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Abstract: With the advent of submesoscale O(1 km) permitting basin-scale ocean simulations, the sea-
sonality of mesoscale O(50 km) eddies with kinetic energies peaking in summer has been commonly
attributed to submesoscale eddies feeding back onto the mesoscale via an inverse energy cascade
under the constraint of stratification and Earth’s rotation. In contrast, by running a 101-member,
seasonally forced, three-layer quasi-geostrophic (QG) ensemble configured to represent an idealized
double-gyre system of the subtropical and subpolar basin, we find that the mesoscale kinetic energy
shows a seasonality consistent with the summer peak without resolving the submesoscales; by defini-
tion, a QG model only resolves small Rossby and Froude number dynamics (O(Ro)� 1, O(Fr)� 1)
while submesoscale dynamics are associated with O(Ro) ∼ 1, O(Fr) & 1. Here, by quantifying
the Lorenz cycle of the mean and eddy energy, defined as the ensemble mean and fluctuations
about the mean, respectively, we propose a different mechanism from the inverse energy cascade.
During summer, when the Western Boundary Current is stabilized and strengthened due to increased
stratification, stronger mesoscale eddies are shed from the separated jet. Conversely, the opposite
occurs during the winter; the separated jet destablizes and results in overall lower mean and eddy
kinetic energies despite the domain being more susceptible to baroclinic instability from weaker
stratification.

Keywords: ocean circulation; Lorenz energy cycle; quasi-geostrophic flows; ensemble modelling

1. Introduction

The energy cycle of the atmospheric system, namely the energy exchange between the
mean flow and fluctuations about the mean, have long been of interest due to the fluctuating
flow being attributed to what is commonly known as the “weather” [1,2]. Similarly,
the oceanographic community has had a long-standing interest in eddies, the weather
system of the oceans [3–5]. In a seminal paper, Lorenz [2] provided a framework in
understanding the eddy–mean flow interaction, a framework often referred to as the
Lorenz energy cycle (herein LEC; [6]).

LEC generally decomposes the flow into four energy reservoirs: the mean and eddy
available potential energy (APE) and kinetic energy (KE), respectively. The concept of APE
is perhaps unique to the field of geophysical fluid dynamics where the gravitational force
plays a dominant role in the governing equations. Although all geophysical fluids store
gravitational potential energy, only a small fraction of it is available to generate fluid motion,
hence the prefix “available”. The energy exchanges between each reservoir elucidate the
balance of physical processes responsible for causing the eddy flow [5], e.g., exchanges
between the mean and eddy KE are associated with barotropic instability while exchanges
between the eddy APE and eddy KE are associated with baroclinic instability. Barotropic
instability is generated via horizontal shear in the mean flow while baroclinic instability
occurs when the effect of gravity, due to weak vertical stratification, has a similar order of
magnitude as the effects of Earth’s rotation [7]. The balance between the two instabilities
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results in the weather and eddies we commonly observe in the atmosphere and ocean.
With the recent increase in computational power and advent of eddy resolving simulations
of the ocean, there has been a growing interest in the interlinkage between the energy
exchanges and temporal variability, namely seasonality, in the eddy flow [8,9].

In the context of Physical Oceanography, the eddies can be further separated into
meso- and submesoscale eddies. Mesoscale eddies are roughly on the spatial scales of
the first baroclinic Rossby radius of deformation (NH/ f ∼ O(50 km) where N and H are
the vertical stratification and ocean depth, respectively, and f is the Coriolis parameter)
while submesoscale eddies are on the scale of O(1 km) [10]. In terms of the Rossby number
(Ro (=U/ f0L)) and Froude number (Fr (=U/NH)) where U and L are the characteristic
scales of velocity and length, the spatial scales translate as mesoscale dynamics being
on the order of O(Ro) � 1, O(Fr) � 1, and submesoscale flows being associated with
O(Ro) ∼ 1, O(Fr) & 1 [11–16]. In other words, mesoscale dynamics are more constrained
by Earth’s rotation and stratification, leading to the well-known phenomenon of inverse
energy cascade where KE is transferred from scales about the Rossby radius to larger
scales [17–19]. To what extent the framework of inverse energy cascade is applicable for
scales smaller than the Rossby radius remains an open question [11,12,20].

Although there is some geographical variability [21–25], many studies using meso- and
submesoscale permitting ocean simulations have attributed the seasonality in mesoscale
KE to energy being transferred upscale from the submesoscales where the seasonal mod-
ulation of the mixed-layer depth leads to a strong signal [14,26–31]. Instabilities within
the mixed layer are inherently submesoscale due to the reduced stratification and shallow
depth scale, and are most active during late winter/early spring when the mixed-layer
is the deepest [32–34]. The summertime peak in mesoscale KE has consequently been
explained by the time required for the submesoscale energy to cascade upscale. Other
mechanisms, such as air–sea interaction, have also been argued for the cause of mesoscale
seasonality [35]. While we agree that submesoscale instabilities and air–sea interaction
affect mesoscale variability, here, we examine another mechanism on the other end of the
spectrum in modulating the mesoscale seasonality: the basin-scale (O(1000 km)) affecting
the mesoscale.

In order to quantify the exchanges between the energy reservoirs, we run a seasonally
forced, three-layer quasi-geostrophic (QG) ensemble with a double-gyre configuration and
examine the LEC. By definition, a QG model only resolves small Rossby number dynamics
based on asymptotic expansion of the governing equations [36], i.e., the simulated eddy
field only consists of mesoscale variability. The background state in quasi-geostrophy can be
considered as the basin-scale state. In particular, we define the mean via the ensemble mean
and eddies as the fluctuations about the mean. The ensemble mean: (i) negates the ergodic
assumption where one treats the temporal mean equivalent to an ensemble mean, which is
questionable for a temporally varying system; (ii) removes the arbitrary temporal and/or
spatial scale in defining the mean [37]; (iii) is consistent with the Reynold’s definition of
eddy–mean decomposition [38]; and (iv) retains the temporal, namely seasonal, variability
of the LEC.

