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Abstract The early Cenozoic topography of the northern Tibetan plateau remains enigmatic
because of the paucity of independent paleoelevation constraints. Long-held views of northward
propagating deformation imply a low Paleogene elevation, but this prediction is speculative. We apply
flexural modeling to reconstructed Paleogene isopach data obtained from the Qaidam basin, which
requires a larger topographic load in the Qilian Shan and a smaller load in the Eastern Kunlun Shan.
Incorporating knowledge of proto-Paratethys marine incursions in the Paleogene Qaidam basin, we
infer a topographically low (0.4-1.0 km) Eastern Kunlun Shan and a higher (0.4-1.5 km) Qilian Shan
during the Paleogene. This implied paleo-relief contrasts with previous predictions and suggests more
recently, Neogene surface uplift in the Eastern Kunlun Shan has been more significant than in Qilian
Shan, highlighting diachronous growth of the northern Tibetan plateau. The low-moderate paleoelevation
implies a warmer and more humid climate in Northern Tibet during the Paleogene.

Plain Language Summary The Tibetan plateau is Earth’s highest and largest plateau and has
a protracted growth history closely related to Cenozoic convergence between India and Asia. Resolving
its paleoelevation in the early Cenozoic is instructive to understand its growth history and Asian climate
changes. Although paleoaltimetry studies have provided critical constraints for the southern Tibetan
plateau during Paleogene, the paleoelevation of the northern Tibet remains enigmatic. The largest basin
in the plateau is the Qaidam Basin, surrounded by high elevation thrust belts. We conducted flexural
modeling of early Cenozoic strata from the Qaidam basin, which suggests higher topography in the
north (0.4-1.5 km) and lower topography (0.4-1.0 km) in the south. This unique topographic relief

in the northern Tibetan plateau suggests that very significant surface uplift (3-4 km) occurred along

the southern margin of Qaidam basin in the late Cenozoic. These results of early topographic relief in
northern Tibet support hypotheses of a Paleogene warmer and more humid climate in North Tibet. This
study provides a new approach that provides an independent constraint on the Paleogene paleoelevation
of northern Tibet, contributing to our understanding of the growth of the Tibetan plateau and Asian
paleoclimate.

1. Introduction

The growth and uplift of the Tibetan plateau (Figures la and 1b) has implications for our knowledge of
continental tectonics and intracontinental deformation (Cheng et al., 2014; Clark & Royden, 2000; DeCelles
et al., 2002; Law & Allen, 2020; Murphy et al., 1997; Rowley, 1996; Tapponnier et al., 2001; Wang et al., 2008;
Yin & Harrison, 2000) and the evolution of the East Asian monsoon (An et al., 2001; Clift et al., 2008;
Harris, 2006; Licht et al., 2014; Molnar et al., 1993; Porter, 2001). Despite ongoing debate, numerous pale-
oaltimetry studies based on stable isotope hydrology, clumped isotope thermometry, and physiognomy of
plant fossils have provided constraints on the early Cenozoic paleoelevation for the southern Tibetan pla-
teau (Botsyun et al., 2019; Ding et al., 2014; Garzione et al., 2000; Hoke et al., 2014; Quade et al., 2011; Su
et al., 2020). However, the early Cenozoic paleoelevation of the northern Tibetan plateau remains unclear,
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Figure 1. (a) Topographic map of East Asia. (b) Topographic profile AA’ across the Tibetan plateau. (c) Preliminary paleogeographical map showing the
incursions of the proto-Paratethys Sea, from Kaya et al. (2019). (d) Isopach map of the Paleogene Lulehe Fm. in the Qaidam basin. Red star is to the site of
biomarker record reported by Ma et al. (2019).

partly due to the inapplicability of these paleoaltimetry approaches to northern Tibet (Quade et al., 2011;
Rowley & Garzione, 2007; Song et al., 2020). For instance, isotope-based paleoaltimetry methods widely
applied in southern Tibet cannot be used in the northern Tibetan plateau due to uncertainty between el-
evation and the 80 values of meteoric waters. Due to the lack of preservation of early Cenozoic strata,
physiognomy of plant fossils is also not well applied to the northern Tibetan plateau.

