
See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/354404018

An Analysis of Fracture Network Intersections from DFN Models and Data:

Density Distribution, Topology, and Stereology

Conference Paper · June 2021

CITATIONS

0
READS

9

4 authors:

Some of the authors of this publication are also working on these related projects:

CRITEX View project

Grown DFN View project

Etienne Lavoine

Itasca Consultants SAS

7 PUBLICATIONS   6 CITATIONS   

SEE PROFILE

Philippe Davy

French National Centre for Scientific Research

302 PUBLICATIONS   12,417 CITATIONS   

SEE PROFILE

Caroline Darcel

65 PUBLICATIONS   1,578 CITATIONS   

SEE PROFILE

Diego Mas Ivars

Svensk Kärnbränslehantering AB

69 PUBLICATIONS   1,372 CITATIONS   

SEE PROFILE

All content following this page was uploaded by Philippe Davy on 08 September 2021.

The user has requested enhancement of the downloaded file.

https://www.researchgate.net/publication/354404018_An_Analysis_of_Fracture_Network_Intersections_from_DFN_Models_and_Data_Density_Distribution_Topology_and_Stereology?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_2&_esc=publicationCoverPdf
https://www.researchgate.net/publication/354404018_An_Analysis_of_Fracture_Network_Intersections_from_DFN_Models_and_Data_Density_Distribution_Topology_and_Stereology?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_3&_esc=publicationCoverPdf
https://www.researchgate.net/project/CRITEX?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/project/Grown-DFN?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_9&_esc=publicationCoverPdf
https://www.researchgate.net/?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_1&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Etienne-Lavoine-2?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Etienne-Lavoine-2?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Etienne-Lavoine-2?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Davy?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Davy?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/French-National-Centre-for-Scientific-Research?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Davy?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caroline-Darcel?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caroline-Darcel?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Caroline-Darcel?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Mas-Ivars?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_4&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Mas-Ivars?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_5&_esc=publicationCoverPdf
https://www.researchgate.net/institution/Svensk-Kaernbraenslehantering-AB?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_6&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Diego-Mas-Ivars?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_7&_esc=publicationCoverPdf
https://www.researchgate.net/profile/Philippe-Davy?enrichId=rgreq-8e0360013a4fb5659b5223ea5ba0b42e-XXX&enrichSource=Y292ZXJQYWdlOzM1NDQwNDAxODtBUzoxMDY1Njg3NjA2ODk4Njg5QDE2MzEwOTExMzMyMzg%3D&el=1_x_10&_esc=publicationCoverPdf


1. INTRODUCTION 

Fracture connectivity plays a major role on the 

hydrogeological and mechanical behavior of fractured 

rock mass (Davy et al., 2018; De Dreuzy et al., 2001). 

Most studies focus on describing connectivity from a 

density description using percolation parameter 

(Berkowitz, 1995; Bour and Davy, 1998). It is also 

possible to quantify network connectivity from a 

topological approach as fracture intersections statistics 

can be easily established in 2D from outcrop observations 

(Sanderson and Nixon, 2015). In this kind of approach, 

the fracture network is described as a graph of nodes 

(representing fracture intersections and terminations), 

linked by fracture segments (Fig. 1.a). Nodes can thus 

correspond to isolated fracture tips, or T and X 

intersections. Those statistics can serve as a proxy to 

characterize fracture networks (Fig. 1.b), and even 

estimate their connectivity and hydrological behavior 

(Saevik and Nixon, 2017).  

 

a) 

 

b) 

Fig. 1. a) Typology of fracture nodes (tips and intersections) 

on 2D fracture networks. b) Ternary diagram of the proportion 

of node types for different 2D fracture networks. Modified 

from (Sanderson and Nixon, 2015) 

In 3D, fracture intersections are line segments, 

terminations are fracture edges and it is not as obvious to 
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ABSTRACT: Intersections between the fractures of a network defines its connectivity and constitute a key component both for the 

hydrogeological and mechanical behavior of fractured rock masses. Existing analyses of 2D field trace maps provide a framework 

for analyzing 2D fracture intersection distributions. In this paper, we perform a complete analysis of 3D fracture intersections 

distribution of various DFN models and investigate how it can be related to the 2D distribution of intersecting virtual outcrops. The 

DFN models are either fully random (with no correlation between fractures) or defined from a genetic process (named UFM model). 