The paper is organized as follows: We describe the model configuration in Section 2
and re-derive the layered QG equations and LEC in Section 3, which will aid our discussion
later on. We present our results in Section 4 and conclude in Section 5.

2. Model Description

We use the quasi-geostrophic (QG) configuration of the Multiple Scale Ocean Model
(MSOM; [39], herein referred to as MSQG), based on the Basilisk language [40], to simulate a
three-layer double-gyre flow with a rigid lid and flat bottom. No-flux conditions are applied
at the lateral boundaries. The parameters used are similar to prior QG studies which
examine the dynamics of a double-gyre system [3,41,42] and are summarized in Table 1.
The characteristic length scale of the Rossby radius (viz. radii of mesoscale eddies) is
prescribed as L (=50 km) and horizontal resolution is ∼4 km (=δx̂L) and therefore we have
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roughly 12 grid points per radius; our simulation can be considered mesoscale resolving
under the numerics of a second-order Arakawa advection scheme [43–45] (we note that our
kilometric resolution does not allow for the submesoscales to be permitted in our model
due to the QG constraint: O(Ro)� 1, O(Fr)� 1).

Table 1. Parameters used to configure the three-layer QG simulation and dimensionalized charac-
teristic scales. The bottom Ekman number is the ratio between the bottom Ekman-layer thickness
and Ĥ3 and bottom friction is ε = Ekb/(2Rom Ĥ3). Beta is dimensionalized as β = β̂U/L2 and the
dimensionalized domain size is 4000 km (=L̂0L). The frequency of Fr translates approximately to a
360-day year (= f−1

Fr L/U). The prognostic time stepping is determined via the CFL condition within
values smaller than δmax

t̂ .

Parameter Notation Value Unit

Number of horizontal grids N 1024 -
Number of vertical layers nl 3 -
Non-dim. horizontal domain size L̂0 80 -
Non-dim. horizontal resolution δx̂ N−1 L̂0 -
Background Rossby number Rom 0.025 -
Non-dim. Coriolis parameter f̂0 Rom−1 -
Bottom Ekman number Ekb 0.004 -
Non-dim. surface Ekman pumping τ̂0 0.0001 -
Biharmonic Reynolds number Re4 4000 -
Non-dim. beta β̂ 0.5 -
Background Froude number Frm

1 ; Frm
2 0.00409959; 0.01319355 -

Amplitude of Fri ÂFr1 ; ÂFr2 0.1; 0 -
Non-dim. frequency of Fri f̂Fr1 ; f̂Fr2 62.2−1; 62.2−1 -
Non-dim. layer thickness Ĥ1; Ĥ2; Ĥ3 0.06; 0.14; 0.8 -
Non-dim. reduced gravity ĝ′i Fri

−2Ĥ†
i -

Non-dim. maximum time stepping δmax
t̂ 5× 10−2 -

CFL condition - 0.4 -
Horizontal velocity U 0.1 [m s−1]
Length scale L 50 [km]
Total layer thickness H 5000 [m]

MSQG solves prognostically for the non-dimensionalized QG potential vorticity (PV):

Dq̂
Dt̂

= F̂ + D̂, (1)

where q = ζg + βy− f0
H h is the QGPV (details are given in Appendix A; [7]) and the β-plane

approximation is applied ( f = f0 + βy). F and D are the forcing and dissipative terms,
and (̂·) are non-dimensionalized variables. The forcing term is the wind stress curl without
any buoyancy forcing at the surface, and is kept stationary with the formulation:

F̂ =
∇̂h × τ̂(ŷ)

Ĥ1
= − τ̂0

RomĤ1
sin
(2π

N
ŷ
)

sin
( π

N
ŷ
)
, (2)

where ∇h is the horizontal gradient operator, and ŷ (∈ [0.5, N − 0.5]) is the
non-dimensionalized meridional extent of the domain. Only the wind stress curl is pre-
scribed in the model and not the wind stress itself (τ) but we denote it for clarity in notation.
We have kept the wind stress curl axisymmetric as low-frequency variability is not the
focus of this study [46–49]. The dissipation term is implemented via a biharmonic viscosity:

D̂ = −Re4
−1∇̂4

hq̂. (3)
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The background stratification is defined at each layer interface via the Froude number
where we enforce the seasonality by varying it in time according to:

Fri =
U√
g′i H

†
i

= Frm
i
[
1 + ÂFri sin (2π f̂Fri t̂)

]−1/2, (4)

where H†
i = (Hi + Hi+1)/2, g′ is the reduced gravity and subscript i is the layer index (Figure 1).

We vary Fr1 in time but keep Fr2 stationary (ÂFr2 = 0), which is consistent with the seasonal
variability of stratification being confined in the upper few hundred meters in the real
ocean [50].

H1

H2

H3

H

h3

h2

h1
η0

η3

Fr1

Fr2
η2

η1
ψ1

ψ2

ψ3

Figure 1. Vertical structure of the three-layer QG model with a rigid lid and flat bottom. The layer in-
terface displacement (ηi) is shown in the thin curvy lines and net layer thickness is hi = Hi + ηi−1 − ηi.
The stream functions (ψi) are defined within each layer.

We spin up the model for 10 years from a spun-up run with lower resolution (N = 256,
equivalently δx̂L ∼ 15 km) and then perturb the first-layer stream function at a single,
random grid point with a perturbation on the order of (O(10−5)) to generate 100 slightly
perturbed stream function fields. We use the perturbed fields as the initial conditions
to generate 100 ensemble members. The surface wind stress and temporally varying
background stratification are kept identical during the spin up and amongst ensemble
members after the spin up. We run each ensemble member for another 10 years and
for reference, we also have a control (CTRL) run without any perturbations to the initial
condition; in total, we have 101 ensemble members and the CTRL run is there to show that
the perturbations do not lead to a bifurcation in the dynamical regime within the 10 years
of our simulation [51]. The model outputs were saved as instantaneous snapshots at every
characteristic time scale (T = L/U = 5× 105 seconds ∼5.8 days).

