIGURE AND TABLE CAPTIONS

Fig. 1: Inset: Location of the study area in the West African craton (WAC). Geological map of
the Neoproterozoic units of Ghana with sampling location for geochronology (red stars) and
paleomagnetism. *: U-Pb baddeleyite age of GHO8 = 867 + 16 Ma (Manso) and GHO7 =915 +

7 Ma (Oda) from Baratoux et al. (2019). **: U-Pb apatite ages of GH05 = 857.2 + 8.5 Ma and

GH16 =855 + 16 Ma from this study.

Fig. 2: A and B: Field photographs of the Manso dolerite dykes at GHO5 and GH16 sites,
respectively. C and D: U-Pb Terra-Wasserburg diagrams for apatite dating of the Manso
dolerite dykes at GHOS (C) and GH16 (D) sites. The upper intercept is anchored to the initial

Pb Pb ratio (0.898) that was calculated based on Pb model of Stacey and Kramers (1975) for an

emplacement age of ~867 Ma (Baratoux et al., 2019). Unanchored ages are also illustrated (in

red).

Fig. 3: Representative demagnetization plots of Neoproterozoic dykes for different geographic
sites in Ghana after AF and thermal demagnetizations. Equal-area stereonets (filled (open)
symbols represent positive inclination), Zijderveld plots (vertical/horizontal projections shown
by open/filled circles), and Magnetization intensity decay curves (M/Mmax) are indicated for
each example. Values of 75% of the NRM decay (in mT) and unblocking temperature spectra
are indicated for the AF and thermal demagnetization curves, respectively. NRM = natural

remanent magnetization. Numbers, T100 (A5), indicate thermal (AF) demagnetization step.

Fig. 4: Sample and site mean directions for the Manso dykes. A: Specimen mean directions of
the high coercivity/temperature components (in green). B: Specimen mean directions of the low
coercivity/temperature components (in purple). C: Site mean directions for the Manso dykes
(in green), the secondary site mean directions is also indicated (in purple). Sites/specimens with

positive and negative inclinations are represented with filled (open) symbols represent
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downward (upward) inclinations. Confidence circle (095) around the means are indicated. PDF
— Present dipolar geomagnetic field; PGF — Present geomagnetic field. D: Dispersion of site

mean virtual geomagnetic poles (VGPs) and paleomagnetic pole calculated for the Manso dykes

(Table 1) represented in a Schmidt projection. Deenen et al. (2011)’s A95 envelope (4.3°—

16.3°) and the iterative cutoff limit (37.6°) of Vandamme (1994) are indicated. *: U-Pb

baddeleyite age of GHO8 = 867 + 16 Ma (Manso) and GHO7 =915 + 7 Ma (Oda) from Baratoux
et al. (2019). **: U-Pb apatite ages of GHO5 = 857.2 + 8.5 Ma and GH16 = 855 £+ 16 Ma from
this study. Direction and VGP for the ~915 Ma site (GHO7) are indicated in grey, not considered

for the Manso pole.

Fig. 5: Baked contact test for the GH12 dyke (~1 m in width). A: Geological sketch of the
outcrop with location of the sampled oriented blocks (star) of dykes (in green), and the host
rocks at contact (in red), at ~Im (in pink), and at ~30m (in blue) from the contact. B: Field
photograph of the GHI11 lamprophyre dyke, 0.30 m wide, located in (A). C: Equal-area
stereonets (filled (open) symbols represent positive inclination) of site-mean directions for the
GHI12 dyke (in green) and the subsequent host rocks at contact (in red), at ~1m (in pink), and
~30m (in blue) from the contact. Magnetization intensity decay curves (M/Mmax) are indicated.
D: Zijderveld plots for representative specimens after thermal demagnetization from the GH12

dyke (OB4A1l), the host rock at contact (OB6A2b) and at ~30m (OBSE1).

Fig. 6: A: SEM-BSE micrograph of titanomagnetite (Mag) with exsolutions of ilmenite (Ilm),
augite (Aug), plagioclase (P1), spharelite (Sp), and apatite (Ap) for the GH16 dyke. B: Heating
(in red) and cooling (in blue) thermomagnetic curves for three samples (GH14B3, GHO7B3,
and GHO8A). C: Day plot for the Manso dykes and the host rocks with SP-MD mixture lines
indicating the single domain proportions. SD: single domain, PSD (or vortex state): pseudo-

single domain, MD: multidomain. D: First-order reversal curve (FORC) diagrams for the
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GHO8HI1 and the GHO3M1 specimens. SF is the smoothing factor used by the FORCOT

software.

