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Abstract. A novel method of comparison between an atmospheric model and satellite probabilistic estimates
of relative humidity (RH) in the tropical atmosphere is presented. The method is developed to assess the Météo-
France numerical weather forecasting model ARPEGE (Action de Recherche Petite Echelle Grande Echelle)
using probability density functions (PDFs) of RH estimated from the SAPHIR (Sondeur Atmosphérique du
Profil d’Humidité Intertropicale par Radiométrie) microwave sounder. The satellite RH reference is derived by
aggregating footprint-scale probabilistic RH to match the spatial and temporal resolution of ARPEGE over the
April–May–June 2018 period. The probabilistic comparison is discussed with respect to a classical deterministic
comparison confronting each model RH value to the reference average and using a set confidence interval.
This study first documents the significant spatial and temporal variability in the reference distribution spread
and shape. We demonstrate the need for a finer assessment at the individual case level to characterize specific
situations beyond the classical bulk comparison using determinist “best” reference estimates. The probabilistic
comparison allows for a more contrasted assessment than the deterministic one. Specifically, it reveals cases
where the ARPEGE-simulated values falling within the deterministic confidence range actually correspond to
extreme departures in the reference distribution, highlighting the shortcomings of the too-common Gaussian
assumption of the reference, on which most current deterministic comparison methods are based.

1 Introduction

Fundamental drivers of the climate system variability, such
as atmospheric water cycle, are still not well understood.
They are associated with uncertainties that hamper climate
predictions with consequences for society. An essential in-
gredient of the Earth’s hydrological cycle, water vapor is the
principal greenhouse gas and exerts a fundamental control
on the distribution of temperature (Held and Soden, 2000;
Pierrehumbert, 2011; Allan, 2012; Stevens and Bony, 2013).
The radiative importance of the atmospheric water in main-
taining the thermal energy balance of the Earth system is un-
debated. The connection between temperature, water vapor
and infrared radiation creates a positive feedback that fur-
ther warms the global climate from an external forcing (Hart-

mann et al., 2013). In addition, cloud–moisture interactions
and their associated processes are diverse (Bony et al., 2015;
Sherwood et al., 2010; Sherwood et al., 2020), and their rep-
resentation in numerical models bears strong constraints on
the local scales of weather forecasts and on global climate
sensitivity (Stevens and Schwartz, 2012).

The accuracy of meteorological forecasts and climate pro-
jections relies on parametrization schemes or model physics.
Assessing their accuracy is routinely performed by compar-
ing the simulated geophysical fields to an observed reference
derived from ground-based measurements or remote sens-
ing techniques (Randall et al., 2007). When considering re-
mote sensing techniques as a reference, the comparison to
numerical simulations may be performed in either geophys-
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ical or observation space, each one being associated with its
own uncertainties. In the geophysical space, the model geo-
physical variables are evaluated directly against remote sens-
ing estimations based on a retrieval scheme. This retrieval
scheme can be an inversion algorithm that relies on incom-
plete representations of the atmospheric variability (see for
instance Solheim et al., 1998; Aires et al., 2002; and Roy et
al., 2020). In the observation (e.g., radiance) space, a forward
model is used to convert the simulated atmosphere into syn-
thetic remote sensing measurements (Morcrette, 1991; So-
den and Bretherton, 1994; Brogniez et al., 2005; Chepfer et
al., 2008; Bodas-Salcedo et al., 2011; Jiang et al., 2012; Tian
et al., 2013; Steiner et al., 2018). This model-to-satellite ap-
proach relies on the accuracy of the forward model to sim-
ulate remote sensing observations for a given atmospheric
state (Weng, 2007), while strong uncertainties may remain
(Geer and Baordo, 2014; Brogniez et al., 2016).

In any case, the comparisons usually involve spatial and/or
temporal averaging, sometimes involving error bars or the
use of averaging kernels to smooth models or in situ profiles
relative to the vertical resolution of the satellite measurement
(Rodgers and Connor, 2003). Moreover, common assessment
practices typically use bulk comparison metrics (e.g., corre-
lation, bias) to assess performances over a given spatial and
temporal domain.

The present work focuses on atmospheric relative humid-
ity (RH). There is an extensive body of literature on the use
of relative humidity estimated by spaceborne instruments to
evaluate climate models (among others Soden and Brether-
ton, 1994; Brogniez et al., 2005; John and Soden, 2006; Jiang
et al., 2012; Tian et al., 2013; and Steiner et al., 2018). How-
ever, the comparison generally provides limited insight in
their error characteristics for several reasons:

1. First, an objective assessment requires an independent
reference, which may not be verified when satellite re-
mote sensing observations that are already incorporated
in the model via an assimilation step are re-used to as-
sess its accuracy.

2. Second, metrics such as correlation and bias are often
applied without necessarily checking the relevance of
such criteria. For example, the magnitude of the bias
as an additive model-to-reference difference may be
challenging to assess objectively at the primary satel-
lite scale. The linear correlation is generally insufficient
to describe the non-linear and heteroscedastic depen-
dence structure between the model estimates and the
reference.