3. Derivation of the Lorenz Energy Cycle

Although the layered QG equations have been derived countless times [1,3,7,36], here,
we re-derive the energy equations for a rigid-lid and flat-bottom three-layer QG model with
a seasonally varying background stratification, in which the latter leads to some subtleties.
In the remainder of the study, we only discuss dimensionalized variables. We start off with
the order Rossby number relative vorticity equation for a given layer i (∈ [1, 3]; Figure 1)
neglecting viscous and external forcing terms:

∂tζg;i + ug;i∂xζg;i + vg;i∂yζg;i + βvg;i = − f0(∂xua;i + ∂yva;i)

= f0∂zwa;i, (5)
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which are derived by taking the cross product of the momentum Equations (A6) and (A7).
The subscripts g and a denote the geostrophic and ageostrophic components, respectively
(e.g., ζ = ζg + ζa). We denote the partial derivatives as ∂(·) with respect to (t, z, y, x). The
stream function is defined as ψi = φg;i/ f0 where φg;i is the geostrophic pressure anomaly
and relative vorticity can be written as ζg;i = ∇2

hψi. The layer-thickness equation on the
other hand is [7]:

∂thi + ug;i∂xhi + vg;i∂yhi = −Hi(∂xua;i + ∂yva;i)

= Hi∂zwa;i (6)

We leave the derivation of the layered QGPV and its relation to the continuously stratified
framework to Appendix A.

The ageostrophic vertical velocity can be diagnosed via the QG omega equation
(Appendix B; [52,53]):

N2
i ∇2

hwa;i + f 2
0 ∂zzwa;i = β∂xbi − 2∇h ·Qi −∇2

hbi N2
i ∂t

1
N2

i
, (7)

where N2
i = g′i/H†

i , and bi = f0
ψi−ψi+1

H†
i

is the buoyancy. The Q tensor is:

Qi = Q1
i i + Q2

i j =
(
∂xu†

g;i ·∇hbi
)
i +

(
∂yu†

g;i ·∇hbi
)

j, (8)

where u†
g;i = −∂yψ†

i i + ∂xψ†
i j is the geostrophic velocity derived from the inter-facial

stream function (ψ†
i =

Hiψi+1+Hi+1ψi
Hi+Hi+1

; [3]). i and j are the horizontal Cartesian unit vectors.
The last term on the right-hand side of (7) is due to the temporally varying background
stratification (Appendix B). We solved Equation (7) iteratively for wa via a two-dimensional
geometric multigrid solver with the boundary conditions of Ekman pumping (wE):

wE;0 = − 1
f0
∇h × τ = −UH

L
τ̂0 sin2

[2πy
L0

]
sin
[πy

L0

]
, (9)

wE;3 =
δE
2

ζg;3, (10)

where δE = Ekb H3 is the bottom Ekman-layer thickness.
Now, multiplying Equation (5) by −ψi and integrating over the depth of each layer

gives the kinetic energy (KE) budget:

Hi

[Di
Dt
|∇hψi|2

2
−∇h · (ug;iψi∇2

hψi)−
β

2
∂xψ2

i

]
= − f0

∫
ψi∂zwa;idz

= f0
[
− (wa;i−1ψ†

i−1 − wa;iψ
†
i ) +

∫
wa;i∂zψidz

]
= f0

[
− (wa;i−1ψ†

i−1 − wa;iψ
†
i ) + Hi

(
wa;i−1

ψi−1 − ψi
Hi + Hi−1

+ wa;i
ψi − ψi+1

Hi+1 + Hi

)]
. (11)

Dropping the divergence terms as they vanish upon area integration, for each layer, we get:

H1

2
∂t|∇hψ1|2 = f0

[
wa;1ψ†

1 + wa;1H1
ψ1 − ψ2

H2 + H1

]
, (12)

H2

2
∂t|∇hψ2|2 = f0

[
− (wa;1ψ†

1 − wa;2ψ†
2) + H2

(
wa;1

ψ1 − ψ2

H2 + H1
+ wa;2

ψ2 − ψ3

H3 + H2

)]
, (13)
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H3

2
∂t|∇hψ3|2 = f0

[
− wa;2ψ†

2 + wa;2H3
ψ2 − ψ3

H3 + H2

]
. (14)

On the other hand, using relation (A2), the layer-thickness equations can be manipu-
lated as H2

H1+H2
(6)|i=1 − H1

H1+H2
(6)|i=2:

D†
1

Dt

[ f0

g′1
(ψ1 − ψ2)

]
= −wa;1 +

H1

H1 + H2

[
wa;2 −

D2

Dt
f0

g′2
(ψ3 − ψ2)

]
= −wa;1 +

f0H1

g′2(H1 + H2)
(u3 − u2) ·∇h(ψ3 − ψ2)

= −wa;1, (15)

where the second term on the right-hand side above (15) vanishes due to thermal wind.
Similarly, H3

H2+H3
(6)|i=2 − H2

H2+H3
(6)|i=3:

D†
2

Dt

[ f0

g′2
(ψ2 − ψ3)

]
= −wa;2 +

H3

H2 + H3

[
wa;1 −

D2

Dt
f0

g′1
(ψ2 − ψ1)

]
= −wa;2, (16)

where D†
i

Dt = ∂t + u†
g;i ·∇h. The available potential energy (APE) equations can, there-

fore, be derived by multiplying Equation (15) with f0(ψ1 − ψ2) and again dropping the
divergence terms:

∂t

[ f 2
0

2g′1
(ψ1 − ψ2)

2
]
= − f0(ψ1 − ψ2)wa;1 −

f 2
0 (ψ1 − ψ2)

2

2
∂tg′1

−1, (17)

and Equation (16) with f0(ψ2 − ψ3):

∂t

[ f 2
0

2g′2
(ψ2 − ψ3)

2
]
= − f0(ψ2 − ψ3)wa;2. (18)

We see from Equation (17) that there is an additional source of APE due to the
temporally varying background potential energy (BPE; B#), which then feeds back onto the
KE via Equations (12) and (13) through baroclinic instability. BPE takes the same form as
APE except that only g′ is inside the derivative.