By comparing with natural 2D field trace maps, we show that, unlike the fully random DFN model which produces only X 

intersections, the UFM model is quantitatively consistent with the intersection distribution observed on field trace maps. The analysis 

framework developed here can be used as a relevant metric to select DFN models in terms of connectivity and give insights on the 

3D topology of fracture networks. 

 

 

 



define a typology as the one presented in Fig. 1 

(Sanderson et al., 2018). Moreover, we seriously lack 

direct observations on the geometry and nature of fracture 

intersections and the 3D vision of fracture intersections 

most of the time relies on 3D models of discrete fracture 

networks (DFN). Alghalandis et al. (2011) list all possible 

intersection situations (face-face, edge-face, edge-

edge…) in a network made of polygonal fractures. Most 

of them are unlikely to occur in the widely used 

Poissonian models, where the fractures are generated 

independently of each other. The only way to obtain a 

wealth of fracture intersection types is to introduce 

correlations between fractures as it is in genetic DFN 

models, where fractures grow and stop according to their 

surrounding fractures. The UFM model of Davy et al. 

(2013), based on three simplified mechanical rules 

(nucleation, propagation, and arrest), introduces three 

types of fracture intersections: X, T-side, and T-plane 

intersections (Fig. 2). 

 

Fig. 2. Typology of fracture intersections in 3D, as defined in 

the UFM model 

In this paper, we perform a complete analysis of the 

intersections between fractures, as they arise from entire 

fractures in 3D volumes, and as they can be observed from 

fracture traces seen on 2D sampling planes. We also aim 

to evaluate if the nature and distribution of intersections 

can be used as a relevant metric for selecting DFN 

models. Both field data (fracture trace maps) and DFN 

models are analyzed in the process. The DFN models are 

based on disc-shaped assumption for individual fractures. 

Hence, intersections in 3D can be viewed as segments 

whereas they are reduced to intersection points between 

fracture traces in 2D. 

First, we show analytically and numerically how the 3D 

population of fracture intersections are related to the 

general DFN parameters such as fracture density and size 

distribution. Secondly, we perform the stereological 

analysis – 3D/2D- of the fracture intersections. We show 

that the number of fracture intersections observed in 2D 

is directly related to the total 3D intersection size. Finally, 

we show that, unlike the fully random DFN model which 

produces only X intersections, the UFM model is 

quantitatively consistent with the intersection distribution 

into T and X types otherwise observed on natural trace 

maps.  

2. 3D DFN INTERSECTIONS STATISTICS 

Because of the 2D nature of fracture data (outcrops), we 

do not have access directly to 3D intersections statistics 

from real fracture networks. Nevertheless, we can 

compute these statistics on 3D DFN models (stochastic 

and genetic) and use it as a reference. Intersection 

statistics can be established by computing the probability 

that fracture planes intersect in a given volume, 

considering their orientation and extension. To our 

knowledge, it only exists few studies about fracture 

intersections statistics in 3D. Barker (2018) provides a 

collection of formulae for the intersection of fracture 

planes with lines (boreholes or scanlines), outcrop planes, 

and with other fracture planes, considering any convex 

shape. It is then possible to derive statistics of 

intersections size for a given network of planar fractures. 

Alghalandis et al. (2011) show that an exponential 

distribution of fracture size leads to an exponential 

intersection size distribution resulting in more small 

intersections than large ones. We show here that 3D 

fracture intersections typology and statistics are a 

consequence of our models (Poissonian and UFM) that 

can be estimated from input parameters. 