3. Third, the model product is often assumed to be uni-
form and display homogeneous properties over the spa-
tial and temporal domain of comparison. Bulk metrics
such as correlation and bias are computed over samples
that actually gather a variety of atmospheric situations
(vertical structure, moisture, etc.) for which the model

is likely to behave differently through its assumptions.
Hence bulk error metrics lack specificity and depict av-
eraged space and time properties, while the errors tend
to be non-stationary and sensitive to parameters not ac-
counted for in the assessment formulation. Therefore,
the representativeness of any deterministic assessment
of model RH is confined to the time and space domain
over which it is performed, with limited extension over
other regimes, regions, seasons, etc. These issues are
not confined to the study of RH but are, to an extent,
common to those of all geophysical variables (see for
instance Kirstetter et al., 2020, for a discussion on pre-
cipitation).

A probabilistic description of the reference RH is most
appropriate to acknowledge the possible range of reference
values. This approach also explicitly accounts for determin-
istic uncertainties, making the diagnosis more documented
and precise, ultimately contributing to the improvement of
climate and weather forecasting models. This paper presents
an assessment of the simulated RH using such a probabilis-
tic approach. The method is developed and tested to assess
a sample of simulations of the global model ARPEGE (Ac-
tion de Recherche Petite Echelle Grande Echelle), the nu-
merical weather forecasting system developed by Météo-
France (the French national weather service; Bouyssel et al.,
2021). For this assessment, density functions of reference
RH are derived from the brightness temperatures measured
by SAPHIR (Sondeur Atmosphérique du Profil d’Humidité
Intertropicale par Radiométrie), the microwave sounder on
board the Megha-Tropiques satellite orbiting over the tropi-
cal belt (Roca et al., 2015).

This paper is divided into five sections. The datasets and
the matching procedure between SAPHIR probabilistic rela-
tive humidity (RH) estimates and ARPEGE simulations are
presented in Sect. 2. The probabilistic method is introduced
and confronted with the deterministic comparison in Sect. 3.
Section 4 discusses the results of the two comparison meth-
ods and the added value of the probabilistic method. Con-
cluding remarks are then drawn in Sect. 5.

2 Data

ARPEGE 6-hourly instantaneous RH fields simulated at 6 h
lead time for the months April–May–June 2018 serve as a
test bed for evaluating the numerical weather forecast model.

2.1 SAPHIR probabilistic RH estimates

SAPHIR is the microwave moisture sounder instrument on
board the Megha-Tropiques satellite, which has been observ-
ing the tropical (30◦ N to 30◦ S) atmosphere since October
2011 with a high revisit frequency. Megha-Tropiques is op-
erated jointly by CNES (Centre National d’Etudes Spatiales)
and ISRO (Indian Space Research Organisation) (Desbois
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et al., 2007; Roca et al., 2015). SAPHIR measures across-
track the upwelling radiation in the 183 GHz water vapor ab-
sorption line over a 1700 km swath. Each scan line is com-
posed of 130 non-overlapping footprints. The footprints have
a nominal size of 10 km at nadir and deform into ellipses
of 14.5km× 22.7km on the edges of the swath. SAPHIR
spectrally samples the 183 GHz line with six channels rang-
ing from 183.31± 0.2 GHz (close to the center of the line
for upper-tropospheric sounding) to 183.31± 11 GHz (wings
of the line for a deeper sounding). This original sam-
pling allows a better vertical sounding of the tropical atmo-
sphere compared to operational sounders like the MHS (Mi-
crowave Humidity Sounder) and AMSU-B (Advanced Mi-
crowave Sounding Unit-B; three channels) (Karbou, 2005;
Rosenkranz, 2001) or ATMS (Advanced Technology Mi-
crowave Sounder; five channels) (Brogniez et al., 2013).

The measured brightness temperatures (BTs) are trans-
lated into RH profiles for clear-sky conditions as well as
cloud-covered situations as soon as cloud hydrometeors are
small enough to not scatter the upwelling microwave radia-
tion significantly. These conditions are associated with deep
convection, with or without overshoots, and are detected
from the BTs following Hong et al. (2005) and Greenwald
and Christopher (2002). Therefore, RH profiles are estimated
for every footprint of SAPHIR if no deep convection is de-
tected. The RH profiles are made of six relatively wide at-
mospheric layers ranging between 950 and 100 hPa (100–
200, 250–350, 400–600, 650–700, 750–800, 850–950 hPa)
defined from an analysis of the channels’ weighting functions
(Sivira et al., 2015). The retrieval of RH profiles is based on a
multivariate regression scheme that provides the parameters
(α, β) of a beta probability density function of the estimated
RH alongside the mean and standard deviation for every foot-
print and pressure layer. The beta distribution is chosen over
a more classical Gaussian model for its ability to better ac-
count for the spread and asymmetry around the mean that is
more adapted to the study of the atmospheric RH distribution
(see Stevens et al., 2017) while also representing the uncer-
tainty in the retrieval scheme and the radiometric noise. The
beta model is used as follows:

PDFFS (RH;α,β)=
RHα−1(1−RH)β−1∫ 1
0 u

α−1(1− u)β−1du
, (α;β)> 0, (1)

with PDFFS(RH) being the probability density function of
RH defined on the interval [0, 1], and α and β are the param-
eters of the distribution. The subscript “FS” stand for “foot-
print scale”.

As detailed in Table 1 of Brogniez et al. (2016), the bulk
standard errors in the dataset lie in the range of 3.6 % RH–
14.8 % RH, depending on the pressure range (3.6 % RH
for layer 250–350 hPa, 15.8 % RH for layer 750–800 hPa).
These have been estimated using oceanic and continental ra-
diosoundings co-located with satellite overpasses. Stevens et
al. (2017) also highlighted the role of the vertical inhomo-

geneities in the discrepancies, strong gradients of moisture
being the most difficult to capture by the passive sensors.

