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Series expansion of electrostatic potential radiated 
by a point source in isotropic Maxwellian plasma 

C. B6ghin 
Laboratoire de Physique et Chimie de l'Environnement, CNRS, Orl6ans, France 

Abstract. A new algebraic approach is proposed to calculate the electrostatic potential 
distributed around a point source in isotropic Maxwellian plasma. The method derives a 
power series expansion of the radial distance from the source with frequency-dependent 
coefficients. Distance and frequency are normalized to the Debye length and to the plasma 
frequency, respectively, so that the expression keeps its entire generality whatever the 
experimental conditions might be. The proposed method is based upon the Mittag-Lefler 
expansion of the inverse of the plasma dispersion function for the infinite series of Landau 
poles. After mathematical clarification of the validity of this expansion, a significant 
correction of the previous works leads to a self-consistent interpretation of the true 
contribution of the higher-order poles at large distance from the source. The power series 
expansion is compared to the classical so-called "Landau wave approximation" which is 
proved to include in reality the contribution of higher-order poles independently from the 
plasma temperature. For practical use the power expansion is needed to obtain a precise 
result at distances from the source shorter than about 15 Debye lengths, while the Landau 
wave approximation gives correct results at larger distances. This work provides all 
necessary baselines for precise three-dimensional modeling of mutual impedance devices to 
be used in space plasma experiments where the Debye length is comparable to the 
spacecraft size. 

1. Introduction 

Since the historical paper of Landau [1946], the 
expression of electric perturbations in terms of 
potential and field induced in a Maxwellian plasma by 
pulsating charges has been studied extensively by 
innumerable authors, and under many different 
experimental conditions. Basics of such a classical 
problem are quite simple, but the algebraic difficulties 
in deriving a result easily usable in real applications 
are the cause of this large amount of literature. The 
main difficulty comes from the fact that the plasma 
dispersion function has an infinite number of roots for 
a Maxwellian electron distribution, the contribution of 
which has to be considered in some conditions, in 
addition to that of Landau's dominant pole [see Dertier 
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and Simonen, 1969]. Consequently, people have 
considered different kinds of approximations adapted 
to each experimental conditions, what is satisfactory 
when first-order estimates are sufficient. But when the 

purpose is to use the system response as a plasma 
diagnostic, which is the case of mutual impedance 
probes as initially proposed by Storey et al. [ 1969], a 
more rigorous theoretical treatment becomes 
necessary. 

The simplest approximations first concerned the 
thermal distribution itself, starting from the water-bag 
distribution [see Grard, 1969] leading one to consider 
only one single real pole, that is, the adiabatic 
Langmuir wave solution propagating without any 
damping at frequencies greater than the plasma 
frequency 6%. Then, the multiple water-bag model 
[Navet and Bertrand 1971] and the Cauchy 
distribution [Rooy et al., 1972] were proposed, both 
leading to a finite number of roots of the plasma 
dispersion equation and to the ability to approximate 
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asymptotically the Maxwellian distribution. One of the 
most extensive investigations regarding the relative 
contribution between the predominating Landau's pole 
and all other damped poles was made by Simonen 
[1966] and Dertier and Simonen [ 1969], while exact 
solutions were obtained by direct numerical integration 
[Buckley, 1968], allowing a good estimate of the 
validity of approximations. 

The results from those works have been used for 

interpretation of most space experiments where the 
mutual impedance devices developed by the Orl6ans 
group were flown for plasma diagnostics, as well as on 
board rockets [B•ghin, 1971; B•ghin and Debrie, 
1972; Chasseriaux et al., 1972; Pottelette et al., 
1981], and on board satellites [D•cr•au et al., 1978; 
B•ghin et al., 1982; D•cr•au et al., 1991]. Most of 
these experiments used a large array of antennas 
compared to the ambient Debye length and the probes 
were installed at the edges of long booms, so that 
conventional approximations were satisfactory. But, 
due to constraints appearing with space vehicles on 
which long booms may be difficult to be implemented, 
mutual impedance devices must work now even for 
short distances and must take account of the presence 
of spacecraft body. Then, a precise modeling of the 
environment and mapping of potential induced by the 
current source antennas becomes necessary. The aim of 
this paper is to provide the baseline for general 
applications, for elementary point sources immersed in 
an isotropic Maxwellian plasma, that is, when the 
steady magnetic field can be neglected, according to 
the condition co,, (( c%, where co• is the electron 
cyclotron frequency. 