Now, the mean KE (MKE; K#), eddy KE (EKE; K), mean APE (MAPE; P#) and eddy
APE (EAPE; P) can be defined as:

K#
i =

Hi
2
|∇hψi|2, Ki =

Hi
2
|∇hψ′i |2, (19)

P#
i =

f 2
0

2g′i
(ψi − ψi+1)

2, Pi =
f 2
0

2g′i
(ψ′i − ψ′i+1)

2, (20)

where (·) is the ensemble mean and the eddy is defined as fluctuations about the ensemble
mean, viz. (·)′ = (·)− (·). We note that the ensemble mean of the fluctuations vanish
((·)′ = 0). The strength of defining the mean as such is that in addition to the ensemble-
mean operator commuting with the derivatives with respect to (t, z, y, x) [38], it provides a
unique decomposition between the mean and eddy. In other words, the mean does not
depend on an arbitrary temporal or spatial scale, which is beneficial in our case as the
separated jet is on QG scaling in the cross-jet direction while on planetary-geostrophic
scaling in the along-jet direction [54,55]. The ensemble mean can be interpreted as the QG
response to external forcing while the eddies are a result of intrinsic variability [56–58].
The ensemble means of total KE and APE each satisfy Ki =

Hi
2 |∇hψi|2 = K#

i +Ki, Pi =
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f 2
0

2g′i
(ψi − ψi+1)2 = P#

i + Pi. Hence, the exchanges (Π) of KE and APE within and between

layers are:
ΠK#

1→K1
= −H1〈ψ1∇h · u′g;1∇

2
hψ′1〉, (21)

ΠK#
1→K#

2
= − f0〈wa;1ψ†

1〉, ΠK1→K2 = − f0〈w′a;1ψ†
1
′〉, (22)

ΠP#
1→K#

1
=

f0H1

H2 + H1
〈wa;1(ψ1 − ψ2)〉, ΠP1→K1 =

f0H1

H2 + H1
〈w′a;1(ψ

′
1 − ψ′2)〉, (23)

ΠP#
1→P1

=
f 2
0

g′1
〈(ψ1 − ψ2)∇h · u†

g;1
′
(ψ′1 − ψ′2)〉, (24)

ΠB#
1→P#

1
= −

f 2
0
2
〈(ψ1 − ψ2)

2∂tg′1
−1〉, ΠB#

1→P1
= −

f 2
0
2
〈(ψ′1 − ψ′2)

2∂tg′1
−1〉, (25)

ΠK#
2→K2

= −H2〈ψ2∇h · u′g;2∇
2
hψ′2〉, (26)

ΠK#
2→K#

3
= − f0〈wa;2ψ†

2〉, ΠK2→K3 = − f0〈w′a;2ψ†
2
′〉, (27)

ΠP#
1→K#

2
=

f0H2

H2 + H1
〈wa;1(ψ1 − ψ2)〉, ΠP1→K2 =

f0H2

H2 + H1
〈w′a;1(ψ

′
1 − ψ′2)〉, (28)

ΠP#
2→K#

2
=

f0H2

H3 + H2
〈wa;2(ψ2 − ψ3)〉, ΠP2→K2 =

f0H2

H3 + H2
〈w′a;2(ψ

′
2 − ψ′3)〉, (29)

ΠP#
2→P2

=
f 2
0

g′2
〈(ψ2 − ψ3)∇h · u†

g;2
′
(ψ′2 − ψ′3)〉, (30)

ΠK#
3→K3

= −H3〈ψ3∇h · u′g;3∇
2
hψ′3〉, (31)

ΠP#
2→K#

3
=

f0H3

H2 + H3
〈wa;2(ψ2 − ψ3)〉, ΠP2→K3 =

f0H3

H3 + H2
〈w′a;2(ψ

′
2 − ψ′3)〉, (32)

where 〈·〉 =
∫∫

(·)dxdy is the area integration. Further details regarding the sign convention
and forcing/dissipation terms are given in Appendices C and D. Summing up each layer
gives the volume integrated energy exchanges:

ΠP#→K# =
2

∑
i=1

f0
〈
wa;i(ψi − ψi+1)

〉
, (33)

ΠP→K =
2

∑
i=1

f0
〈
w′a;i(ψ

′
i − ψ′i+1)

〉
, (34)

ΠP#→P =
2

∑
i=1

f 2
0

g′i

〈
(ψi − ψi+1)∇h · u†

g;i
′
(ψ′i − ψ′i+1)

〉
, (35)

ΠK#→K = −
3

∑
i=1

Hi
〈
ψi∇h · u′g;i∇

2
hψ′i
〉
, (36)

ΠB#→P# = −
f 2
0
2
〈
(ψ1 − ψ2)

2∂tg′1
−1〉, (37)

ΠB#→P = −
f 2
0
2
〈
(ψ′1 − ψ′2)

2∂tg′1
−1〉. (38)

4. Results

We start by showing the total kinetic energy (TKE) during the spin-up phase and for
the 10 years of output we have (viz. 20 years in total; Figure 2). The ensemble spread starts
to grow after 1.5 years of integration from the perturbed initial conditions and plateaus
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roughly for the latter seven years. The area-integrated TKE in the first layer (〈K1〉), most
relevant for studies interested in surface seasonal dynamics, is in sync with the background
stratification (g′1), viz. higher 〈K1〉 during summer when stratification is stronger and visa
versa (Figure 2b). For the lower layers, there is a temporal lag evident by the barotropic
TKE (〈|∇hΨ|2〉 where Ψ = H−1 ∑i Hiψi is the barotropic stream function; Figure 2a).
Although it is difficult to detect a clear seasonal signal for the barotropic TKE from an
individual ensemble member such as in the CTRL run, their ensemble mean shows a robust
seasonality. For the remainder of the study, we use the last five years of output in order to
maximize the signal of intrinsic variability amongst members.

a)

b)

Figure 2. Time series of the horizontally averaged barotropic (a) and first-layer TKE (b). Each ensemble member is shown
with thin gray lines and standard deviation of the ensemble mean in black shading. The CTRL run is shown with a red
dashed line and ensemble mean with a cyan dot-dashed line. The reduced gravity is shown in blue plotted against the right
y axis.