2.1 Poissonian DFN 

A Poissonian DFN assumes that fractures are randomly 

positioned in the target generation volume with a 

prescribed size and orientation probability distribution 

and a total fracture intensity 𝑝32 (i.e., the total fracture 

surface divided by the generation volume). We define 6 

different Poissonian DFN models of same fracture density 

𝑝32 = 0.5 𝑚−1, with fractured contained in cubic systems 

of size 𝐿 = 100 𝑚, all following uniform orientation 

distribution, but different sizes distributions: 

- Constant fracture size 𝑙𝑓 = 10 𝑚 

- Power-law size distribution of exponent 𝑎 =

[3.0,3.2,3.4,3.8,4.0,4.4] ranging from 𝑙𝑚𝑖𝑛 =

1 𝑚 to 𝑙𝑚𝑎𝑥 = 50 𝑚 

For each model we perform 10 realizations to compute 

network statistics. Fig. 3 shows the intersection size 

distributions for each realization of each model. 

 
Fig. 3. Intersection size distribution for 3D Poissonian DFNs 

following various size distribution. Lines are drawn to fit 

results. 



For all models, the intersection size distribution follows a 

linear relationship for intersections sizes smaller than the 

minimum fracture size. For DFNs following a power-law 

fracture size distribution 𝑛(𝑙𝑓)~𝑙𝑓
−𝑎, the intersection size 

distribution 𝑛𝐼(𝑙𝐼) also follows a power-law relationship 

of equation: 

𝑛𝐼(𝑙𝐼)~𝑙𝑓
−𝑎+1                (1) 

In addition, we demonstrate that the total volumetric 

intersection length 𝑝31,𝐼 is only related to the DFN density 

𝑝32 with the following relationship (see Appendix): 

𝑝31,𝐼 = ∫ 𝑛𝐼(𝑙𝐼)𝑙𝐼𝑑𝑙𝐼 =
𝑘𝜃.𝑘𝑙𝐼

2𝛽𝑓
.(𝑝32)2               (2) 

with 𝑘𝜃 an orientation factor, 𝑘𝑙𝐼
 the ratio between the 

intersection size and the size of the smallest intersecting 

fracture, and 𝛽𝑓 a fracture shape factor (𝜋/4 for disc-

shaped fractures). If the fracture orientation distribution is 

uniform, 𝑘𝜃 = 2/π. 

Thus, the total fracture intersection length 𝑝31,𝐼 is 

independent of the fracture size distribution exponent 

(Fig. 4). 

 
Fig. 4. Evolution of total intersection length per unit volume 

𝑝31,𝐼 with fracture density 𝑝32 

2.2 UFM DFN 

The UFM model is a genetic DFN model based on three 

basic processes: nucleation, fracture growth, and arrest. A 

detailed description of the model is given in (Davy et al., 

2013). One main characteristic of the UFM model is that 

generated DFNs contain both T and X intersections, while 

Poissonian DFNs have only X intersections. According to 

the arrest rule (a fracture cannot cross a larger one, but the 

reverse is possible), X intersections occur when large 

fractures propagate through smaller ones while T 

intersections occur when a small fracture is blocked by 

larger ones.  

We perform here the same kind of analysis as above on 

UFM DFNs. Growth parameters are chosen so that the 

fracture size distribution is a double power-law, 

composed of a dilute regime – i.e., small fractures that are 

not abutting another fracture on average – of exponent 

𝑎𝑑 = 3, and a dense regime – large fractures that are 

almost all abutting another one – of exponent 𝑎𝐷 = 4, 

with minimum fracture size 𝑙𝑛 = 1 𝑚, and a transition 

length 𝑙𝑐 = 4 𝑚. Finally, T intersections are set to be 20% 

of the abutting fracture size. To study UFM models 

properly, we compare the obtained intersection size 

distribution with the one of an equivalent Poissonian 

model (obtained by randomizing fracture positions, thus 

breaking fracture correlations). For both models we 

generate 10 realizations for statistical analysis. We 

summarize fractures and intersections statistics in Table 

1. 