2.2 ARPEGE-simulated RH

The ARPEGE model is the operational global model oper-
ated by Météo-France since 1992 (Bouyssel et al., 2021).
This model is characterized by a stretched and tilted hori-
zontal grid and by a hybrid-pressure terrain-following verti-
cal coordinate system. The vertical grid is composed of 105
levels, and the mesh of the horizontal grid has a 5 km reso-
lution over Europe and a 24 km resolution elsewhere. Fore-
casts are initialized with a four-dimensional variational sys-
tem (Courtier et al., 1991) with 6 h windows and run up to
a +102 h forecast range. In the tropics (30◦ N–30◦ S) and
in this forecast range, the ARPEGE biases (RMSE, respec-
tively) on RH fields range between−5 % and+5 % (5 % and
25 %, respectively) with respect to both radiosondes and the
ECMWF analysis (Chambon et al., 2014).

For the purpose of this study, the 6-hourly forecasts of at-
mospheric RH have been projected on a regular horizontal
0.25◦× 0.25◦ grid and onto a regular vertical grid of 50 hPa
resolution from 950 up to 100 hPa to match to the vertical
resolution of the SAPHIR RH profiles. The vertical averag-
ing implies that the results of the comparison are valid at the
resolution of the SAPHIR RH profiles.

2.3 Co-location

SAPHIR footprints’ probability density functions (PDFFS,
“FS” standing for footprint scale) are aggregated to match
ARPEGE’s 0.25× 0.25◦ grid, as illustrated in Fig. 1a. A 1 h
time window centered around each ARPEGE simulation is
applied to SAPHIR pixels to avoid errors induced by shifts
in moisture patterns due to global and local processes. The
histogram in Fig. 1b shows the distribution of the number
of SAPHIR footprints that fall within ARPEGE grid boxes.
This number varies from 0 to a maximum of 20, with a ma-
jority of sample sizes lying between 1 and 10 and the most
frequent being 5.

Within each model grid box, all the footprints’ PDFFS val-
ues are averaged together to compute an unconditional distri-
bution of the RH averaged at the ARPEGE scale as follows:

PDF(PDFFS)=
∑N

i=1
PDFFS(x)i ×

1
N
, (2)

with PDFFS(x) being the individual footprint-scale distribu-
tions and N the number of footprints co-located within the
grid box. The averaged PDF encompasses all the available
information of the reference RH such as the mean (first mo-
ment), shape and extremes of the distributions.
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Figure 1. (a) Colocalization diagram of SAPHIR’s PDFFS and ARPEGE grid and (b) distribution of the sample size of SAPHIR footprints
in ARPEGE grid boxes (log scale).

3 Methodology

3.1 Statistical approach

3.1.1 Mathematical principles

The differences and similarities between the deterministic
and the probabilistic comparison approaches are illustrated in
Fig. 2. At any given pixel and time step, the ARPEGE model
value is noted RHmod. The corresponding retrieval taken as
reference RHobs is a random variable described by its cumu-
lative distribution (CDF) over the interval [0, 1] and noted
FRH.

The value FRH (RHmod) represents the probability P that
RHobs takes on values lower than or equal to the RHmod:

FRH (RHmod)= Pr (RHobs ≤ RHmod)= P. (3)

The probability P indicates the position of RHmod within the
distribution of RHobs. A probability value P ∼ 0.5 indicates
that RHmod is close to the median, which is a representa-
tive value of RHobs. A probability value P < 0.1 (> 0.9, re-
spectively) indicates that ARPEGE probably underestimates
(overestimates, respectively) the reference RHobs as there
is less than a 10 % chance that the RHobs takes on lower
(greater, respectively) values.

In order to compare the probabilistic method to a more
classic approach, a simple deterministic comparison is used
as a benchmark. The mean reference value RHobs is calcu-
lated as the first moment of the PDF, and it is taken as the
reference in the deterministic comparison.

D = RHmod−RHobs (4)

The deterministic biasD is defined as the difference between
the RHmod and the mean observed value RHobs. A D close
to 0 indicates that the RHmod is close to the mean reference
RHobs. An a priori deterministic±15 % RH confidence inter-
val (gray shading in Fig. 2a) centered around RHobs is chosen
to account for uncertainties in the reference. The 15 % RH
uncertainty value is the smallest that allows the uncertain-
ties in all pressure layers to be encompassed (see Sect. 2.1 or
Brogniez et al., 2016, for a more complete analysis of uncer-
tainty). It is a reasonable value that can be applied to the full
RH profile. Note that the retrieval uncertainty is lower in the
mid-tropospheric layers compared to the edges of the pro-
files (Sivira et al., 2015). In terms of deterministic compar-
ison D<−15 % RH (> 15 % RH, respectively) means that
RHmod significantly underestimates (overestimates, respec-
tively) the reference RHobs average observation as it falls
outside its confidence interval.

Compared to a deterministic comparison between
ARPEGE’s RHmod and the reference RHobs, FRH (RHmod)
objectively quantifies the significance of the departure
of ARPEGE with respect to the reference RHobs central
value by factoring in (normalizing by) the spread of the
distribution. This allows us to quantify the occurrence of
extreme biases from the model while accounting for the tails
of the distribution. By accounting for the complete reference
distribution (and its characteristics like the spread and asym-
metry), this probabilistic formulation allows comparison
with greater resolution, sharpness and discrimination than a
deterministic comparison at the pixel level.