In the following we first summarize the basics for 
calculation of the potential radiated by a point source, 
using reference works and adding some necessary 
correction of mathematical nature to the expansion of 
the inverse of the longitudinal dielectric constant which 
was originally proposed by Dertier [1966]. Then we 
show that the potential can be expressed in the form of 
a power series expansion of the normalized radial 
distance to the source, with frequency-dependent 
coefficients. After that the main point is to determine 
the analytical expression of these coefficients. Results 
of the exact power expansion are compared with the 
conventional Landau pole approximation for several 
frequencies around coy as a function of the distance. 
This will confirm the previous result [Chasseriaux et 

al., 1972] that this approximation is satisfactory for 
distances larger than • 15 ZD, where ZD is the Debye 
length. Finally, one example of mutual impedance 
response is given, corresponding to the experimental 
conditions expected to be encountered with the probe 
to be installed on board the forthcoming MARS 96 
spacecraft. 

2. Landau Poles Expansion 
The potential 4) inducexl by a pulsating point charge 

Q exp (icot) at a radial distance r in an isotropic 
plasma is given by [see Chasseriaux et al., 1972] 

0 

Q 2 r. on f •ia kr • 4• = 4•eo • •m,o-.0 kr e t (k, to) (1) 
Here go is the free-space permittivity, k the 
wavenumber, and g• (k, w) the longitudinal dielectric 
constant. In the following, except when specified, we 
consider co to be purely real, having in mind that it is 
the limit reached when its small negative imaginary 
part tends to zero, corresponding to the steady state of 
the source after a transient growing phase. For a 
collisionless isotropic Maxwellian plasma, this 
dielectric constant is given by 

2 

6O/, l( - 6O e t (k,•) = 1 Z ) (2) 
2 Ilv, 1• 2• t 

where vt is the thermal velocity defined by 
vt 2 = 2•cT,/m, •c is the Boltzmann constant, T, and m 
the electron temperature and mass respectively, and 
Z'(z) the first derivative of the well-known plasma 
dispersion function Z(z) [Fried and Conte, 1961], the 
definition of which is 

Z(z)= 1 f z>0) (3) 

with an analytic continuation for Im z _< O. 
It must be mentioned here that the linear plasma 

wave description is used in this theory, so that the 
pulsating point source is supposed to have an 
amplitude small enough to not disturb the surrounding 
plasma. This condition could be not applicable to 
experiments such as topside or relaxation sounders, 
where high-level voltages are used to feed the antenna. 
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Then, for a given antenna device, it is necessary to 
determine the limit of the linear theory as a function of 
the local plasma parameters (electron density and 
Debye length). The condition to be satisfied for 
linearity is that the electric energy per volume unit in 
the region under consideration around the source 
(computed using a linear theory such as that presented 
here) must be lower than the thermal energy density of 
the plasma. This condition is usually satisfied in 
mutual impedance devices even near the sources. 

One can easily see that the integrant of (1) exhibits 
in the entire complex plan of k as many poles as the 
number of roots of the dispersion equation el = 0. 
Then for analytic evaluation of the integral in (1) it is 
convenient to express the term l/el by its expansion in 
a Mittag-Lefler series, with respect to all poles, as 
initially proposed by Dertier [ 1966]. At this stage it is 
necessary to rewrite (2) for complex variables, using 
the synunetry properties of the dispersion equation and 
analytic continuation of the plasma dispersion function 
[Dertier and Simonen, 1969]. First, let us introduce 
the following dimensionless variables 

•a O r 
K--k•,o; •- ;z- ; o- (4) 

top vF•K •o 

where )•z> is the Debye length defined as 

- (5) 

Then the term 1/e I becomes 

1 1 

et(K, fl) 
1- 

2K 2 

= (6) 

Note our dimensionless K is ,/2 smaller than that used 

by Dertier and Simonen [ 1969], due to our choice to 
normalize the wavenumber with respect to Z D instead 
of the thermal velocity. The poles of (6) are the well- 
known infinite series of Landau poles, which will be 
considered here for complex K and real •, or more 
precisely for • - iv when v -* 0. 

