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E N V I R O N M E N T A L  S T U D I E S

The mid-Miocene Zhangpu biota reveals 
an outstandingly rich rainforest biome in East Asia
Bo Wang1*, Gongle Shi1*, Chunpeng Xu1,2, Robert A. Spicer3,4, Vincent Perrichot5,  
Alexander R. Schmidt6, Kathrin Feldberg6, Jochen Heinrichs7†, Cédric Chény1,5, Hong Pang8, 
Xingyue Liu9, Taiping Gao10, Zixi Wang1, Adam Ślipiński11, Mónica M. Solórzano-Kraemer12,  
Sam W. Heads13, M. Jared Thomas13, Eva-Maria Sadowski14, Jacek Szwedo1,15, Dany Azar1,16, 
André Nel17, Ye Liu18, Jun Chen19, Qi Zhang20, Qingqing Zhang1, Cihang Luo1,2, Tingting Yu1,2, 
Daran Zheng1,21, Haichun Zhang1, Michael S. Engel22,23,24

During the Mid-Miocene Climatic Optimum [MMCO, ~14 to 17 million years (Ma) ago], global temperatures were 
similar to predicted temperatures for the coming century. Limited megathermal paleoclimatic and fossil data are 
known from this period, despite its potential as an analog for future climate conditions. Here, we report a rich 
middle Miocene rainforest biome, the Zhangpu biota (~14.7 Ma ago), based on material preserved in amber and 
associated sedimentary rocks from southeastern China. The record shows that the mid-Miocene rainforest reached 
at least 24.2°N and was more widespread than previously estimated. Our results not only highlight the role of tropical 
rainforests acting as evolutionary museums for biodiversity at the generic level but also suggest that the MMCO 
probably strongly shaped the East Asian biota via the northern expansion of the megathermal rainforest biome. 
The Zhangpu biota provides an ideal snapshot for biodiversity redistribution during global warming.

INTRODUCTION
The Mid-Miocene Climatic Optimum (MMCO), characterized by 
global warmth with a low latitudinal temperature gradient and high 
CO2 levels, was a key period for the origin and evolution of modern 
terrestrial biomes (1, 2). It is also widely considered to be an analog 
for our current era of anthropogenic global warming and its project-
ed consequences (3–5). Meteorological observations suggest a re-
cent poleward expansion of megathermal conditions, where every 
month has a mean temperature of 18°C or above, probably in re-
sponse to anthropogenic climatic changes (6). However, the 
long-term responses of terrestrial biodiversity and ecosystems to 
the poleward expansion of today’s tropical climate remain unclear 
(7, 8). Paleobiological records from the middle Miocene can pro-
vide critical information for resolving these questions, but data doc-
umenting megathermal climates and terrestrial ecosystems from 
this period are quite limited.

Here, we report an exceptionally rich middle Miocene biota pre-
served in amber and associated sedimentary rocks from the Fotan 
Group [~14.7 million years (Ma) ago] (9) in southeastern China (Fig. 1 

and fig. S1). Biomarker analysis and fossil winged fruits of Diptero-
carpaceae (fig. S2) that occur in the same bed indicate that the 
amber was produced by ancient dipterocarp trees (10), which are 
dominant elements of most southeastern Asian tropical rainforests 
today. Zhangpu amber is preserved in blue-gray sandy mudstone 
and is yellow-brown to brownish-red in color. The fossil layer yields 
not only amber but also abundant plant fossils, gastropods, and 
vertebrates (figs. S1 and S2).