Fig. 7: A: The WABAMGO (West Africa-Baltica-Amazonia-Congg) juxtaposition using
Baltica as reference frame in present coordinates. Euler poles used in the Baltica reference
frame for the different cratons in the WABAMGO configuration: West Africa (1.375°N,
15.1585°E, -66.0819°), Amazonia (10.894°S, 369.8179°E, -89.4471°), Congo (52.32°S,
158.71°E, -70.57°). The Sao Francisco craton is rotated to Congo using its pre-Mesozoic

configuration (46.8°N, 329.4°E, 55°, (McElhinny et al., 2003)). Kalahari is connected to the

Congo craton (12.8°S, 19°E, -43.2°) according the configuration of Salminen et al. (2018).

Present North is indicated for each craton by an arrow. Abbreviations for the ~1200-1000 Ma

Grenvillian orogens (in _black): (1) Sveconorwegian orogen, (2) Sunsas orogen, (3) Cariris
Velhos event, (4) Namaqua-Natal orogen. Tonian large igneous provinces (LIPs, in red) are
indicated. B: Master apparent polar wander (APW) path for the WABAMGO between ~1200

and 850 Ma. Paleomagnetic poles and used abbreviations are listed in the Table 2.

Fig. 8: A: Paleogeography reconstruction of the Rodinia assembly at ~1110 Ma showing the
presence of the external Nuna Ocean (Grenville Ocean) between the WABAMGO (south
Rodinia) and the Laurentia (north Rodinia). Two plausible positions are illustrated for the

Kalahari craton with the Salminen et al. (2018) configuration (pos-A), and Kalahari placed in

the west of Amazonia (pos-B) as paleolongitude is arbitrary. We followed the model of

Sadowski and Bettencourt (1996) using a subduction towards Amazonia. B: Paleogeography

reconstruction of the Rodinia at ~925-850 Ma. Cratons with paleomagnetic constraints (in
colors) and cratons with no data (?) are indicated. Two positions of West Africa are illustrated
with the position A in agreement with the WABAMGO configuration and the plausible position
B according the uncertainty for the paleolongitude. The hypothesis of a dextral movements

from Wen et al. (2018) is indicated for the northern cratons of Australia-Mawson-Tarim. C:
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Paleomagnetic poles (north pole) used in the reconstruction at ~925-850 Ma (B). See Table 2

for abbreviations and references.

Table 1: S.lat, S.lon are the site latitude and longitude. n/N - number of specimens used in mean
directions/number of analyzed specimens; Dec — Declination; Inc — Inclination; R — the
resultant vector, 095 (A95) is the radius of the 95% cone of confidence and k (K) is the precision

parameter - Fisher’s statistical parameters (Fisher, 1953) for the mean directions (mean virtual

geomagnetic poles — VGPs); P.Lat — pole latitude; P.Long — pole longitude. Values of mean
sites directions are indicated in bold for the positive, negative, and combined polarities. *: U-
Pb baddeleyite age of GHO8 = 867 + 16 Ma (Manso) and GHO7 = 915 £ 7 Ma (Oda) from

Baratoux et al. (2019). **: U-Pb apatite ages of GHO5 = 857.2 £ 8.5 Ma and GH16 =855+ 16

Ma from this study. ¥: Site with an attempted baked contact test (BCT). y (yc = critical) is the

angle calculated between the mean directions of reversed and normal polarities (McFadden and

McElhinny, 1990).

Table 2: Paleomagnetic database for the Rodinia. Code, Plat — pole latitude, Plon — Pole
longitude, Age — nominal age, A95 confidence cones of the paleomagnetic poles used in the

paleogeographical reconstructions. R-criteria from Meert et al. (2020). References: Laurentia:

[1] Park (1981), [2] Swanson-Hysell et al. (2019), Baltica: [3] Walderhaug et al. (1999), [4]

Brown and McEnroe (2004), [5] Stearn and Piper (1984), [6] Walderhaug et al. (2007), [7]

Brown and McEnroe (2015), [8] Gong et al. (2018), [9] Mertanen et al. (1996), [10] Pesonen et

al. (2003), [11] Salminen et al. (2009), West Africa: [12] This study, [13] Perrin and Prévot

(1988), [14] Rooney et al. (2010), Amazonia: [15] Patroni (2015), [16] Teixeira et al. (2015)

[17] D'Agrella-Filho et al. (2008), [18] Tohver et al. (2002), Congo-Sao Francisco: [19] Evans
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et al. (2016), [20] D’Agrella-Filho et al. (2004), [21] D'Agrella-Filho et al. (1990), [22]

Salminen et al. (2018), [23] Meert et al. (1994a), Kalahari: [24] Swanson-Hysell et al. (2015a),

North China: [25] Fu et al. (2015), Tarim: [26] Wen et al. (2018).

S1: Apatite U-Pb isotope data.

S2: Analytical conditions for apatite LA-ICP-MS dating.
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