Currently, many studies presume negligible topography in northern Tibet during the Paleogene, mainly
based on the models of northward propagating deformation across the plateau since the early Cenozo-
ic (England & Houseman, 1986; Mulch & Chamberlain, 2006; Tapponnier et al., 2001; Wang et al., 2008)
and the abundant evidence of Neogene-dominated exhumation in the northern Tibetan plateau (Duvall
et al., 2013; Meyer et al., 1998; Yuan et al., 2013). In particular, it is usually assumed that the Eastern Kunlun
Shan to the south was higher than the Qilian Shan during the Paleogene (Tapponnier et al., 2001; Wang
et al., 2008; W Wang et al., 2017). Some studies have indicated, however, that pre-Cenozoic topography
might have existed in Northern Tibet, suggesting that the Paleogene paleoelevation of the northern Tibetan
plateau could be partly inherited from pre-existing topographic relief (Cheng, Fu, et al., 2016; Cheng, C
N. Garzione, Jolivet, et al., 2019; Cheng, Jolivet, et al., 2019; Jolivet et al., 2001; Robinson et al., 2003). All
these deductions are based on the indirect knowledge of the deformation history of the mountain belts and
source to sink analysis. Paleotopography of the Tibetan plateau is also considered as an important factor
that controlled the establishment of the Asian monsoon by changing the atmospheric circulation (Clift
et al., 2008; Licht et al., 2014; Molnar et al., 1993; Xie et al., 2019), although there is growing appreciation
for monsoon intensification driven by atmospheric CO, concentrations and other factors (Nie et al., 2018;
Ren et al., 2020). Therefore, there is an urgent need for independent paleoelevation proxies for the northern
Tibetan plateau.

Recent biomarker studies indicate episodic proto-Paratethys marine incursions within the Qaidam basin, the
largest depression in the Tibetan plateau (Figure 1c), since the Paleogene (Kaya et al., 2019; Ma et al., 2019).
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If the Qaidam basin was at or near sea level in the early Cenozoic, a better understanding of the topograph-
ic relief of the surrounding mountain belts relative to the Qaidam basin would allow estimation of the
paleoelevation of the northern Tibetan plateau. Flexural modeling provides insight into how topographic
loads/relief have varied to define flexural basin geometry (P DeCelles, 2011; Royden & Karner, 1984; Saylor
et al., 2018; Wang et al., 2015; Y Yang and Liu, 2002). To characterize the spatial distribution of paleorelief
in the Eastern Kunlun Shan and Qilian Shan, we performed flexural modeling of four NE-trending strati-
graphic sections across the Qaidam basin to reveal the lateral distribution of topographic loads/relief along
the Eastern Kunlun Shan and Qilian Shan (Figure 1c). By incorporating flexural modeling results with the
knowledge of proto-Paratethys marine incursion in Central Asia during the Paleogene, we further discuss
the paleoelevation of northern Tibet and explore the deformation patterns of the northern Tibetan plateau.

2. Geological Setting

The topographically high Eastern Kunlun Shan and Qilian Shan and relatively lower Qaidam basin are
the most dominant Cenozoic tectono-geomorphological features in the northern Tibetan plateau (Fig-
ures la and 1b). Field mapping and petroleum exploration indicate that the Qaidam basin contains as
think as >14 km of Cenozoic clastic sedimentary fill (Cheng et al., 2018; Xia et al., 2001; Yin, Dang, Wang,
et al., 2008; Yin, Dang, Zhang, et al., 2008). Marking the onset of the Cenozoic sedimentation in the Qa-
idam basin, the Lulehe Formation (Fm.) is generally considered to be Paleocene to early Eocene in age
(Chang et al., 2015; Ji et al., 2017; Ke et al., 2013; Wang et al., 2007; Yang et al., 1992; Yin, Dang, Wang,
et al., 2008; W Zhang, 2007). However, recent magnetostratigraphy studies of the Lulehe Fm. at one section
site in the northern Qaidam basin assigned an Oligocene or early Miocene depositional age (Figure S1)(Nie
et al., 2019; W Wang et al., 2017). Given that our flexural modeling experiment is based on the entire ba-
sin-wide stratigraphic framework of the Lulehe Fm., we adopt the old age model validated by independent
studies across the basin (Ji et al., 2017; Wu et al., 2019; Yin, Dang, Zhang, et al., 2008). Further discussion of
the Lulehe Fm. age models is in the Supporting Information Text S1.