Table 1. Fracture and intersections statistics of the UFM and 

equivalent Poissonian models 

 UFM Poissonian 

Fracture number 103 000 103 000 

Fracture density 0.9 0.9 

Intersection number 145 000 181 000 

T-Plane 35%  

T-Side 11%  

X 54% 100% 

 

For the selected parameters set, the UFM model shows 

55% of X intersections and 45% of T intersections. We 

also notice that it has less intersections in total than its 

equivalent Poissonian model. Fig. 5 shows the volumetric 

intersection size distribution. The UFM has more small 

intersections (which corresponds mainly to T 

intersections), and less large intersections.  

 

Fig. 5. Intersection size distribution for the UFM and 

equivalent Poisson DFN 

3. STEREOLOGICAL ANALYSIS OF FRACTURE 

INTERSECTIONS 

This section aims to relate both 3D and 2D intersections 

statistics by performing a stereological analysis. 

Stereological rules development relies on the definition of 



the intersection probability between 3D DFN and 2D 

observation planes. 

3.1 Poissonian DFN 

We first perform a stereological analysis on Poissonian 

DFN models defined in the previous section. In 3D, the 

fracture network is described as a set of discs, and 

intersections are segments. Fracture traces with an 

observation plane are thus segments, and intersections are 

points (Fig. 6). 

 

Fig. 6. Comparison between 3D Poissonian DFN and traces 

with an observation plane for two different exponent of power-

law size distribution. 

To analyze intersections statistics both in 3D and 2D for 

all DFNs, we compute the following indicators: 

- 𝑝20,𝐼: number of fracture intersections per unit 

outcrop area (2D) 

- 𝑝30,𝐼: number of fracture intersections per unit 

volume (3D) 

- 𝑝31,𝐼: cumulated intersection length per unit 

volume (3D) 

Fig.7 shows that 𝑝20,𝐼  and 𝑝31,𝐼 are independent of the 

fracture size distribution parameters. The ratio 𝑝20,𝐼/𝑝31,𝐼 

(0.5 here) should only depend on the fracture orientation 

distribution. Since we demonstrated in the previous 

Section that  𝑝31,𝐼 is only dependent on 𝑝32, we conclude 

that one should be able to estimate the DFN 𝑝32 by 

counting the number of fracture intersections per unit of 

outcrop area.  

 
a) 

 
b) 

Fig.7. Evolution of a) 𝑝30,𝐼 and 𝑝31,𝐼 and b) 𝑝20,𝐼 with fracture 

size power-law exponent 𝑎 

3.2 UFM DFN 

We proceed to the same kind of analysis on the UFM 

DFNs generated in the previous Section. Fig. 8 shows 

virtual outcrops of UFM and equivalent Poissonian DFN, 

with identified intersections. The two patterns look very 

different. Fracture intersections are much more 

homogeneously distributed in space for the UFM model 

in comparison to the Poissonian model. This is due to the 

difference in fracture density variability between the two 

models (Lavoine, 2020; Lavoine et al., 2019). 

 

a) 



 

b) 

Fig. 8. Virtual outcrops and identified intersection (X in blue, 

T-plane in red, T-side in green) for a a) UFM and an b) 

equivalent Poissonian model 

Table 2 shows intersections indicators values both for the 

UFM and their corresponding equivalent Poissonian 

DFNs. The percentage of T intersections observed on the 

virtual outcrop is only 21% of all intersections (against 

55% in 3D). This percentage may strongly depend on the 

size of T intersections, which is an input of the UFM 

model. Indeed, if this size is set to 0, there will be no T 

intersections in 2D while they exist in 3D as points. For 

both models, the ratio 𝑝20,𝐼/𝑝31,𝐼~0.5. For the UFM 

model, this ratio is the same if looking at T or X 

intersections exclusively. This means that, knowing the 

fracture orientation distribution (and thus fracture 

intersection orientation distribution), one may be able to 

assess the total T and X intersection total length per unit 

volume in the volume domain. 