Atmos. Chem. Phys., 22, 3811–3825, 2022 https://doi.org/10.5194/acp-22-3811-2022
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Figure 2. Single-grid-box example (grid point situated 24.75 to 25◦ N, 114.5 to 114.75◦W, and 400–600 hPa for the simulations of
1 April 2018 at 00:00 UTC) showing the projection of RHmod (orange cross) onto its associated reference distribution RHobs (blue curve)
in terms of PDF (a) and CDF (noted FRH; b). The reference expectation (first moment of the distribution) noted RHobs is drawn as the
gray dotted line centered within a ±15 % RH range (gray shade) on the PDF. The expected value (median) of the distribution is shown as the
dotted green line on the CDF, and the 0.25–0.75 quantile interval is shaded in green.

3.1.2 Application to a single grid box

The deterministic comparison and the CDF-based compari-
son are applied to each ARPEGE grid point. Figure 2 illus-
trates further the complementarity of the two approaches for
a representative case.

For any given ARPEGE grid box the values P and D are
computed from Eqs. (3) and (4). As RHmod rarely falls in a
RHobs percentile, P is calculated with a linear interpolation
between the two encompassing percentiles. A probabilis-
tic confidence interval for the reference is defined at every
ARPEGE grid box as the inter-quartile [0.25, 0.75] (green
shading in Fig. 2b). This interval encompasses 50 % of the
RHobs distribution centered around the median (FRH = 0.5;
dotted green line).

In the example shown in Fig. 2, ARPEGE’s RHmod is
rather close to the mean reference value as it lies within
15 % RH from RH (D = 11 % RH; see Fig. 2a). However, the
projection of RHmod onto the CDF (Fig. 2b) indicates that it
is located in the upper quartile of the distribution outside the
[0.25, 0.75] reference confidence interval (Fig. 2b). RHobs
has a low probability of P = 0.16 of being lower than or
equal to RHmod. In other words, at this grid box and time the
probabilistic approach indicates that ARPEGE has a fairly
high probability of overestimating RH, while the determin-
istic comparison indicates an acceptable difference with the
averaged value RH. This example illustrates how the proba-
bilistic comparison increases the information content in the
reference by explicitly accounting for the reference uncer-
tainty, which leads to a different conclusion than with the
deterministic comparison that is based on a constant a priori
uncertainty.

3.2 Applied methodology

3.2.1 Precipitation masking

As underlined in Sect. 2.1, the retrieval of RH profiles from
SAPHIR measurements is performed for both clear sky and
cloud-covered areas to the extent that scattering by large

hydrometeors produced by convective activity is negligi-
ble (Greenwald and Christopher, 2002; Hong et al., 2005).
Therefore, all ARPEGE grid boxes associated with rainfall
rates strictly above 0 mm h−1 are filtered out.

3.2.2 Temporal statistical accumulation

The comparison method is applied to a spatiotemporal do-
main covering the tropical belt over 3 months (April–May–
June 2018).D values are calculated at each grid box and time
step and are averaged over time into a D value representing
the average departure between ARPEGE’s RHmod and the
reference at this grid box. In terms of the probabilistic com-
parison, P values are also calculated at each grid box and
time step and are aggregated over time to compute a PDF
(Kirstetter et al., 2015), whose mode P3M (3M stands for “3
months”) is kept. Figure 3 illustrates this process.

4 Results

4.1 Uncertainty related to the assumption of Gaussian
distributions

In deterministic comparison settings, the uncertainty may be
defined based on a priori assumptions, instrumental biases
and retrieval errors. This uncertainty is often assumed to be
multiplicative with respect to the reference value, and it is
assumed that the underlying density function is unimodal,
symmetric and follows a Gaussian model so that the uncer-
tainty is defined as a standard deviation. However, a Gaus-
sian model would not have been adapted to the dataset. A
Shapiro–Wilk test is run with each and every individual PDF
of the dataset (with αSW = 0.01). The Shapiro–Wilk test is a
widely used test of normality in statistics (Shapiro and Wilk,
1965). Finding a p value above αSW would mean that the
null hypothesis (“the PDF fits a normal distribution”) cannot
be refuted. For each pressure layer, more than 99.99 % of the
PDFs have p values under αSW, meaning that almost none of
them can be qualified as Gaussian. With the probabilistic ap-
proach, the uncertainty can be defined with the inter-quartile

https://doi.org/10.5194/acp-22-3811-2022 Atmos. Chem. Phys., 22, 3811–3825, 2022
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Figure 3. Diagram presenting the spatial and temporal aggregation method for a single grid point (blue square when the grid box was passed
over by SAPHIR, red when not and/or filtered out). P3M is the mode of the distribution aggregated over all the considered time steps for this
grid box.

range (IQR) of the distribution calculated from the CDF at
each time step and each grid box (see Sect. 3.1.2). The IQR
represents the difference between the RH values correspond-
ing to probabilities of 0.75 and 0.25. Note that no assumption
is made on the shape of the distribution in this case; hence the
uncertainty is objectively and robustly quantified.

The smaller the IQR, the narrower the distribution and the
smaller the uncertainty in the reference. Values of the IQR
can be compared with the deterministic 15 % RH uncertainty.
If the IQR is greater (lower, respectively) than 15 % RH, then
the reference distribution is broader (narrower, respectively)
than assumed with a set 15 % RH error.