3. Approach and Method

The goal of modeling was to test for the optimal height of the Eastern Kunlun Shan and Qilian Shan that
provided the best fit to the original shape of the Qaidam basin, quantified as the smallest least squares and
highest coefficient of determination. To start with the modern shape of the Qaidam basin, we selected four
NE-trending stratigraphic sections across the basin according to the Lulehe Fm. Isopach map obtained from
the Qinghai Oilfield Company, PetroChina: Sections BB”, CC”, DD”, and EE” (Figure 1c). We carried out
shortening restoration, based on estimates of Wei et al. (2016), and sediment decompaction to obtain the
original shape of the basin. Decompaction of the Lulehe Fm. strata followed the approach, porosity values,
and porosity-depth coefficient of Sclater and Christie (1980). Detailed description is given in the Supporting
Information Text S1 and calculation results is given in Supporting Information Data Set S1.

For an elastic infinite/continuous plate acted upon by an end load, the deflection of the lithosphere is given
as (Saylor et al., 2018; Turcotte & Schubert, 2002; Wangen, 2010):

HWga® :
a)(x) = me | cos > + sin— (@)
8D a a

where w(x) is the deflection at x (horizontal distance relative to the center of the load), p. is the density of
topographic load (crust); H and W are the height and width of the load, respectively, g is gravity, « is the

flexural parameter, which is a function of flexural rigidity of plate (D), density of fluid asthenosphere (o,,)
and density of the basin fill (o;) and gravity (g), given as:

)

D is given as:
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Figure 2. (a-d) Palinspastic section BB’, CC’, DD’, and EE during the deposition of Lulehe Fm. after the shortening
restoration and decompaction. Shortening strain is based on estimate of Wei et al. (2016). (e) Two-load beam model,
showing the relationship between the topographic loads of the mountains and the deflection of the sedimentary
basin. Note the modeled shape of deflection by both Eastern Kunlun Shan and Qilian Shan should match with the
palinspastic shape of the associated profile. Equation for w;(x) and w,(x) is given in Supporting Information Text S1.
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Flexural modeling methods of our two-load beam flexural model and uncertainty analysis are given in
Figure 2e and Supporting Information Text S1. Relevant parameters (e.g., effective elastic thickness, gravity,
mantel density, crustal density, basin fill density, width of the Qilian Shan and the Eastern Kunlun Shan)
are in Table S1.
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Figure 3. (a), (d), (g), and (j) show the modeled deflections of Qaidam basement best fits the original shape of sections BB’, CC, DD, and EE’, respectively.
Changing parameters, for example, increasing the height of Eastern Kunlun Shan (b, e, h, k) and Qilian Shan (c, f, i, 1) cannot improve the fit (a decrease in R?
value) between the modeled deflection of the Qaidam basement and the original shape of the Qaidam basin.

4. Flexural Modeling and Paleoelevation Estimates

After shortening restoration and decompaction, the original shapes of the sections during the deposition of
the Lulehe Fm. are shown in Figure 2. Best-fit flexural modeling results, including optimal Eastern Kunlun
Shan and Qilian Shan heights that recreate the shape of the Qaidam basin, are summarized in Figure 3 and
Table S1. We also provide multimedia animations to show the variation of flexural modeling results when
changing the effective elastic thickness and the height of the Eastern Kunlun Shan and the Qilian Shan. See
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Figure 4. (a) Eocene (~40 Ma) paleogeographic maps of Asia showing the location of the proto-Paratethys Sea and
mountain belts in Northern Tibet, modified from Poblete et al. (2021). (b) Schematic paleogeographic cross section
of the central and northern Tibet, showing our proposed surface-uplift history for the northern Tibet. FSTB: Fenghuo
Shan Thrust belt; EKS: Eastern Kunlun Shan; HB: Hoh Xil basin; QS: Qilian Shan; QB: Qaidam basin.

the Multimedia Animation S1-28 in the Supporting Information for more details. The code that was used to
calculate the flexural modeling is given in the Supporting Information Data Set S2.

Marine incursions in the western Qaidam basin imply that it was close to proto-Paratethys sea level during
the Paleogene (Kaya et al., 2019; Ma et al., 2019). With the knowledge that the proto-Paratethys sea level
may have been slightly higher (<200 m) than global sea level (Bosboom et al., 2017; Kaya et al., 2019; Meijer
et al., 2019), we then estimate that the Eastern Kunlun Shan at the southwest end of Sections B, C, D, and
E was 0.5 £ 0.1 km, 1.0 + 0.1 km, 0.4 = 0.1 km and 0.5 + 0.1 km high above the mean sea level (a.m.s.l.),
respectively. The Qilian Shan at the northeast end of the four sections was 1.5 £ 0.1 km, 1.5 = 0.1 km,
1.2 £ 0.1 km, and 0.4 £ 0.1 km high a.m.s.1., respectively (Table S1). The results imply that the Qilian Shan
was higher in all profiles, except section E, which displays the thinnest Lulehe Fm deposits (Figure 3d) and
thus may have been at the eastern extent of the Paleogene basin.