The behavior of these poles in the complex plane, 
when • varies from 0 to above 1, is summarized in 
Figures 1 through 3. Using the usual notations, the 
dominating Landau pole K• exists only for O >_ 1, 
lying in the upper left-hand quarter of the complex 
plane (Figure 1). The purely imaginary poles K 2 and 
K_ 2 (for O < 1) are plotted in Figure 2, and the 
higher-order poles K,in Figure 3, knowing that each 
pole K,is associated with its opposite conjugate 
according to the relationship K_,= - K,. 

The function lie I can be expanded in form of an 
infinite sum of the principal parts at all poles of the 
complex plane (Mittag-Leffier series) under certain 
conditions [see Jeffreys and Swirles, 1966]. The most 
important condition in our case is that the function 
must be analytic at the origin. Thus this cannot be 
strictly applicable with the variable K, because when 
K -• 0 an infinity of poles K,and K_,crowd toward 
zero along the rays arg (K) = 3•/4 (Figure 3) and •/4 
respectively. Indeed, the Mittag-Leffier expansion, for 
a given functionj(z) is 

*' b b 

f(z) :f(0) + • (----•" + ' ) (7) 

where b, is the residue at the pole z, and the sum is 
taken from n = 1, ñ 2, ..., ñ 

Instead of the variable K, let us consider z, as 
defined in (4). Now, for any given •, one can check in 
the last term of (6) that 1/• l is analytic at z = 0 since 
Z' is continuously derivable in that area which 
corresponds to a pole-free region in K space when 
K-.•o. Obviously, here f(0)= I. 

Using the properties of the function Z and its 
derivatives, the residue is given by 

1 Zn 

2Zn 

dz J z=z n 

0 Kn 
(8) 

where e• is the usual cold plasma dielectric constant 
given by e• = 1- 0 -2. 

Using (7) and (8), 1/el can be now expressed 
indifferently in function of either z or K 
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Figure 1. Loci of pole K• in the complex plane as a function of the frequency (indicated by arrows) for 
real Q (v = 0), and with a small imaginary part in order to understand the limit when v -- 0. Note the 
unusual power-law scale which offers some advantage of the log scale with the possibility to cross the 
origin from positive to negative values. 

1 ' b ' b 
•=1+ •+ =-1+ 

8z I-1 z I.1 z-z 

' • ' K• K E st. -E 
(9) 

which could be considered as the Mittag-Leffier 
expansion versus the variable K as well, with the 
significant difference that now the two first constant 
terms (independent from K) are definite, since them is 
no reference to the undetermined value at the singular 
point K = 0. To calculate the value of this constant, 
either we compute directly the infinite sum for given 

D, or better, we can derive an analytic expression. The 
result of the numerical computation is shown in 
Figure 4, for D = 1.01. The asymptotic behavior of the 
sum indicates clearly that 

• b 3 
"- (]o) 

Inl Z 4 8 

while the direct Mittag-Leffier expansion with respect 
to K gives 1/•, the value attributed in (6) when K = 0 
[Chasseriaux et al., 1972]. For the analytic 
demonstration of (10), let us consider the expansion 
of lie I versus real z given by (9) when z • + oo. From 
(6), knowing that z 2Z'(z) tends asymptotically to 1, we 
get l/el '• 1/gc. Thus we can write 
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(11) 