Figure 4a and b show an example of reference RHobs
and the associated IQR calculated at a given time step
(1 April 2018 at 00:00 UTC) and for a given atmospheric
layer (650–700 hPa). Figure 4c shows the frequency of oc-
currence for cases with IQR> 15 % RH at each grid box over
the 3-month period April–June 2018.

The spatial distribution of the IQR (Fig. 4a) shows con-
trasted areas that match the patterns of RHobs (Fig. 4b). Low
IQR values (IQR≤ 15 % RH; appearing in red and orange
in Fig. 4a) are consistently found where the atmosphere is
dry, for example above the Atlantic Ocean and the Arabian
Sea. High IQR values (IQR> 15 % RH; in yellow to green
in Fig. 4a) are found in a moister atmosphere, especially
above South America, Africa and South Asia. This suggests
that while scaling relation between RH and its uncertainty
is relevant, a typical 15 % RH assumption lacks dynamics to
represent the true uncertainty. The contrasted differences be-
tween the IQR< 15 % RH and IQR> 15 % RH areas show
that the widths of the RHobs distributions vary significantly
and are linked to the same processes. In addition, in the areas

with IQR> 15 % RH the wider range of RHobs illustrates the
equally wide diversity of underlying situations. These results
illustrate the need to use a comparison method that adapts
to the range of variability at each grid box. Especially in
the areas where the IQR is high, using a deterministic ap-
proach solely based on the distribution expectation does not
capture the variety and complexity of situations and is thus
ill-advised. However, we note that high IQR values found in
moister situations may also result from multiple causes such
as the aggregation of distinct sub-grid processes or higher
retrieval errors (Sivira et al., 2015; Brogniez et al., 2016).
Nonetheless, using a probabilistic approach makes any com-
parison more specific to each situation by avoiding the use
of a consistent simplification (i.e., a set confidence intervals)
that does not fit the underlying complexity.

The comparison of the two uncertainty approaches over
the whole period (Fig. 4c) confirms the spatial correlation
between the IQR and the classical patterns of the humidity
field. This is particularly visible around the South Pacific
and South Atlantic highs, where the proportion of IQR un-
der the 15 % RH threshold reaches 70 % and even 100 %. In
these subsiding areas, the atmospheric RH is ruled by large-
scale processes that have little to no instantaneous variability
at the scale of our grid. This results in more homogeneous
conditions within the same grid box, which explains the nar-
rower distributions of the retrievals (i.e., smaller IQR). The
Intertropical Convergence Zone (ITCZ) appears through ar-
eas of low proportion (0 % to 30 % of the retrievals’ dataset)
of under 15 % RH IQR. High dynamics characterizing this
zone result in smaller-scale processes that impact the RH
field and result in heterogeneous conditions within the same
grid box and larger IQR. Most importantly, IQR varies across

Atmos. Chem. Phys., 22, 3811–3825, 2022 https://doi.org/10.5194/acp-22-3811-2022
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Figure 4. (a) Spatial distribution of the inter-quartile range (IQR) and (b) mean of reference (RHobs) representing the observed spatial field
of RH from SAPHIR on 1 April 2018 at 00:00 UTC and in the 650–700 hPa layer. (c) Frequency of IQR≤ 15 % RH over the 3-month period
(April to June 2018).

space and time, and it can be partly linked to the RH field and
explained by large- and fine-scale processes. These highlight
the need for a comparison method that exploits and takes
into consideration the variability in the dataset and adapts
the comparison to each situation.

One can note that while these results vary significantly de-
pending on the atmospheric layer, they are coherent with the
expected RH field patterns. For example, in the upper two
atmospheric layers (100–200 and 250–350 hPa), the homo-
geneous dryer conditions result in almost all retrieval dis-
tributions having IQR under 15 % RH. The two lower lay-
ers (750–800 and 850–950 hPa), closer to the ground, show
strong ocean–continent contrasts. This contrast shows the
difference in processes that depend on the surface, with ex-
tremely low frequencies of IQR under 15 % RH above the
continents. This suggests that the lower the layer, the wider
the distribution of retrieved RH.

In all cases where the IQR is above 15 % RH, flattened and
possibly non-Gaussian RH distributions may result in non-
representative RHobs values associated with varying confi-
dence intervals that make the deterministic comparison less
appropriate. These results show that these situations can be
quite frequent and geographically distributed. The proba-
bilistic method allows us to adapt the confidence to each dis-
tribution regardless of the width and shape and thus improves
the assessment accuracy both overall and at the grid box and
time step scale.

4.2 Application to a single time step

Figure 5 shows the comparison results between the reference
RHobs and ARPEGE’s RHmod obtained with both determin-
istic and probabilistic methods.