In Figure 3, we show the mean and eddy KE in the first layer (K#
1,K1) during summer

and winter for the last year of output and their difference. The seasons were defined at
the time step when the reduced gravity was at its maximum and minimum, respectively.
We see the characteristic feature of a robust separated Western Boundary Current in a
double-gyre system with very little meandering while the EKE is more meridionally
spread out. Consistent with Figure 2, summertime has a stronger mean jet and EKE than
winter (Figure 3e,f). We also show snapshots of eddy PV (q′g;1) from the CTRL run from
which we see coherent features of mesoscale eddies (Figure 3g,h).
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a)

d)c)

b)

f)e)

g) h)

Figure 3. The summer and wintertime mean and eddy KE and their difference during the last year of
output (a–f). Note the differences are plotted on a logarithmic scale. (g,h) Snapshot of eddy PV for
summer and winter during the last year of output from the CTRL run. All panels show the variable
in the first layer.

4.1. The Domain Integrated Lorenz Energy Cycle

We now move on to quantifying the LEC in order to examine the processes responsible
for generating higher KE during summertime. As we define the mean as the ensemble
mean (as opposed to a temporal mean which has commonly been applied), we are able
to examine the temporal variability of LEC. We compute the terms in Equations (33)–(38)
for the last five years of output and show them in Figure 4. The time series of MAPE is in
sync with the background stratification dominated by g′ in its denominator while MKE
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lags g′1 by ∼11 days upon taking the lag correlation (P#, K#; Figure 4a). MAPE has the
largest magnitude amongst the reservoirs by an order of magnitude and for KE, the eddies
are more energetic than the mean. The energy flux from MAPE to MKE is negative year
round (ΠP#→K# < 0; black solid line in Figure 4b) due to Ekman pumping steepening the
isopycnals. The energy input due to wind stress (FK#

s ) is in sync with MKE with energetic
surface currents resulting in a stronger surface stress. The eddy energy reservoirs (P ,K),
on the other hand, lag the stratification by ∼17 days but their peaks precede winter when
the domain is most susceptible to baroclinic instability and energy conversion from EAPE
to EKE takes its yearly maximum (ΠP→K; Figure 4a). It is perhaps interesting to note
that the sign of flux between EAPE and EKE occasionally reverses during summer with
barotropic instability over compensating for baroclinic instability; the energy pathway
becomes MKE→EKE→EAPE (ΠP→K < 0), whereas baroclinic instability would predict
EAPE→EKE (ΠP→K > 0). Regarding the dissipation terms, only the bottom drag for EKE
(DKb ) shows a notable seasonality and has a similar magnitude to the energy flux from
MKE to EKE (ΠK#→K). The amplitude of bottom drag (|DKb |) lags EKE by ∼41 days and
aligns well with the ensemble-mean barotropic TKE (Figure 2a).

a)

c)

b)

Figure 4. Time series of each term in the domain-integrated LEC. (a) The mean and eddy KE (black)
and APE (red) reservoirs in the units of ×1013 [(J/kg) m3] and stratification of the first layer interface
(blue; g′1). MAPE is multiplied by 0.1 to have it fit on the same y axis. (b) The energy fluxes between
each energy reservoir and forcing terms due to surface wind stress (FK#

s ) and temporally varying BPE.
(c) Dissipation terms due to horizontal viscosity (Dh) and bottom friction (Db). The mean and eddy
horizontal dissipation terms are lumped together and fluxes are in the units of ×106 [(W/kg) m3].
The forcing and dissipation terms are detailed in Appendix D.
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To provide a climatological view of the energy fluxes (Π), we take the yearly aver-
age of the last five years and show the LEC diagram for a climatological summer and
winter (Figure 5). Each season per year is defined as four time steps; summer is when the
reduced gravity takes its maxima and four time steps about it, and four time steps about
the minima in reduced gravity for winter. The seasonal climatology is then taken as the
average of the five years. Again, we see that all reservoirs are more energetic during the
summer. Focusing on MKE, except for the surface wind stress, the reservoir has loss terms
year round and yet stores more energy during the summer. We attribute the summertime
maxima in MKE to the separated jet stabilizing due to increased stratification, which results
in the jet shedding stronger eddies. Indeed, the energy flux from MKE to EKE (ΠK#→K)
is highest during the summer (Figures 4b and 5a). We attribute the larger energy conver-
sion from EAPE to EKE during the winter (ΠP→K) to the flow being more susceptible to
baroclinic instability with reduced stratification.

MAPE111.7 MKE2.4

EAPE11.3 EKE7.5

FK#
s = 8.6

DK#
b = 0.8

D!
b = 6.3

|ΠB#→$ | = 0.1

|ΠB#→P# | = 1.2

|ΠP#→K# | = 4.0

|ΠP#→$ | = 1.5 |ΠK#→! | = 5.9

|Π$→! | = 1.3

DK#
h = 0.2

D!
h = 1.3

DP#
h = 0.09

D$
h = 0.5

MAPE132.3 MKE2.9

EAPE12.5 EKE8.5

FK#
s = 10.2

DK#
b = 0.8

D!
b = 6.6

|ΠB#→$ | = 0.1

|ΠB#→P# | = 1.5

|ΠP#→K# | = 4.0

|ΠP#→$ | = 1.5 |ΠK#→! | = 7.8

|Π$→! | = 0.3

DK#
h = 0.2

D!
h = 1.4

DP#
h = 0.09

D$
h = 0.5

Summer Winter

a)

b) c)

Figure 5. Time series of the seasonal climatology of energy fluxes between the energy reservoirs (a). (b,c) The LEC diagram
for the climatological summer and winter averaged over the last five years of output. The energies are in the units of
×1013 [(J/kg) m3] and fluxes are in ×106 [(W/kg) m3]. The energy exchanges do not exactly cancel out due to each reservoir
having temporal variability.