RESULTS
The plant fossils from the amber-bearing sedimentary rocks include 
leaves of two ferns, three monocots, 78 dicots, and ~20 types of 
fruits and seeds (table S1). Among the recognizable fossils, the most 
diverse and abundant are those of the Dipterocarpaceae (fig. S2), 
Leguminosae (fig. S3), Lauraceae, and Clusiaceae. Other megather-
mal pantropical plant families identified from the sedimentary rocks 
include Annonaceae, Anacardiaceae, Burseraceae, Euphorbiaceae, 
Melastomataceae, Moraceae, Myristicaceae, and Myrtaceae (fig. S3). 
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All these families are dominant or abundant in today’s southeastern 
Asia tropical rainforests (11). Leaf physiognomy also suggests that this 
middle Miocene flora represents a megathermal seasonal rainforest, 
with its leaf trait spectrum most similar to that of modern vegetation 
from central Thailand, central India, and the Ganges Delta (Fig. 2). 
Paleoclimate estimates (table S2) derived from leaf form reveal a 
marginally megathermal climate in Zhangpu during the middle 
Miocene, with a mean annual temperature of 22.5° ± 2.4°C, a warm 
month mean temperature (WMMT) of 27.1° ± 2.9°C, a cold month 
mean temperature (CMMT) of 17.2° ± 3.6°C, ~12-month growing 
seasons, growing season precipitation of 1929 ± 643 mm, and spring 
was the driest season as suggested by the highest mean vapor pressure 
deficit. Leaf traits also indicate a relatively equitable temperature 
throughout the year, with a difference of ~10°C between the WMMT 
and CMMT, which is less than the present-day difference of ~15°C 
in Zhangpu. Precipitation seasonality during the middle Miocene 
was, however, comparable with present-day conditions (table S2), 
with a precipitation ratio for the three consecutive wettest months 
to that in the three consecutive driest months of ~6.

The Zhangpu amber biota substantiates this climatic prediction 
as it contains a rich and exquisitely preserved fossil arthropod fauna 
and abundant inclusions of plants, fungi, snails, and even feathers 
(Figs. 3 and 4). The preservation of inclusions is usually excellent, 
displaying colors and three-dimensional (3D) details that can be 
reconstructed clearly using x-ray micro–computed tomography 
(micro-CT) (movies S1 to S3). Botanical inclusions include bryo-
phytes (liverworts and mosses) and angiosperms (Fig.  3 and fig. 
S4). In particular, bryophytes (nonvascular land plants) are rich, 
including at least seven extant genera of liverworts and five extant 
genera of mosses. One amber specimen shows evidence of an epi-
phyte community composed of minute liverwort representatives of 
the living genera Leptolejeunea and Cololejeunea growing on a 
much larger specimen of Plagiochilaceae (fig. S4B). The closest extant 
relatives of Zhangpu amber bryophytes occur today in wet tropical 
forests, supporting the paleoclimatic reconstruction.
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Fig. 2. CLAMP plots showing the position of the middle Miocene Zhangpu flora 
in PhysgAsia2 calibration space. (A) Canonical correspondence analysis (CCA) plot 
of axes 1 versus 2. (B) CCA plot of axes 1 versus 3. (C) CCA plot showing axes 2 
versus 3. CCA plots showing the relationship between the Zhangpu flora (red filled 
circle) and modern vegetation in different climate regimes. Modern climate regimes 
include East Asia Monsoon (green open squares), South Asia Monsoon (brown filled 
squares), nonmonsoonal climates (blue crosses), and the North American Monsoon 
(yellow triangles). The Zhangpu flora lies within the East Asia monsoonal vegeta-
tion but very close to the South Asia monsoonal vegetation in all three dimensions, 
with the closest modern sites from Khorat (central Thailand), Madhya Pradesh 
(central India), and the Ganges Delta.

Fig. 1. Locality map and stratigraphy of the study area. (A) Distribution map of 
modern wild Dipterocarpus trees forest (green color) (39), Fujian Province in south-
eastern China (yellow color) and fossil site (red circle). (B) The Fotan Group strati-
graphic section showing biostratigraphy and geochronologic ages. BL, basaltic 
layers; SL, sedimentary layers. Two fossil layers indicated by red arrowheads both 
yield abundant amber and compression/impression fossils.
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Arthropod inclusions cover an impressive array of more than 
250 families (Figs. 3 and 4). They currently comprise the Isopoda, 
Diplopoda, Chilopoda, Collembola, arachnid orders Acariformes, 
Parasitiformes, Araneae, Opiliones, Pseudoscorpiones, and at least 
200 families of Insecta in 20 orders (figs. S5 to S8 and table S3). This 
extremely high arthropod variety ranks Zhangpu amber one of the 
world’s four richest amber biotas, along with the widely known 
Cretaceous Burmese amber (>568 families), Eocene Baltic amber 
(>550 families), and Miocene Dominican amber (205 families) 
(12, 13). However, the Zhangpu amber biota is unique because it is 
noncommercially extracted and consequently lacks any anthro-
pogenic selective bias. Moreover, its precise age and climate are 
well-constrained by radioisotopic dating (9) and associated plant 
compression/impression fossils, respectively.