This equation shows why the Mittag-Leffier 
expansion in K is in&finite, as long as the way to 
approach zero is not determined. Indeed, the second 
term of the right-hand side of (11) is not zero, as could 
be thought at first glance. To calculate this term, we 
will remark that the contribution of the first finite- 
order Landau poles (finite values of z, can be 

neglected while z goes to infinity. Then, the asymptotic 
approximation of higher-order poles when In l tends to 
infinity [Dertier and Simonen, 1969] can be used 

I. I-- z. = - •/In I• [•gn (n) + ,1 (12) 
and the discrete sum can be transformed to integral, 
putting •n = x, with x varying from 0 to infinity. After 
some algebra we found 
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Figure 3. Loci of poles K, for v = 0, knowing that the same family exists synunetrically for K_,, to the 
imaginary axis. 

" b 24 +16e z 
, 

.f x• • o (9 + 16 x 2e •)(z 4 + 4x 2) 

1 
(13) 

4e 

Similar calculation proves that the imaginary part is 
zero, completing the demonstration of (10). 

The integrant in (1) is now well-defined everywhere 
in the complex plane. Then, changing k into - k in the 

integral and using the dimensionless variables, we 
rewrite (1) in its final form 

4•or +3K. 2 

o X+KnP 
(14) 

which differs from the expression derived by 
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Figure 4. Computed sum of the excitation coefficients of 
Landau poles versus the order Inl, for Ca - 1.01. 

Chasseriaux et al. [1972] by the term 3/4e• instead of 
l/e•. 

3. Series Expansion of the Potential 
The integral in (14) is an auxiliary function of sine 

and cosine integrals [Abramowitz and Stegun, 1972] 
defined as 

f(K.p) = f sin x dx o x+K.p 
= Ci (K,,O) sin (K.p ) - si (K.p ) cos (]5) 

It is a multivaluated function, as a cosine integral is, 
with the branch cut along the real negative axis, where 
there is no pole, according to the discussion in 
previous section. Using the series expansions of each 
individual function of (15), we obtain 

f(K,p)=-•- l+• (-1 K• + q., (2q)! (16) 

• (-1)' y +lnK,,p - -- •-0 r-• P '(2q+l)! 

with the determination larg (K.)l < n, and where ¾ is 
the Euler's constant y = 0. 5772156649 .... 

Then, substituting this expression to the integral in 
(14), the potential is expressed on form of a series 

expansion versus the variable p, with coefficients 
(infinite sums over K, depending only on the 
frequency, plus a constant which is easily found to be 
1, using (8) and (10). We get three different kinds of 
coefficients 

Inl 

•+3 K +• ' 
ß $• 

I - t•: + 3K.I,I I - t•: + 3K• 

.... " (17) 

From considerations about the symmetry of poles, 
that is, K• = - K.2* when f• > 1, K, = - K.,* for n > 2, 
and knowing that K2 and K. 2 ( f• < 1) are purely 
imaginary, we deduce that the even coefficients S2• are 
purely real, and the odd ones are purely imaginary, 
while the coefficients L2• have both real and imaginary 
parts due to In K,. Then, the real and imaginary parts 
of (14) are 

1,, I -- S -- 

. (2q)! • 

•-• 2--/•e (L•_•)] (2q - 1)! n 

x •-0 (2q + 1)! 

p=l P 

(]8) 

respectively, where q>o is the free-space potential, 
4•o = Q/nn eo r. 

This is the desired series expansion of the potential 
versus the distance from the source with frequency 
dependent coefficients. One can see that the potential 
tends to its vacuum value when p tends to zero. The 
next point now is to determine the coefficients. 