4.2. Time Lag in Lower-Layer Energetics

In this section, we investigate the mechanism for the lag in KE in the lower layers (K2,
K3) from KE in the first layer (K1) and stratification (g′1) implied from Figure 2. It is perhaps
interesting to note that although the ensemble-mean barotropic TKE lags g′1 by ∼41 days,
neither the domain-integrated MKE nor EKE show such a long lag (Figure 4a). This has
to do with MKE and EKE being volume-weighted variables of quadratic terms, while the
barotropic TKE being a quadratic term of a volume-weighted variable; MKE and EKE
have a larger weighting on the surface stream function, which is in sync with g′1, than the
barotropic TKE. The lag within lower layers becomes apparent for the time series of area
integrated EKE within each layer (∼128 days for K2 and ∼68 days for K3; Figure 6a). We
also focus on EKE for the remainder of this section as EKE is always larger than MKE
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by a factor of three (Figure 4). Examining the energy fluxes, Figure 6b shows that the
contribution from barotropic instability becomes negligible within the lower two layers
with the relative significance of the separated jet diminishing with depth, and shows
no clear seasonality (ΠK#

2,3→K2,3
). The vertical transfer of EKE (ΠK1→K2 , ΠK2→K3) and

conversion from EAPE (ΠP→K), on the other hand, show a coherent seasonal pattern with
the maxima of K2 and K3 falling in between the maxima of the two fluxes. We, therefore,
attribute the time lag inK2 andK3 to the balance between baroclinic instability and vertical
transfers of EKE.

a)

b)

Figure 6. Time series of volume-integrated EKE over each layer, and fluxes within and between layers
(ΠK1→K2 , ΠK2→K3 ) plotted along with the reduced gravity (g′1). (a) The EKEs have their temporal
mean removed so as to plot against the same y axis. (b) A rolling mean by five time steps (∼29 days)
is applied to the time series of the energy fluxes. The energy flux from MKE to EKE within the
two bottom layers is summed up (ΠK#

2,3→K2,3
) and conversion from APE is shown as the conversion

rate volume integrated over the three layers as the amount that goes into each layer is simply the
total conversion weighted by layer thickness (cf. Equations (23), (28), (29) and (32)). The conversion
from P1 and P2 were in sync with each other (not shown). For further details regarding each term,
see Appendix D.

5. Discussion and Conclusions

By running a seasonally forced 101-member ensemble of a three-layer quasi-geostrophic
(QG) model in an idealized double-gyre configuration, we have shown that the kinetic
energy (KE) peaks during summer when the (basin-scale) stratification is strongest during
the year (Figure 2). Such seasonality in mesoscale eddy KE (EKE) has been observed
in other studies using realistic simulations of the ocean [14,27–31]. Due to the air–sea
interaction, the seasonal modulation of the mixed-layer depth leads to a strong seasonal
signal in submesoscale instabilities. The submesoscale EKE takes its maximum during late
winter/early spring and previous studies have commonly explained the summer peak
in the mesoscale range as the time lag for the submesoscale EKE to cascade upscale. The
mechanism of inverse energy cascade fails, however, to explain the mesoscale seasonality
in our model, as a QG model by definition cannot resolve any submesoscale instabilities.

Using the framework of the Lorenz energy cycle (LEC; [2]), we have quantified the
reservoirs of mean and eddy available potential energy (APE) and KE, and energy fluxes
amongst them. We note that our ensemble framework has allowed us to examine the
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seasonal variability of LEC. Our results show that all four reservoirs store more energy
during the summer than winter (Figure 4a). For the mean KE (MKE), we attribute the
summertime maximum to increased stratification leading to a more baroclinically stable
and stronger jet. Conceptually, this can be understood based on a mass–flux balance. Since
the wind stress is kept stationary, the Sverdrup transport (β−1∇h × τ) remains constant
throughout the simulation. Based on mass balance, the accumulating transport towards the
north/south boundaries must be fluxed out via the Western Boundary Current. Figure 3c
shows an intensification of MKE during summer along the Western Boundary resulting
from less energy lost to the eddies within the gyre interior. Hence, a more stable jet results
in a stronger mean flow. Our results of jet stabilization and its zonal penetration into the
gyre are complementary to earlier studies where they attributed the penetration scale to
parameters of lateral friction, vertical resolution and topography [4,59]. Here, we have
investigated the effect of a seasonally varying background stratification.

Shifting our focus to EKE, based on baroclinic instability, one might expect the opposite
to be true, namely, wintertime having more EKE than summertime due to weaker stratifi-
cation. The LEC shows that year round, energy fluxes from MKE to EKE associated with
barotropic instability over compensate for the fluxes from eddy APE (EAPE) to EKE, a path-
way associated with baroclinic instability. Since MKE is higher during summer, the larger
flux of energy from MKE to EKE results in EKE peaking in summer (Figures 4b and 5). Al-
though our simulation is highly idealized, we argue that barotropic processes dominating
in the separated jet region are consistent with a recent study on energetics using a realistic
simulation of the North Atlantic Ocean [55]. We note that the balance between barotropic
and baroclinic instability in our LEC is in the domain integrated sense. In a domain without
a jet, we would expect baroclinic instability to be the dominant mechanism in generating
eddies so long as the background state is baroclinically unstable.