As in other amber deposits, large arthropods are rare in Zhangpu 
amber, and more than 99% of the inclusions are less than 10 mm in 
length. Spiders and mites are frequent (Fig. 3, F and J) and mostly 
appear to be juveniles. Theridiidae (cobweb spiders) and Salticidae 
(jumping spiders), dominant in extant dipterocarp lowland rain-
forests (14), are also the most abundant spiders in Zhangpu amber 
(Fig. 3J). A notable character of the biota is the high abundance and 
diversity of springtails, including more than 19 extant genera within 
10 families. The insect fauna is dominated by Diptera (55% of all 
12,661 insects in 8350 pieces), Hymenoptera (24%), Coleoptera (8%), 
and Hemiptera (7%). Diptera are mainly composed of Cecidomyiidae 

(gall midges) (Fig. 4H), Phoridae (humpbacked flies) (fig. S5E), 
Sciaridae (dark-winged fungus gnats), and Psychodidae (moth flies), 
which are quite abundant in modern tropical rainforests. Chirono-
midae (nonbiting midges) are less common in Zhangpu amber, a 
contrast to their extreme high abundance in other Cenozoic ambers 
(14). Hymenoptera are largely represented by ants, stingless bees, 
and various parasitoid wasps and Coleoptera by Staphylinidae (rove 
beetles) and Platypodinae (ambrosia beetles). Hemiptera are mainly 
composed of Cicadellidae (leafhopper nymphs).

DISCUSSION
The insect fauna in Zhangpu amber is consistent with the recon-
structed borderline megathermal monsoon climate, supported by 
the presence of many typical elements such as certain genera of ants 
(Fig. 4B), bees (Fig. 4C), lacewings (Fig. 4E), stick insects (Fig. 4F), 
termites (Fig. 4, G and L), and grasshoppers (fig. S6A) that are today 
restricted to tropical Southeast Asia and/or New Guinea. The com-
position of the Zhangpu amber insect fauna is similar to that of early 
Eocene Cambay amber of India (fig. S9), probably because of their 
similar environments and ecologies stemming from their similar 
floras (15). Perhaps the most unexpected find in our biota is that the 
high diversity of ants and springtails all belong to living genera. In 
addition, the vast majority of hitherto identified insects in Zhangpu 
amber, such as bark lice, grasshoppers, beetles, and bees, can also be 
attributed to living genera. These results suggest that there has been 
stasis of Asian rainforest insect communities since at least the middle 
Miocene, and thereby highlights the notion of tropical rainforests 
acting as museums of biological diversity at the generic level (16, 17). 
The relative ecological stability of megathermal environments from 
the middle Miocene may favor the maintenance of comparatively 
ancient lineages and facilitate the continued accumulation of species 
diversity (16–18).

During the middle Miocene, most of South China was thought 
to be in a warm-temperate forest zone (19). However, our results 
based on the amber biota and plant compression/impression fossils 
demonstrate that megathermal seasonal rainforests in the middle 
Miocene reached at least 24.2°N (modern-day latitude), which is north 
to the Tropic of Cancer (23.5°N), and thus more widespread than 
previously estimated (19). Throughout this hyperthermal event, the 
Zhangpu area had a relatively equitable temperature and intensified 
monsoon rainfall, similar to those in the current climatic change 
predictions for South China, due to the continuing strengthening of 
the East Asian monsoon (20). However, there are differences and 
large uncertainties (including local temperature and precipitation) 
among different climate models regarding change within South China 
(20, 21); our results may provide constraints on these projections of 
South China including precipitation and mean annual temperatures 
for the coming century.

During the middle Miocene, there was a strong homogenizing 
effect on the composition and distribution of plant and animal 
communities, notably, biotic exchange between the Indian sub-
continent, mainland Asia, the Malay Archipelago, Australia, New 
Guinea, and many Pacific Islands (22, 23). Our findings confirm that 
a megathermal biota existed in the middle Miocene Zhangpu area 
and extend the biological and physical homogenization of Asian 
tropical forests to most areas of South China. The middle Miocene 
expansion of Asian tropical rainforests, with potential alterations 
of local food webs, biogeochemical cycles, and climatic conditions 