The comparisons are performed using wide discrete color
bars in order to discuss the complementarity of the methods
and not specific issues of the model. The deterministic ap-
proach shows that a majority of RHmod values are within the
interval of ±15 % RH of RHobs (gray areas in Fig. 5a). By
contrast, the probabilistic approach reveals that only a few
of the corresponding P values fall within the [0.25, 0.75]
probabilistic interval (blue or red in Fig. 5b). Large areas of
deterministic reasonable differences such as in the southern
Atlantic are associated with P > 0.75, meaning that the cor-
responding RHmod has a high probability of overestimating
the reference. The inset in the maps is a zoom that highlights
similar bias patterns with both methods but with higher con-
trasts with the probabilistic one. The patterns only appear in
the deterministic results when using a continuous color scale
that allows small differences to be shown with respect to
the mean RHobs. These patterns can be observed with both
methods in general, but the small differences between the
RHmod and RHobs prevent a robust diagnosis. The probabilis-
tic results are particularly contrasted in comparison because
these RHmod values fall into the extreme quartiles (P < 0.25
or P > 0.75). The scatterplot (Fig. 5c) further illustrates the
added value of the probabilistic approach. The confidence
interval set by P within [0.25, 0.75] (gray triangular shape)
closely follows the RHmod = RHobs line, showing the overall
consistency of the two methods. For small values of RH, this
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Figure 5. Comparisons between SAPHIR’s RHobs and ARPEGE’s RHmod on 1 April 2018 at 00:00 UTC and for the 400–600 hPa atmo-
spheric layer. (a) Map of the difference D, (b) map of the probability P , and (c) scatterplot between RHobs (x axis) and RHmod (y axis); the
percentile associated with each point is P > 0.75 (blue), 0.25<P < 0.75 (gray) and P < 0.25 (red); the solid line represents the y = x line,
and the dotted lines delimit the x± 15 % RH around values.

interval is much tighter around the line than at higher values.
The confidence interval widens for higher values of RH, con-
firming that the probabilistic method is more specific than a
deterministic approach with constant error bars around the
RHmod = RHobs line. Furthermore, situations where P falls
within the [0.25, 0.75] interval are less common when com-
pared to the ±15 % RH range defined around the mean. The
blue and red dots that appear within the±15 % RH range in-
dicate cases where RHmod is close to RHobs (D within [−15,
15]) but falls in extreme RHobs distribution quartiles (P out-
side [0.25, 0.75]). Most blue and red points (respectively
above and under the ±15 % RH range) show that a strong
deviation from mean nearly always matches with extremes
of the distribution (P < 0.25 or P > 0.75).

In short, the probabilistic method is consistent with the de-
terministic comparison on extreme biases and adds more in-
formation for cases where RHmod seems close to RHobs.

4.3 Comparison results for an extended period of time

4.3.1 Distributions

The two methods are applied to the entire dataset over the
period from April to June 2018. The distributions of each
method’s results are represented as a histogram (Fig. 6a)
and rank histogram diagram, also known as a Talagrand di-
agram (Hamill, 2001; Wilks, 2011; Kirstetter et al., 2015;
Fig. 6b). Note that while the Talagrand diagram is often used
to assess ensemble forecasts by comparing a single reference
to a distribution of forecast ensembles, its interpretation is
similar when comparing a single simulated value to a refer-
ence distribution. This graphical method illustrates where the
ARPEGE’s RHmod falls in the distribution function CDF of

RHobs. In the case of perfect forecasts, each quantile repre-
sents an equally likely scenario for the ARPEGE model. The
perfect case is a flat rank histogram indicating that the RHobs
probability distribution is well represented by RHmod.

As seen in Fig. 6a, the deterministic difference
D =RHmod− RHobs displays a unimodal and symmetrical
distribution centered around 0. All layers combined, more
than 67 % of the RHmod values deviate by less than 15 % RH
from the mean estimate RHobs. Nearly 20 % of all RHmod
values are too high by more than 15 % RH and fewer than
2 % by more than 50 % RH. Yet the Talagrand diagram in
Fig. 6b shows that the associated percentiles P display a bi-
modal distribution with maximum frequencies concentrated
at the two extreme ends. Half the ARPEGE’s RHmod values
are associated with extreme percentiles of the RHobs distri-
bution (P < 0.05 or P > 0.95). Fewer than a quarter (23.3 %)
of the RHmod values fall within the centered half of the RHobs
distribution. The Talagrand diagram allows us to draw direct
conclusions on the reliability of the forecasts. Assuming that
the forecasts are spread far enough in both time and space
to be considered independent from each other, the probabil-
ities of finding each percentile of the histogram should be
fairly equal, giving the diagram a flattened aspect, which is
not observed here. The U shape indicates that the extreme
classes are over-represented and compensate for the under-
estimations of the central quantiles (Candille and Talagrand,
2005). There is also a tendency of ARPEGE to overestimate
RH. These features remain when focusing on RHmod val-
ues within the 15 % RH from the mean estimate (gray his-
togram in Fig. 6b). This confirms that the overestimation is
present within the deterministic confidence range. Validat-
ing RHmod values by their proximity to the mean reference
(−15<D<+15 % RH) is not sufficient to assess their accu-
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Figure 6. Distribution of the results from each comparison method applied to all layers over the period April to June 2018: (a) histogram
of the deviations D from the mean (in red: D<−15 % RH; gray: −15 % RH≤D ≤ 15 % RH; blue: D> 15 % RH) and (b) rank histogram
diagram, also known as a Talagrand, of P (in gray: values of P when D is within [−15, 15] % RH; in white: for all values of D).

racy, especially when they fall in the extreme percentiles of
the associated distribution (P < 0.25 or P > 0.75).

The comparisons are performed independently for each at-
mospheric layer in Fig. 7. The distributions are represented
as boxplots in Fig. 7, with the width of the box defined by the
first and third quartiles, and the whiskers indicate the most
extreme values but with their length limited to 1.5× IQR.
This highlights a variability in terms of both shift and spread.