To our knowledge, Qiu et al. [26] is the only study using a realistic ocean simulation
showing how the seasonality in background state can modulate the mesoscale variability.
Their results differ from ours, however, in that they attribute the mesoscale seasonality
to the classical Phillips-like baroclinic instability arising from the interior background
stratification and vertical shear in horizontal velocity [1]. In addition to the submesoscale
variability modulating mesoscale seasonality, our results suggest that, in reality, it is
possible that the basin-scale variability does so as well. We note that since our QG model
does not permit submesoscales, the baroclinic energy flux from EAPE to EKE is likely
underestimated compared to the real ocean. It would be interesting to revisit the LEC
for realistic ocean ensembles [57,58] to see whether we would see a stabilization of the
separated Gulf Stream during summer and consequently larger energy fluxes from MKE
to EKE.
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Appendix A. Derivation of the Layered Quasi-Geostrophic Potential Vorticity

As the relative vorticity Equation (5) and layer-thickness Equation (6) have a common
term on the right-hand side, they can be combined as:

Di
Dt

ζg;i + βvg;i =
f0

Hi

Di
Dt

hi, (A1)

and we get the governing equation for QGPV qi = ζg;i + βy − f0
Hi

hi [7]. It is perhaps
interesting to note that the QGPV remains identical for a stationary and temporally varying
background stratification (viz. g′1 = U2

H†
1

Fr−2
1 (t)) although we have shown that this is not

the case for the energy budget. The stream function is related to the layer displacement via
ηi =

f0
g′i
(ψi+1 − ψi). The layer thickness can, therefore, be written using the stream function

as [7]:

hi = Hi + ηi−1 − ηi

= Hi +
f0

g′i−1
(ψi − ψi−1)−

f0

g′i
(ψi+1 − ψi), (A2)

where D1
Dt η0 = D3

Dt η3 = 0 due to rigid-lid and flat-bottom boundary conditions.
Now, suppose at any given time, we have total buoyancy (B) defined on a layer

interface (Figure A1). Based on Taylor expansion, the layer interface displacement can be
expanded as [7]:

η =
∂z
∂B

∣∣∣
z=H

[B0(t, z = H)− B(t, z = H + η)]

= − ∂z
∂B

∣∣∣
z=H

b, (A3)

where b = B − B0 is the QG fluctuation about the background buoyancy (B0). Hence,
we get:

b
N2 = −η, (A4)

and taking the material derivative gives the buoyancy equation in the continuously strati-
fied framework:

D
Dt

b
N2 = −w. (A5)

Equation (A4) gives the physical intuition that the material derivative of b/N2 leads
to vortex stretching.

η
B0(t, z = H )

B(t, z = H + η)

Figure A1. Schematic of a relation between buoyancy (B) and layer interface displacement (η).
The background buoyancy is B0 defined at z = H.

http://basilisk.fr/
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Appendix B. The Omega Equation with a Temporally Varying
Background Stratification

We derive the QG omega equation using the continuously stratified framework.
Taking the vertical derivative of the order-Rossby number momentum equations with the
viscous term:

∂tug;i + ug;i∂xug;i + vg;i∂yug;i − f0va;i − βyvg;i = −∂xφa;i, (A6)

∂tvg;i + ug;i∂xvg;i + vg;i∂yvg;i + f0ua;i + βyug;i = −∂yφa;i, (A7)

and multiplying them by f0 gives:

D
Dt

( f0∂zug) + ∂yug ·∇hb− f 2
0 ∂zva − βy f0∂zvg = − f0ν4∂z∇4

hug, (A8)

D
Dt

( f0∂zvg)− ∂xug ·∇hb + f 2
0 ∂zua + βy f0∂zug = − f0ν4∂z∇4

hvg, (A9)

and the horizontal gradients of the buoyancy Equation (A5) with the diffusive term yields:

1
N2

D
Dt

∂xb + ∂xb∂t
1

N2 +
∂xug

N2 ·∇hb + ∂xwa = −κ4∂x∇4
hb, (A10)

1
N2

D
Dt

∂yb + ∂yb∂t
1

N2 +
∂yug

N2 ·∇hb + ∂ywa = −κ4∂y∇4
hb. (A11)

Summing Equation (A8) with (A11), and −(A9) with (A10), and using the thermal
wind relation, we get:

2∂yug ·∇hb + N2∂ywa − βy∂xb− f 2
0 ∂zva + ∂ybN2∂t

1
N2 = 0. (A12)

2∂xug ·∇hb + N2∂xwa + βy∂yb− f 2
0 ∂zua + ∂xbN2∂t

1
N2 = 0. (A13)

The viscous and diffusive terms do not appear as they cancel out due to the thermal–
wind relation ( f0∂zζg = ∇2

hb) and their parameters being set identical (viz. ν4 = κ4 (=

Re−1
4 L3U)). Taking ∂y(A12) + ∂x(A13) gives the omega equation for a temporally varying

background stratification:

N2∇2
hwa + f 2

0 ∂zzwa = β∂xb− 2∇h ·Q−∇2
hbN2∂t

1
N2 . (A14)

Although the last term on the right-hand side involves a time derivative, there is no
time dependency in our case as we know the analytical form of the background stratifi-
cation (Equation (4)). Its contribution to the omega equation turned out to be negligible
(not shown).