4. Calculation of the Coefficients $ and L 

For practical applications the coefficients given by 
(17) can be computed and tabulated once and for all 
for every desired normalized frequency. Here we 
propose to determine them analytically for better 
understanding of their behavior versus the frequency. 
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The easier coefficients to determine are the coefficients 
S. The first one, So, is already known, as given from 
(10), that is, So = I - 3/4e•. The following terms are 
obtained by successive derivation of the dispersion 
equation. Using (6) and (9), we can write 

-- I -- 

Oz r Inl z z-z 
---0 

(19) 

Forp = 1 to 5, one finds from (19) after some algebra 

2 • 3 2 • 4 2 
Inl •n Inl •n • Inl •n 

(20) 

' b 4 1 ' b 2V/-•( 1 + 
Inl Zn • Inl Zn 

Then, from (8) and (20) we obtain successively 

$1=0 ; 

I•p " b n 

$P- 2 •7• zn p+l 

$2=-1 ; $3=-i• • I• 2 

•• I• 2 $4=I .a 2' $•=i • a(2+ ) (21) 2 

d z•Z 

dz • -----I • it-1)'2'l'3'5'"t2q - 1)v•' 

dP •: 1 [ _ 1 d r-I Z I dr. r • fl• p(p-1) z- dz p-I 
(22) 

we obtain the desired recurrent relationship between 
even coefficients, for q _> 3 

$• (-1)q fl•q-2 [ 2q-3 = 1-____S2 +... + 

(- 1)q*• 1.3.5...(2q-3) • 2q-2 S2q -2 + 

i• • (-l)q•-s [ 2 2•-•(q _ 3)! 
2 (q-3) Ss +,,, 

(- 1)q+• 2q-z (q - 3)! ] (23) 

and a similar one for odd coefficients, which reads 

/• 1- $•.• = i -• 2 •-• (q - 1)! 2 (q- 1) S2 +... 

(- 1)q+• 2 q-• (q - 1)l ] •-• 'S2•_• - 

A recurrent expression for higher orders than Ss can be 
obtained from (19) and (20). For that we must use the 
recurrent properties of the derivatives of the function 
Z and apply Leibniz's theorem to (19). Using the 
following relations 

(- 1)q •'•2q-4 [ 2q-5 S -------S s+ + 1.3.5...(2q-5) • f12 "' 

(-1) '1'3'5"'(2q-5) ] (24) •,'• 2q-4 S2q -I 

d zg+• Z I )q+• 22q+• dz •+• =(-1 q. One can see from (21), (23), and (24) that each S• (fl) 
is a polynomial of degree p-2 for fl, with all its 
coefficients of the same sign but alternate with respect 
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to S•. For • • 0 we obtain the limits S2• (0) = (-1)• 
and S2•+• (0)= 0. Moreover, all S•'s are finite at • = 1. 

The coefficients L2• are more difficult to calculate 
analytically due to the presence of logarithm of K, in 
(17). However, the real part is quite easy to obtain, 
using the symmetry properties of the poles K,. Indeed, 
for n •_ 3 and with the determination larg < we 
have 

Re (ha K•) = Re (ln K_•) = In 
•m ( m K•) •- • • - •m ( m K _•) 

(25) 

and for fl > 1 the same relationship exists between the 
poles K• and K_:. Then, the contribution of the purely 
imaginary pole K: being simply InK: = lnIgel + i•/2, 
we get from (17) 

Xe (26) 

For • < I the contribution of K_: added to that of other 
poles leads one to write INK_: = lnlK.:[ + i•/2 - i•. 
Then, we get 

Re (L •) = • •--- $•.• - 2 

K 
=2 

2 

1 - O=+3K_• 
(t] < 1) (27) 

This result shows a discontinuity at Q = I which needs 
some attention. First, let us estimate the limit of the 
second term in the right-hand side of (27) when • • 1. 
The solution of the dispersion equation e• (K,•) = 0 
for the imaginary pole K.:, expressed as a power 
expansion for the cold plasma dielectric constant e•, 
using the asymptotic expansion of Z' (z), reads 

3K 2 $ = + o (28) -2 •[1 + • • 
3 3 

where e• tends to zero by negative value when Q • 1. 
Substituting in (27) the value of K_ 2 given by (28), we 
obtain 

(fi<•l) (29) 