Fig. 3. Representative inclusions in Zhangpu amber. (A) Feather. (B) Moss 
(Bryophyta: Anomodontaceae: Haplohymenium). (C) Flower (Fagales: Fagaceae). 
(D) Pseudoscorpion (Pseudoscorpiones). (E) Pill woodlouse (Isopoda). (F) Water mite 
(Acari: Hydrachnidia). (G) Springtail swarm (Collembola: Hypogastruridae: Ceratophysella). 
(H) Centipede (Chilopoda). (I) Harvestman (Opiliones). (J) Jumping spider (Araneae: 
Salticidae). (K) Snail (Gastropoda: Cyclophoridae). Scale bars, 1 mm (A, B, and E), 
0.5 mm (C, D, G, H, J, and K), 0.2 mm (F), and 2 mm (I).
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(24), is consistent with the concurrent diversification of various plants 
and animals (25–27) and probably laid the foundation for today’s 
East Asian terrestrial biota. In conclusion, the MMCO probably 
strongly shaped the East Asian biota via the northern expansion of 
the megathermal rainforest biome, which favored both increasing 
diversity and had a homogenizing effect on the composition and 
distribution of plant and animal communities.

Compared to the modern climate in Zhangpu, the most nota-
ble difference is that the middle Miocene Zhangpu climate had 
a warmer winter, leading to a relatively equitable temperature 
throughout the year. In scenarios of global warming, winter warm-
ing is commonly more pronounced than summer warming and 
has larger and more widespread effects on terrestrial and marine 
ecosystems (28). It reduces “winterkills” and is beneficial for repro-
duction and growth of tropical animals and plants (29). There-
fore, winter warming is likely to have been a major driver of the 
northern expansion of the megathermal biota in South China during 
the MMCO.

The Zhangpu amber biota together with co-occurring fossils from 
associated sedimentary rocks—collectively called the Zhangpu biota—
is the richest Cenozoic megathermal seasonal rainforest paleobiota 
found so far, and on the basis of the preserved biodiversity, this new 
amber deposit ranks among the top four worldwide. This glimpse 
into such a biota provides a new insight into how modern tropical 

ecosystems evolve, and helps predict how they will respond to fu-
ture environmental perturbation.

MATERIALS AND METHODS
Materials
The Fotan Group hosts abundant amber and plant fossils and occurs 
widely throughout eastern and western Fujian. It consists primarily 
of three basaltic layers and three sedimentary layers (30). A typical 
stratigraphic section includes basalts, arenaceous conglomerates, sand-
stone, and mudstone interbedded with lignite (fig. S1). Both plant 
compression/impression fossils and amber are preserved in two mud-
stone unites, and some amber pieces and fossil woods also occur 
within coal seams. We did not find any compression fossil insects 
within these fossil layers. The ages of basalt samples underlying and 
overlying the fossil layers are 14.8 ± 0.6 and 14.7 ± 0.4 Ma, respec-
tively (Fig. 1) (9, 31).

Single pieces of Zhangpu amber can be very large (fig. S1D), but they are 
usually fragile and thus not suitable for making jewelry. The Zhangpu 
amber is characterized by amyrin and amyrone-based triterpenoids 
and cadalene-based sesquiterpenoids (10). It is considered derived 
from the tropical angiosperm family Dipterocarpaceae, based on 
these compounds and the co-occurring fossil winged fruits typical 
of the family also in the Zhangpu deposits (32).

Fig. 4. Representative insects in Zhangpu amber of biogeographic and ecological significance. (A) Ant (Hymenoptera: Formicidae: Leptomyrmex). (B) Ant (Hymenoptera: 
Formicidae: Lophomyrmex). (C) Bee (Hymenoptera: Apidae: Tetragonula). (D) Bristletail (Archaeognatha: Machilidae). (E) Dustywing (Neuroptera: Coniopterygidae: Heteroconis). 
(F) Stick insect (Phasmida: Lonchodidae: Orxines). (G) Earwig (Dermaptera: Labiduridae) and termite (Isoptera: Rhinotermitidae: Coptotermes). (H) Two flies (Diptera: 
Mycetophilidae) and one leafhopper (Hemiptera: Cicadellidae). (I) Stonefly (Plecoptera: Nemouridae: Podmosta) and scale insect (Hemiptera: Coccoidea). (J) Bark lice 
(Psocodea: Psocidae). (K) Planthopper (Hemiptera: Issidae). (L) Termite (Isoptera: Rhinotermitidae: Coptotermes). Scale bars, 1 mm (A, C, and G), 0.5 mm (B, E, J, and L), and 
2 mm (D, F, H, I, and K).
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From 2010 to 2019, we collected approximately 25,000 amber sam-
ples with inclusions in Zhangpu County, Fujian Province, southeastern 
China. So far, 8350 specimens have been polished carefully and 
identified. To reconstruct the paleoclimate, we also collected ap-
proximately 5000 plant fossils from the amber-bearing sedimentary 
rocks of the Fotan Group in Zhangpu. All these specimens are de-
posited in the Nanjing Institute of Geology and Palaeontology, 
Chinese Academy of Sciences (NIGPAS).