5. Discussion
5.1. Paleogene Topography of the Northern Tibetan Plateau

These flexural modeling constraints refute the existence of a negligible relief in the northern Tibetan pla-
teau during the Paleogene (Meyer et al., 1998; Tapponnier et al., 2001), but are in agreement with independ-
ent, albeit indirect evidence suggesting Paleogene topographic relief in the northern Tibetan plateau (Fig-
ure 4a), including: 1) Eocene exhumation recorded by thermochronology (He et al., 2018; Jolivet et al., 2001;
Li et al., 2020; F Wang et al., 2017); 2) proximal deposition along the margin of the Qaidam basin and
Eastern Kunlun Shan/Qilian Shan provenance of Qaidam basin sediments during the Paleogene (Cheng,
Guo, et al., 2015; Cheng, C. N. Garzione, Mitra, et al., 2019; Wang et al., 2020; W Wang et al., 2017; Zhang
et al., 2013); and 3) Paleogene thrusts observed in seismic profiles along the Qaidam basin margin (Cheng,
C. N. Garzione, Jolivet, et al., 2019; Sun et al., 2020; Wu et al., 2014; Yin et al., 2007; Yin, Dang, Zhang,
et al., 2008). In particular, our flexural modeling suggests a low (0.4-1.0 km) Eastern Kunlun Shan and a
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higher (0.4-1.5 km) Qilian Shan, contrasting the inference of a low Qilian Shan relative to a higher Eastern
Kunlun Shan advocated by northward-propagating deformation models (England & Houseman, 1986; Tap-
ponnier et al., 2001).

Our flexural modeling results show variable along-strike relief within the Eastern Kunlun Shan and Qilian
Shan, with the Eastern Kunlun Shan showing a local topographic high in its center and the Qilian Shan
yielding eastward decreasing topography. These variations may reflect lithological heterogeneities within
the mountain belts or may result from their structural setting. For example, our results support a kinematic
linkage between the early Cenozoic Qilian Shan and Altyn Tagh fault, resulting in higher topography closer
to the Altyn Tagh fault in the west (Cheng, Jolivet, et al., 2015; Cheng, Jolivet, et al., 2016; He et al., 2018;
Jolivet et al., 2001), whereas the early Cenozoic Eastern Kunlun Shan (Staisch et al., 2020) may have been an
isolated thrust system with a local topographic high in its center. Variable along-strike relief in the Eastern
Kunlun Shan would have developed a laterally irregular drainage divide between the Qaidam basin to the
north and the Hoh Xil basin to the south. The relatively low topographic relief (~0.4 km) in the Eastern
Kunlun Shan implies the possibility of drainage connection between the Qaidam and Hoh Xil basins dur-
ing the Paleogene as hypothesized in the Paleo-Qaidam basin model (Cheng, Fu, et al., 2016; Cheng, C. N.
Garzione, Mitra, et al., 2019; McRivette et al., 2019; Yin, Dang, Zhang, et al., 2008). On the other hand, such
a potential connection should be completely cut off in those areas with a relative higher relief (~1.0 km).
This finding reconciles the early Cenozoic exhumation of the Eastern Kunlun Shan (Cheng, Fu, et al., 2016;
Cheng, C. N. Garzione, Mitra, et al., 2019; Wang et al., 2020; Zhang et al., 2013) with the existence of a large
depression in the northern Tibet (McRivette et al., 2019; Wu, Zuza, Zhou, et al., 2019; Yin, Dang, Zhang,
et al., 2008).