Table 2. Fracture intersections indicators obtained for the 

UFM (X and T) and the equivalent Poissonian models 

Model 𝑝31,𝐼 𝑝30,𝐼 𝑝20,𝐼 

UFM 0.1080 0.1225 0.0510 

T intersections 0.0231 0.0429 0.0108 

X intersecions 0.0849 0.0796 0.0402 

Poissonian 0.1791 0.1221 0.0868 

 

4. THE FRACTURE INTERSECTION TYPOLOGY 

DIAGRAM IN MODELS AND OUTCROPS 

4.1 Analysis of natural trace maps 

In this Section, we perform 2D analysis of fracture traces 

from real outcrops from the Laxemar site in Sweden in 

the same spirit as the ternary diagram shown in Fig. 1. For 

each outcrop, traces are stored as individual polylines, 

associated to an attribute table for properties (e.g. 

apparent dip and strike). Fig. 9.a shows an example of 

trace map from outcrop ASM000206. The system size is 

about 25 meters and the mapping resolution (which fixes 

the minimum fracture trace length) is 0.5 meter. Fractures 

are colored by their number of T intersections (0, 1 or 2). 

To do so, we develop a procedure to compute the I, X and 

T nodes from fracture traces polylines. In this procedure, 

we identify T configurations even if the T branching is not 

“perfect” (due to mapping and recording limits). For each 

fracture, we compute potential T-intersection for both 

tips. To do so, we compute the smallest distance 𝑑 

between each fracture tip and the rest of the DFN (𝑑 < 0 

if intersection exists, otherwise 𝑑 > 0). Then we 

determine threshold values 𝜖 and 𝑑𝑚𝑎𝑥, to consider the tip 

to be a T intersection or not. To do so, we apply the 

algorithm to a randomized version of the dataset. The 

frequency distribution of distance 𝑑 for the real dataset 

and its radomized version are then used to define the 

threshold values as randomized DFNs are not supposed to 

show T intersections (Fig. 9.b). We apply this algorithm 

to several outcrops and report them in a fracture node 

ternary diagram (Fig. 9.c). 

 

a) 



 

b) 

 

c) 

Fig. 9. a) Example of outcrop (ASM000206) with fracture 

colored by number of  T terminations. b) Difference between 

frequency distribution of distance 𝑑 for the real dataset and its 

radomized version. c) Ternary diagram of the proportion of 

node types for the analysed Laxemar outcrops 

4.2 Comparison with genetic models 

To check the consistency of the UFM model in 

reproducing the intersections distribution of natural 

outcrops, we generate a UFM DFN, whose generation 

parameters are chosen so that orientation and size 

distribution of fractures cutting a virtual outcrop 

reproduce statistics of Laxemar site. To avoid the effect 

of fixing T intersection size in the UFM model as 

identified in the Section 3.b, we set the T intersection size 

to be 0 and apply the T intersection detection algorithm 

described above. Fig. 10 shows an example of a UFM 

DFN virtual outcrop. 

 

a) 

 

b) 

 

c) 

Fig. 10. a) Example of a UFM virtual outcrop with fractures 

colored by number of T terminations. b) Difference between 

frequency distribution of distance 𝑑 for the UFM dataset and its 

radomized version. c) Ternary diagram of the proportion of 

node types for the generated UFM virtual outcrops 

The proportion of isolated tips, X and T intersections 

observed on virtual outcrops is consistent with the ones of 

natural trace maps from Laxemar. This cannot be the 

unique criteria for checking the validity of the UFM 

model to represent natural fracture network but, at least, 

this is a test passed by the model.  

 



5. CONCLUSION 

In this paper, we performed a full 3D analysis of fracture 

intersections population from various models (Poisson 

statistics and genetic). We have shown that, whatever the 

model, intersections density is directly related to the 

fracture density. Moreover, our stereological analysis of 

the problem has shown that the intersection density 𝑝20,𝐼 

observed from 2D observation planes only depends on the 

3D intersection density 𝑝31,𝐼, which is also a function of 

fracture density. Finally, we propose a classification of 

fracture tips in T, X and I from an intersection detection 

algorithm, which was applied both on natural fracture 

trace maps and virtual outcrops from DFN models. We 

show that the 2D intersection population obtained with 

the UFM model is consistent with natural observations 

from the intersection typology point of view.  