Optical photomicrography
Specimens were photographed using a Zeiss Stereo Discovery V16 
microscope system at the NIGPAS. All images were taken by using 
digitally stacked photomicrographic composites of approximately 
40 individual focal planes using the image-editing software Helicon 
Focus 6 (www.heliconsoft.com).

X-ray micro–computed tomography
To three-dimensionally reconstruct amber inclusions, we scanned 
the fossils at the micro-CT laboratory of NIGPAS, using a 3D x-ray 
microscope (3D-XRM), Zeiss Xradia 520 versa. Unlike conventional 
micro-CT, which relies on maximum geometric magnification and 
a flat panel detector to achieve high resolution, 3D-XRM uses charge-
coupled device (CCD)–based objectives to achieve higher spatial 
resolution. On the basis of the size of the fossil specimen, a 
CCD-based 0.4× objective was used, providing isotropic voxel sizes 
of 13.36 m with the help of geometric magnification. During the 
scan, the acceleration voltage for the x-ray source was 40 to 90 kV, 
and a thin filter (LE3) was used to avoid beam hardening artifacts. 
To improve the signal-to-noise ratio, 2001 projections over 360° were 
collected, and the exposure time for each projection was 1.5 to 3.5 s. 
Volume data processing was performed using software VGStudio 
Max (version 3.0, Volume Graphics, Heidelberg, Germany).

Paleoclimatic reconstruction
The paleoclimate of the middle Miocene Zhangpu flora was recon-
structed quantitatively using the Climate-Leaf Analysis Multivariate 
Program (CLAMP), a taxonomy-independent, multivariate statistic 
technique based on canonical correspondence analysis (CCA) (33, 34). 
CLAMP correlates the leaf physiognomy of woody dicots in modern 
vegetation with corresponding climate data and uses these correla-
tions to estimate the climatic conditions prevailing during growth 
of the fossil plants. The database used in CLAMP scores 31 leaf 
characters averaged over a minimum of 20 woody dicot leaf morpho-
types for each site.

Seventy-eight morphotypes of woody dicot leaves were recognized 
among ~5000 plant compression/impression fossils (tables S1 and 
S2). The leaf traits of the Zhangpu morphotypes were scored follow-
ing the standard protocols as defined on the CLAMP website (http://
clamp.ibcas.ac.cn) (data file S1). For analysis, we used the PhysgAsia2 
calibration dataset, which contains vegetation sites from both tem-
perate and tropical regions of the Northern Hemisphere. The anal-
ysis is also accompanied by a recently developed climate calibration 
based on high spatial resolution (~1 km2) WorldClim2 climate data 
to obtain a broader range of the climatic variables than in the tradi-
tional CLAMP calibrations (35).

Amber insect assemblage comparisons
We compared the insect assemblages at order level of unbiased col-
lections of Fushun (2780 insects) (36), Baltic (including Bitterfeld 

amber; 19,461 insects) (37), Rovno (868 insects) (37), Cambay 
(987 insects in Bonn collection) (15), and Zhangpu amber archives 
(12,661 insects in Nanjing collection). The Fushun, Baltic (includ-
ing Bitterfeld amber), and Rovno ambers occur almost across a 
similar paleolatitude, and all were formed by conifers under a warm 
temperate or subtropical climate (36–38). Consequently, it is not 
unexpected that the composition of the Fushun insect fauna is more 
similar to those of the Baltic and Rovno ambers (fig. S9), probably 
because of their more comparable environments and ecologies stem-
ming from their similar floras. Similarly, the composition of the 
Zhangpu amber insect fauna is more similar to that of early Eocene 
Cambay amber (fig. S9), probably because of their more comparable 
environments and ecologies again stemming from their closely sim-
ilar floras (15).

SUPPLEMENTARY MATERIALS
Supplementary material for this article is available at http://advances.sciencemag.org/cgi/
content/full/7/18/eabg0625/DC1
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