The distributions of the deviations from the mean D

(Fig. 7a) show a tendency of the model to overestimate RHobs
in the upper-tropospheric layers (100–200, 250–350 hPa),
to close in on RHobs in the mid-tropospheric layers (400–
600 hPa) and to slightly underestimate RHobs in the lower-
tropospheric layers (650–950 hPa). The highest layer (100–
200 hPa) has the most off-centered results, with half (50.3 %)
of the simulated values overestimating RHobs by more than
15 % RH. More than a third (38.7 %) of the simulations in
the layer 750–800 hPa are more than 15 % RH below RHobs
(D<−15 % RH). The other layers have the majority of their
distribution well within the ±15 % RH range.

The distributions of the associated percentiles are wider
(Fig. 7b) and offer a deeper understanding. The comparison
results are divided into three categories that follow the de-
viation from the mean intervals. They are drawn separately
to highlight the consistency of the two methods’ extreme re-
sults. The ARPEGE’s RHmod values distant from RHobs by
more than 15 % RH (D outside [−15, 15]) almost always fall
in either one or the other extreme end of the estimated distri-
bution (red and blue boxplots in Fig. 7b). Table 1 provides,
for each atmospheric layer, the portion of the distributions
that fall inside or outside the interval [−15%; 15 %]. The pro-
portion of extremes varies from one layer to the another. This

allows us to separate the two maxima of the U shape of the
rank histogram (Talagrand) diagram (Fig. 6b): the left-hand
extreme is largely influenced by the underestimated values
in the lower layers (750–800, 850–950 hPa), while the right-
hand extreme is driven by the over-representation of overes-
timations in the higher layers (100–200, 250–350 hPa).

An added value of the probabilistic approach resides in the
contrast and variability in the results within the ±15 % RH
range. As previously shown, the implicit hypothesis in a de-
terministic method does not allow the confidence interval to
be narrowed further than 15 % RH, thus preventing a more
contrasted diagnosis of the model’s outputs. The gray box-
plots highlight the great variability in cases contained within
the deterministic interval that is not revealed by a small dif-
ference D to the mean estimate RHobs. Even though the dis-
tributions of P are fairly spread, in the highest layers (above
400 hPa) they have a strong tendency to fall in higher per-
centiles of the reference distributions: more than 75 % of the
simulations of the first two layers (between 100 and 350 hPa)
are above 0.75 % and 65 % into the upper 0.05. This con-
firms the general overestimation displayed by the determinis-
tic results in these layers. The underestimations of the lower
layers are also clear, with 54.4 % and 39.1 % of the simu-
lations falling into the lower quarter of the reference distri-
bution in the second-to-lowest layer (750–800 hPa) and low-
est layer (850–950 hPa), respectively. The distribution of the
650–700 hPa layer is the most centered, yet it is spread and
still has more than half of the associated percentiles (66.2 %)
outside the 0.25–0.75 interval.

The 400–600 hPa layer has the narrowest distribution of
deviations from the mean within the ±15 % RH range. How-
ever, the distribution of the associated percentiles is mostly
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Figure 7. Distribution the results of each method of comparison applied over the period April to June 2018 represented as boxplots for each
layer: (a) deviationsD from mean and (b) associated percentiles P divided into three distribution types depending on the category ofD (red:
D<−15 % RH; gray: −15 % RH≤D ≤ 15 % RH; blue: D> 15 % RH). The weights of each category within their layer’s distribution are
indicated in Table 1.

Table 1. Part (in percent) of the distributions within the three categories of differences D for each atmospheric layer.

D<−15 % RH −15≤D≤ 15 % RH D> 15 % RH

100–200 hPa 1.32% 48.34% 50.34%
250–350 hPa 0.41 % 71.62 % 27.97 %
400–600 hPa 0.87 % 87.66 % 11.47 %
650–700 hPa 13.23 % 74.31 % 12.46 %
750–800 hPa 38.67 % 52.37 % 8.96 %
850–950 hPa 22.34 % 70.45 % 7.21 %

located towards the higher half (64.7 % above 0.75), and
nearly half of the simulations (47.0 %) fall into the upper ex-
treme 0.05 %.

4.3.2 Maps: deterministic results

The two maps in Fig. 8 show the results of the determinis-
tic approach in terms of the average deviation from RHobs
(D) (Fig. 8a) and frequency of RHmod within the ±15 % RH
range (Fig. 8b) for the 400–600 hPa layer (other layers can
be found in the Supplement). The combined results of the
3-month period show recognizable patterns.

The majority of the average deviations D are close to zero
(displayed in gray in Fig. 8a). These regions have 80 % to
100 % of single-time-step D within the ±15 % RH range
(light to dark green in Fig. 8b). On average, the model’s over-
estimated RH values (blue) are localized above known con-
vective areas (ITCZ, South Pacific Convergence Zone, oro-
graphic convection areas along the western coast of South
America). These on-average overestimated zones are charac-
terized by low frequencies of single-time-step D within the
±15 % RH range (50 % and less, appearing as yellow and
orange in Fig. 8b). This indicates that this potential bias oc-

curs at least half the time over the study period. Only a small
number of pixels show an on-average underestimation (red),
as predicted by the distribution of the deviation results (see
Fig. 7a and the discussion in Sect. 4.3.1).

The results of this method reveal a slight moist bias in the
convective zones but mostly validate ARPEGE simulations
everywhere else outside these areas.

4.3.3 Maps: probabilistic results

Figure 9 represents maps of the probabilistic comparison
method in terms of spatial distribution of the mode P3M of
the PDF calculated from the single-time-step P aggregated
over the 3 months and the frequencies of P within the three
categories (P < 0.25, 0.25≤ P ≤ 0.75, P > 0.75).