This unique Paleogene topographic feature in the northern Tibetan plateau indicates that the strain con-
centrated first in the Qilian Shan to the north, partially skipping the Eastern Kunlun Shan (Figure 4b)(Yin,
Dang, Zhang, et al., 2008). Paleozoic suture zones acted as preexisting weaknesses to focus Cenozoic in both
the Eastern Kunlun Shan and Qilian Shan (Allen et al., 2017; Wu et al., 2016; Zuza et al., 2016; Zuza, Wu,
Wang, et al., 2018). Strength heterogeneities between the stronger North China craton and the weaker Ti-
betan lithosphere may have concentrated initial strain along the Qilian suture zone. After protracted crustal
thickening across the Qilian Shan, it became more efficient for deformation to jump south to the Eastern
Kunlun Shan. This kinematic history may have been enhanced by lithospheric buckling at a first-order
wavelength of ~200 km (Bischoff & Flesch, 2018; Burg et al., 1994). Alternatively, evidence from geological
mapping (Chen et al., 2012; Zuza, Wu, Reith, et al., 2018), source to sink analysis (Cheng, C. Garzione,
et al., 2019; Cheng, C. N. Garzione, Mitra, et al., 2019), thermochronology (Dai et al., 2013; He et al., 2017;
Jolivet et al., 2001; Liu et al., 2007), and seismic profiles (Cheng, C. Garzione, et al., 2019; Cheng, C. N. Gar-
zione, Mitra, et al., 2019; Wu et al., 2014) suggest that the bimodal topography may reflect some pre-Ceno-
zoic topographic inheritance in both mountain belts. However, given the unknown extent and distribution
of the potential pre-existing topographic relief in the northern Tibet, it is still difficult to distinguish the con-
tribution of pre-Cenozoic topographic inheritance from the lithospheric buckling. A more comprehensive
geological investigation on the Mesozoic evolution of the northern Tibetan plateau is still needed.

Given our inferences of a low Eastern Kunlun Shan and relatively higher Qilian Shan, and considering the
modern high elevation in Eastern Kunlun Shan and the Qilian Shan, we estimate ~3-4 km and ~2-3 km
surface uplift after the deposition of the Lulehe Fm. in the Eastern Kunlun Shan and the Qilian Shan, re-
spectively (Figure 4b). Cenozoic crustal shortening across the northern Tibetan plateau is sufficient to raise
the elevations of the mountain ranges by these postulated magnitudes (Yin, Dang, Zhang, et al., 2008; Zuza
et al., 2016). Our estimates imply that during the Neogene, substantial tectonic surface uplift concentrated
more in the Eastern Kunlun Shan than in the Qilian Shan. The strength of the lithosphere and gravitational
potential energy (GPE) are the two important forces that resist mountain building in the orogenic belts (Mol-
nar & Lyon-Caen, 1988). The lithospheric strengths of the Eastern Kunlun Shan and Qilian Shan should be
comparable because they share similar crustal compositions (Cheng et al., 2017; Karplus et al., 2011; Wu,
Zuza, Chen, et al., 2019; Yin & Harrison, 2000; Zhao et al., 2013; Zuza, Wu, Reith, et al., 2018), which is
further supported by similar elastic thickness (T,) estimates (Braitenberg et al., 2003).

Accordingly, GPE probably modulated the relative Neogene growth of the Qilian Shan and Eastern Kunlun
Shan. As uplift-related GPE is balanced by deviatoric stress across a mountain belt, it becomes less favorable
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to support continued range growth and uplift, and thus orogenic belts reach a maximum mean elevation
related to the applied stress (Molnar & Lyon-Caen, 1988). Erosion of high topography with increased relief,
perhaps modulated by local climate, may further drive enhanced deformation of high GPE areas (Cheng,
C. N. Garzione, Mitra, et al., 2019). In northern Tibet, the present high elevation Eastern Kunlun Shan is at
steady state GPE and topography whereas the Qilian Shan is at non-equilibrium state, evidenced by large
maximum shear strain but negligible dilatation along the Kunlun fault and the strong negative dilatation
and moderate shear strain along Haiyuan fault in the Qilian Shan derived from the GPS velocity field (M
Wang & Shen, 2020). We thus infer that the Eastern Kunlun Shan reached its maximum mean elevation
after the Miocene but prior to the present, due to crustal shortening and possible late Cenozoic magmatic
inflation (Chen et al., 2018; Molnar et al., 1993; Yin, Dang, Zhang, et al., 2008). Since peak elevation attain-
ment, plate convergence across the Eastern Kunlun Range has been accommodated primarily via lateral
shear strain (Duvall et al., 2013; Fu & Awata, 2007; Jolivet et al., 2003; Staisch et al., 2020). Conversely, with
no late Cenozoic magmatism in the Qilian Shan, Neogene convergence was partitioned in the Qilian Shan
as outward growth (Bovet et al., 2009; Cheng, C. N. Garzione, Mitra, et al., 2019; Zheng et al., 2017) and/or
eastward translation and block rotation (Cheng et al., 2021), preventing the Qilian Shan from reaching its
maximum mean elevation.