It is clear from (29) and (26) that the continuity 
exists at • = 1, that is, when e• = 0, for all orders q 
except for the first one, q = 0, in which case Re (L0) 
tends to - oo when • approaches I by lower values. On 
the other hand, since S• = 0 after (21), we get 
Re (L0) = 0 for • > 1. This discontinuity at • - I is 
consistent with the usual behavior of a single charge- 
induce3 potential, which exhibits a singular point at • 
[see Rooy et al., 1972]. Since the singularity affects 
only the coefficient L0 associated with the first term of 
the power expansion for p of the dimensionless 
potential, given by (18), we see immediately that the 
resulting contribution to the actual potential • (r) is a 
constant independent of the distance r. Thus, for any 
configuration which must always satisfy the charge 
neutrality of the source (•Q+ = •Q_), this constant 
disappears, as the singularity at •r does. In the 
following we make the choice for the determination of 
Re (L0) at • = 1 to be the same as for • > 1, that is, 
Re(Lo) = O. 

The last coefficient to be determined now is 

lm (L2•). The behavior of these coefficients versus the 
frequency, as obtained by direct computation of the 
summation in (17) over a quasi-infinite number of 
poles, is shown in Figure 5 for the first ones of the 
series. We notice that lm (L0) presents a discontinuity 
at • = I like the real part, growing to infinity when • 
tends to I from upper values. The consequence on the 
potential is the same, since lm (L0) corresponds also to 
the first order of p in the imaginary part of the power 

lm (L2q) L 12 
-L•o 

L 8 
5- 

a- -L 6 

•o L4 $2 . 

•' _L 2 
1 LO 

3- 

•o '•- , .... , • 
o 1 2 

Figure 5. Plot of the imaginary part of the first orders of 
L2q versus the frequency. 
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expansion. Here we choose the determination at Q = 1, 
which corresponds to the finite limit when Q tends to 1 
f•om lower values, so that, all other coefficients being 
finite for D = 1, both real and imaginary parts of the 
potential are finite at (%. 

There is no simple analytic expression for Im (L2•). 
However, as shown in the Appendix, one can find a 
generating function for the first one of the series (Lo) 
and a recurrent differential equation allowing in 
principle to calculate the others. But for practical 
reasons it is more efficient and more accurate to 
compute and tabulate once and forever the coefficients 
$ and L for a limited number of frequencies. Then, for 
the following we retain that this tabulation is 
performed using the analytic expressions for the 
coefficients S• and Re(L2q ) and direct computation for 
Im(L2q). 

The computed values of the normalized potential, 
using the series (18), are plotted in Figures 6 through 
9, as a function of p from 0 up to 20, for D = 0.9, 1, 
1.1, and 1.5, successively. The behavior of the 
potential versus the distance is consistent with the 
results of previous works in this domain, using direct 
integration without approximation [e.g., BucMey, 

1968]. The electrostatic response of the plasma is seen 
as a strongly damped waveform, with a quasi-periodic 
shape visible only in the imaginary part for f• < 1, and 
a more or less damped oscillation (the Langmuir wave) 
in both real and imaginary parts, for Q < 1. Results 
f•om the series (18) have been found identical to those 
obtained from direct numerical integration of (1), 
except for the case D = 1, where the singular point 
makes difficult the numerical integration. 

Computation is made using double precision for the 
coefficients and remains converging up to p --- 20, but 
then requires orders of coefficients larger than q = 50. 
This is equivalent to the computation of the sine and 
cosine functions for large arguments, using their power 
expansion. It is the reason why the power series 
expansion (18) is proposed to be used only for small 
distances, where usual approximations fail. 