The probabilistic comparison method highlights a major-
ity of contrasted extreme values, which indicates a high prob-
ability of ARPEGE’s RHmod falling into one or the other ex-
treme quarter of the RHobs CDF. The maps show organized
and contrasted spatial patterns with a majority of overesti-
mated areas (blue to dark blue in Fig. 8a) along with some
underestimated patches (red to dark red). The overestima-
tions are predominant with a frequency of at least 40 % in
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Figure 8. Deterministic comparisons for layer 400–600 hPa over the period from April to June 2018. (a) Map of the mean difference
D =

(
RHmod−RHobs

)
and (b) frequency of instantaneous difference D falling within [−15, 15] over the 3-month period.

Figure 9. Maps of the probabilistic method for the layer 400–600 hPa applied over the period from April to June 2018. (a) Mode P3M and
frequencies of single-time-step P within (b) the middle half (0.25≤ P ≤ 0.75), (c) lower quarter (P < 0.25) and (d) upper quarter (P > 0.75)
of the distribution of estimates.
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most areas (Fig. 8d). The convective zones are overestimated
with the deterministic method but seem more complex, with
probability P falling in both the middle half and the upper
extreme segments of the RHobs CDF.

The red patch located south of the African continent
(Fig. 9a) indicates a recurring underestimation of the model,
with RHmod values falling in the lower quarter of the RHobs
CDF. These underestimations happen at least half of the
time during the studied period (in bright red in Fig. 9c).
The frequencies of simulated values within the middle-half
part of the reference distribution are fairly low (mostly un-
der 0.4; Fig. 9b). The frequencies of P > 0.75 are almost
null (Fig. 9d). Other underestimated areas can be observed,
e.g., above the Caribbean and above the Pacific Ocean, east
of Australia. Above the Indian Ocean, even though most D
values are within the ±15 % RH range, the situation appears
to be significantly more contrasted with the probabilistic ap-
proach. Again, the deterministic approach only finds RHmod
values close to RHobs; the probabilistic method assigns high
probabilities for RHmod to fall into one or the other extreme
of the RHobs distribution. In this area, both high frequencies
of P in the lower and the upper quarters of the distribution
are found spatially close to each other and without any par-
ticular pattern (speckled aspect in the Indian Ocean; Fig. 9a,
c and d).

These various problematic areas do not particularly stand
out when solely using a deterministic comparison approach.
The probabilistic method allows for a more contrasted and
detailed assessment. Note that the analysis of the results with
regard to the model specificities, such as its parameterization
of convection, are outside the scope of this paper.

5 Conclusion

This paper showcases the importance of considering all the
reference information content through a probabilistic ap-
proach that considers the reference distribution to assess
ARPEGE model simulations. The probabilistic reference is
derived from finer-scale RH estimates aggregated into a
probability density function at the ARPEGE spatial resolu-
tion. In widely used deterministic comparison approaches,
the reference distribution is only considered through its first
moment (and sometimes its second moment). Moreover,
nowadays, a lot of satellite products offer a second moment
that enables intercomparison studies. However, the propaga-
tion of uncertainties assumes a Gaussian distribution, which
is not the case here. We developed a probabilistic approach
for the retrieval of RH that gets rid of such assumptions.

The improved assessment with the probabilistic approach
is demonstrated by comparing the insights obtained on
ARPEGE with those from a deterministic method involving
the difference RHmod−RHobs and a ±15 % RH confidence
interval.

Initial results highlight the inherent inaccuracy of solely
using averaged references due to the important variability in
spread and shape of the reference estimates. By computing
the inter-quartile range (IQR) for the whole reference dataset,
it was found that the spread of the PDFs varies significantly
and is linked to the RH magnitude, with wider distributions
in moist areas and narrower distributions in drier conditions.
A deterministically set confidence interval is relevant to the
variability in the spread to some extent only. This promotes
a comparison method that quantifies more precisely the de-
viation of the simulated value irrespective of the reference
distribution variability, spread and shape.

Both deterministic and probabilistic methods were con-
fronted in a single time step and over the 3-month pe-
riod. Most RH values simulated by ARPEGE fit within the
±15 % RH confidence interval with a slight moist bias de-
tected in the ITCZ. However, the probabilistic method re-
veals that RHmod values that differ from RHobs by more
than 15 % RH (D<−15 % RH or D>+15 % RH) often
correspond to the extreme 5 % of the reference distribu-
tions (P < 0.5 or P > 0.95). The probabilities associated
with RHmod values within the deterministic confidence range
are often outside the probabilistic confidence interval [0.25,
0.75], which highlights model biases. The highest layers
(100–600 hPa) show high occurrence of probabilities within
the upper quartile of the reference distributions (P > 0.75),
allowing the conclusion that ARPEGE overestimates RH in
these layers. The middle and lower layers (600–950 hPa)
have P distributions more centered around the reference
median but that are wider than the 0.25–0.75 interval. For
these layers, the spatial distribution of the probabilistic re-
sults shows a likely overestimation of ARPEGE in convec-
tive areas and a tendency to underestimate specific subsiding
systems. This last observation is not detected with the deter-
ministic method, and it adds new perspectives on potential
biases of ARPEGE.

Overall, the probabilistic comparison allows a more con-
trasted and complete assessment. The bias structures that are
revealed fit known humidity patterns. A more complete anal-
ysis with regard to the model’s specificities could help high-
light areas of improvement. The method presented here can
be generalized to different models, variables and observa-
tions.
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