All these elements suggest that: 

• it may be possible to have an insight of the 3D 

intersection population of natural fracture networks 

by measuring the T and X intersections density 

(𝑝20,𝐼,𝑇 and 𝑝20,𝐼,𝑋) from available outcrops, in 

addition to the classical fracture size and orientation 

distributions 

• it may be possible to test whether models are 

consistent with data from the intersection point of 

view. 
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APPENDIX 

We show here that, for 3D Poissonian DFNs, the total 

volumetric intersection length 𝑝31,𝐼 is only related to the 

fracture density 𝑝32 with the following relationship (see 

Section 1.a): 

𝑝31,𝐼 =
𝑘𝜃𝑘𝑙𝐼

2𝛽𝑓
𝑝32

2             (3) 

We consider that the fracture size and orientation 

distributions are independent so that: 

𝑛(𝑙, 𝜃) = 𝑛(𝑙)𝑛(𝜃)            (4) 

The probability for a fracture of size 𝑙′, following an 

orientation distribution 𝑛(𝜃),  to intersect a fracture of 

size 𝑙, contained in a volume 𝑉, is: 

𝑝(𝑙, 𝑙′) =
1

𝑉
𝛽𝑓𝑙2 (𝑙′ ∫ 𝑛(𝜃)𝑠𝑖𝑛(𝜃)𝑑𝜃)

𝜋

0

𝜋
) =

𝑘𝜃𝛽𝑓𝑙2𝑙′

𝑉
          (5) 

with 𝛽𝑓 a shape factor so that the fracture surface is 𝛽𝑓𝑙2. 

The number of intersections between an ensemble of 

fractures of size ∈ [𝑙′, 𝑙′ + 𝑑𝑙′] with a fracture of size 𝑙 is: 

𝑁𝐼(𝑙, 𝑙′) = 𝑝(𝑙, 𝑙′)𝑛(𝑙′)𝑑𝑙′𝑉 = 𝑘𝜃𝛽𝑓𝑙2𝑛(𝑙′)𝑙′𝑑𝑙′            (6) 

Let 𝑙𝐼 be the intersection size, the cumulated intersection 

length of fractures intersecting a larger fracture of size 𝑙 
is: 

𝐿𝐼(𝑙, 𝑙′) = ∫ 𝑁𝐼(𝑙, 𝑙′)𝑙𝑖𝑙′<𝑙
𝑑𝑙′            (7) 

𝐿𝐼(𝑙, 𝑙′) = 𝑘𝜃𝛽𝑓𝑙2 ∫ 𝑛(𝑙′)𝑙′𝑙𝐼𝑙′<𝑙
𝑑𝑙′           (8) 

The total intersection size per unit volume 𝑝31,𝐼 is 

obtained by integrating over the whole fracture size 

distribution: 

𝑝31,𝐼 = ∫ 𝑛(𝑙)𝐿𝐼(𝑙, 𝑙′)𝑑𝑙
𝑙

           (9) 

Considering the intersections size to be proportional to the 

smallest intersecting fracture 𝑙𝐼 = 𝑘𝑙𝐼 𝑙
′, we finally obtain: 

𝑝31,𝐼 = 𝛽𝑓𝑘𝜃𝑘𝑙𝐼
∫ 𝑛(𝑙)𝑙2 (∫ 𝑛(𝑙′)𝑙′2

𝑙′<𝑙
𝑑𝑙′) 𝑑𝑙

𝑙
       (10) 

𝑝31,𝐼 =
𝑘𝜃𝑘𝑙𝐼

2𝛽𝑓
𝑝32

2           (11) 

with the fracture density 𝑝32 = ∫ 𝑛(𝑙)𝛽𝑓𝑙2𝑑𝑙
𝑙

. 
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