Appendix C. Decomposing the Mean and Eddy Energetics

In this section, we derive the mean and eddy KE equations. Equation (5) can be split
into its mean and eddy component:

D#

Dt
∇2

hψ +
D#

Dt
∇2

hψ′ + u′g ·∇h[∇2
h(ψ + ψ′)] + β∂x(ψ + ψ′) = f0∂z(w + w′), (A15)
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where D#

Dt = ∂t + ug ·∇h. Multiplying this by −ψ gives:

D#

Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− ψ
D#

Dt
∇2

hψ′ − ψu′g ·∇h[∇2
h(ψ + ψ′)]

− β∂x
ψ

2

2
− ψβ∂xψ′ = wb− ψ f0∂zw′, (A16)

and taking its ensemble mean yields the mean KE equation:

D#

Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− β∂x
ψ

2

2
= wb + ψ∇h · u′g∇2

hψ′. (A17)

On the other hand, the ensemble mean of the total KE Equation (11) is:

D
Dt
|∇hψ|2

2
−∇h · ugψ∇2

hψ− β∂x
ψ2

2
= wb, (A18)

which can be expanded as:

D#

Dt
|∇hψ|2

2
+

D#

Dt
|∇hψ′|2

2
+∇h · u′g

|∇hψ′|2
2

+ u′g ·∇h(∂xψ∂xψ′ + ∂yψ∂yψ′)

−∇h · ugψ∇2
hψ− β∂x

ψ2

2
= wb. (A19)

Taking the difference between Equations (A17) and (A19) gives the eddy KE equation:

D#

Dt
|∇hψ′|2

2
+∇h · u′g

|∇hψ′|2
2

+∇h · u′g(∂xψ∂xψ′ + ∂yψ∂yψ′)

−∇h ·
(
ugψ∇2

hψ− ugψ∇2
hψ
)
− β∂x

ψ′2

2
= w′b′ − ψ∇h · u′g∇2

hψ′. (A20)

Since the divergence terms vanish upon area integration, we can see the mean and
eddy KE exchanging the term −ψ∇h · u′g∇2

hψ′ (Equations (A17) and (A20)). The same
procedure can be done for Equation (6) or the buoyancy equation to derive the mean and
eddy APE equations.

Appendix D. The Three-Layer QG Lorenz Energy Cycle

The Lorenz energy cycle [2] for the first layer, dropping the divergence terms in
Equations (A17) and (A20), while bringing back the viscous and diffusive terms becomes:

∂tK#
1 = f0

[
wa;1ψ†

1 + H1wa;1
ψ1 − ψ2

H2 + H1

]
+ H1ψ1∇h · u′g;1∇2

hψ′1

− ψ1∇h × τ + H1ψ1ν4∇4
h(∇2

hψ1), (A21)

∂tK1 = f0

[
w′a;1ψ†

1
′
+ H1w′a;1

ψ′1 − ψ′2
H2 + H1

]
−H1ψ1∇h · u′g;1∇

2
hψ′1 + H1ψ′1ν4∇4

h(∇2
hψ′1), (A22)

∂tP#
1 = − f0wa;1(ψ1 − ψ2)−

f 2
0

g′1
(ψ1 − ψ2)∇h · u†

g;1′(ψ
′
1 − ψ′2)

−
f 2
0

g′1
(ψ1 − ψ2)κ4∇4

h(ψ1 − ψ2)−
f 2
0 (ψ1 − ψ2)

2

2
∂tg′1

−1, (A23)
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∂tP1 = − f0w′a;1(ψ
′
1 − ψ′2) +

f 2
0

g′1
(ψ1 − ψ2)∇h · u†

g;1′(ψ
′
1 − ψ′2)

−
f 2
0

g′1
(ψ′1 − ψ′2)κ4∇4

h(ψ
′
1 − ψ′2)−

f 2
0 (ψ

′
1 − ψ′2)

2

2
∂tg′1

−1. (A24)

For the second layer:

∂tK#
2 = f0

[
− (wa;1ψ†

1 − wa;2ψ†
2) + H2

(
wa;1

ψ1 − ψ2

H2 + H1
+ wa;2

ψ2 − ψ3

H3 + H2

)]
+ H2ψ2∇h · u′g;2∇

2
hψ′2 + H2ψ2ν4∇4

h(∇2
hψ2), (A25)

∂tK2 = f0

[
− (w′a;1ψ†

1
′ − w′a;2ψ†

2
′
) + H2

(
w′a;1

ψ′1 − ψ′2
H2 + H1

+ w′a;2
ψ′2 − ψ′3
H3 + H2

)]
− H2ψ2∇h · u′g;2∇

2
hψ′2 + H2ψ′2ν4∇4

h(∇2
hψ′2), (A26)

∂tP#
2 = − f0wa;2(ψ2 − ψ3)−

f 2
0

g′2
(ψ2 − ψ3)∇h · u†

g;2′ (ψ
′
2 − ψ′3)−

f 2
0

g′2
(ψ2 − ψ3)κ4∇4

h(ψ2 − ψ3), (A27)

∂tP2 = − f0w′a;2(ψ
′
2 − ψ′3) +

f 2
0

g′2
(ψ2 − ψ3)∇h · u†

g;2′ (ψ
′
2 − ψ′3)−

f 2
0

g′2
(ψ′2 − ψ′3)κ4∇4

h(ψ
′
2 − ψ′3). (A28)

For the third layer:

∂tK#
3 = f0

[
− wa;2ψ†

2 + H3wa;2
ψ2 − ψ3

H3 + H2

]
+ H3ψ3∇h · u′g;3∇

2
hψ′3

+ H3ψ3[ν4∇4
h(∇2

hψ3) + ε∇2
hψ3], (A29)

∂tK3 = f0

[
− w′a;2ψ†

2
′
+ H3w′a;2

ψ′2 − ψ′3
H3 + H2

]
− H3ψ3∇h · u′g;3∇

2
hψ′3

+ H3ψ′3[ν4∇4
h(∇2

hψ′3) + ε∇2
hψ′3]. (A30)

Although the biharmonic diffusive terms in the APE Equations (A23), (A24), (A27)
and (A28), which originate from diffusive terms in the layer-thickness Equation (6), are
applied solely for numerical stability and their similarity with buoyancy in primitive equa-
tions, their formulation is conceptually similar to the Gent-McWilliams’ skew diffusivity
(GM; [61]). GM represents the process of baroclinic instability upon which isopycnal dis-
placements are smoothed out adiabatically within the isopycnal layer. Considering the
quasi two-dimensional and adiabatic nature of the QG system, the interpretation of layer-
thickness diffusivity becomes similar to the GM skew diffusivity. A major difference here
is that the diffusivity is set as the bihamonic diffusivity and as such, should be negligible in
damping the resolved eddies [14,45].
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