5.2. Paleoclimate Implications

How and when did the Asian monsoon system develop has intrigued geoscientists for decades (An
et al., 2001; Boos & Kuang, 2010; Holbourn et al., 2018; Licht et al., 2014; Nie et al., 2018; Porter, 2001;
Saylor et al., 2016; Spicer, 2017; Sun & Wang, 2005; Wang et al., 2005). The well-exposed Quaternary loss-
es-paleosol sequences and late Miocene-Pliocene red clay sequences in the Chinese Loess Plateau record
the East Asian Monsoon history since the late Miocene (An et al., 1990, 2001; Ding et al., 1999; Heller &
Tungsheng, 1984; Kukla, 1987; Sun et al., 1997). The finding of the dust records in the Chinese Loess Pla-
teau and adjacent regions push the East Asian monsoon history back to late Oligocene to early Miocene
(Guo et al., 2002, 2008). Recent studies further argue that a monsoon-like arid climate conditions may have
initiated as early as the ~40 Ma (Licht et al., 2014, 2016) although some climate simulations challenge the
establishment of a monsoon-like climate in East Asian since the Eocene (X Li et al., 2018).

Despite the importance of the atmospheric CO, concentration (Ren et al., 2020) and global cooling (Zhang
et al., 2018), climate models and geological records show that the Asian paleoclimate is sensitive to the to-
pography of the Tibetan plateau (Clift et al., 2008; Licht et al., 2014; Liu and Yin, 2002; Molnar et al., 1993;
Prell & Kutzbach, 1992). The onset of the modern Asian monsoonal system has been genetically associated
with to development of high topographic relief of the Tibetan-Himalayan orogen (Molnar et al., 1993), like-
ly resulting from a Neogene rapid surface uplift of the plateau. Our inference of a low (0.4-1.0 km) Eastern
Kunlun Shan and moderate (0.4-1.5 km) Qilian Shan implies a substantial Neogene surface uplift (2-4 km)
of the northern Tibet which would affect the regional circulation by disrupting the general west-to-east
atmospheric flow and providing a heat source that warms the atmosphere over the plateau and further
strengthens its southeast flow (Molnar et al., 1993).

The lower topographic relief in the northern Tibetan plateau during the Paleogene compared with today
would also allow a warmer and more humid climate with enhanced physical erosion rate and silicate
weathering rates (Figure 4b). Increased erosion patterns under a warmer and wetter climate could modu-
late Paleogene mountain building (Cheng, C. N. Garzione, Mitra, et al., 2019; West et al., 2005) and in turn,
possibly affect deformation and surface uplift (Liu et al., 2020; McQuarrie et al., 2008) in northern Tibet.
Our argument of a warmer and humid climate in the northern Tibet during the Paleogene is in agreement
with the magnetic susceptibility records from the Xorkol basin (J Li et al., 2018) and oxygen isotope records
from the lacustrine strata in the Qaidam basin (Li and Garzione, 2017; Li et al., 2017; Mao et al., 2014; Rieser
et al., 2009)(Figure S1).
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6. Conclusions

Flexural modeling results based on Paleogene isopach data from the Qaidam basin suggest a topographic
load generated by a low (0.4-1.0 km) Eastern Kunlun Shan and a moderate (0.4-1.5 km) Qilian Shan is
responsible for the subsidence of the Qaidam basin during the Paleogene. We attribute the difference in
paleo-reliefs in the Eastern Kunlun Shan and the Qilian Shan to the lithospheric buckling, distinctive loca-
tion of the Qilian Shan against the North China, and the pre-existing topographic relief. The significant var-
iability of the along-strike relief within the Eastern Kunlun Shan reconciles the early Cenozoic exhumation
of the Eastern Kunlun Shan with the existence of a wide depression in the northern Tibet. We further pro-
pose that Neogene surface uplift in the Eastern Kunlun Shan was more significant than in the Qilian Shan.
The existence of a low-to-moderate topography implies a warmer and more humid climate which in turn
affected the mountain building in North Tibet. In summary, this study offers a new approach that provides
an independent constraint on the Paleogene topography of North Tibet, which improves our understanding
of the growth of the Tibetan plateau and Asian paleoclimate.
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