5. Comparison With the Landau Wave 
Approximation 

The Landau wave approximation [Chasseriaux et 
al., 1972] consists (1) to ignore the contribution of all 
higher-order poles; (2) to approximate the contribution 

1 
1-' 

o 

-1 

-•- 

=0.9 

P 

0.5 =0.9 

5 1• 20 

Figure 6. Real and imaginary parts of the normalized potential versus the normalized distance from the 
source, for G = 0.9, as obtained using the power expansion (solid line) and the Landau wave approx- 
imation (dashed line). Note that the approximation leads to an imaginary part equal to zero for Q_< 1. 
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Figure 7. Same as in Figure 6, for Q = 1. 

of the pole K• for • > I by a slowly damped sine wave 
and that of K_ 2 for f• < I to an evanescent wave; and 
(3) to interpret the resulting potential as due to beating 
between the cold plasma part (l/e c) and the 

I ' ß Re(•,• o) Q = 1 1 $_ 
l0 

0 5 10 15 20 

dominating Landau wave. This interpretation needs to 
be revised, considering that the potential obeys (14), 
where it could be thought that the cold plasma 
contribution should be 3/4e• and the warm 

Q=I.1 

Figure 8. Same as in Figure 6, for Q = 1.1. Here the imaginary part as given by the Landau wave 
approximation (dashed line) is not zero. 
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Figure 9. Same as in Figure 8, for fl = 1.5. 

contribution should come from the infinite sum of 

Landau poles. In reality, this assumption is not 
consistent with the fact that we are considering a 
Maxwellian thermal distribution independently of the 
absolute value of the plasma temperature, which could 
be as low as we want. 

Therefore, the correct approach is to evaluate the 
relative contributions between the dominating Landau 
poles and the infinite series of higher-order poles. 
Since these higher-order poles produce highly damped 
waves, it is generally believed, somewhat incorrectly, 
that their contribution should be negligible at large 
distances from the source. In order to evaluate that let 

us consider 9 -• oo in (14). The paradox comes from 
the fact that for any finite value of 9, there is still an 
infinity of poles K, such as oK,-• 0, the contribution 
of which could be not negligible since their damping 
actually remains low. To solve this question, it is 
necessary to come back to the variable z, the only one 
for which the Mittag-Leffier expansion is definite. 
Separating the contributions of the higher-order poles 
from that of the main ones (K• and K.2) , we rewrite 
(•4) 

b,, sin x dr 

p• 
Z n + • 

f(K.p) (30) 

When p g• tends to infinity, for a given finite value of 
x, we get from (13) 

n2g +p• 4e • 
(31) 

Moreover, since the main contribution to the integral 
comes from small values of x, the more x approaches 
to zero, the more (31) is valid. Then, after the trivial 
integration of sin x/x we obtain the result 
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I 2 

'0 ee X n=-2 1-O 2 +3K• (32) 

which basically validates the so-called Landau wave 
approximation proposed by Chasseriaux et al. [ 1972], 
but with a quite different meaning, since now the 
contribution of highly damped waves is included for 
25% in the term 1/•. Except in the vicinity of fl • 1, 
where the pole K• lies near the negative real axis, the 
asymptotic behavior of the function f (K,), when p 
tends to infmity, is decreasing like 1/K, [Abramow•tz 
and Stegun, 1972]. Thus we see immediately from 
(32) that the asymptotic value of the potential at large 
distances is that of the cold plasma, which is visible in 
Figures 6 through 9. This is consistent with the fact 
that more the temperature decreases, as Xo does, the 
more the normalized distance r/XD tends to infinity. 

The success of the Landau wave approximation for 
practical applications comes from a larger range of 
validity than simply seen from its asymptotic behavior. 
Indeed, for fl • 1, until K• p lies near the negative real 
axis, the sum f (K•p) + f (K.2p) reduces to 
• exp (iK•p), even at relatively small distance 
[Simonen, 1966]. For fl < 1 the contribution of the 
imaginary pole K.2 is nearly an evanescent wave, which 
has been proposed by Chasseriaux et al. [1972] to 
be represented in (32) by the crude approximation 
f(r.2P) "• • exp (-p [K.2I), properly chosen to achieve 
an analytic continuation through • = 1. Thus, the 
conventional Landau wave approximation, used with 
some success at•r comparison with experimental data 
of large-size mutual impedance probes, reads 

4• I 2K/ 
• -- + exp ( iKr p ) ; (pO 

4)0 e I O 2 3K/ (33) ½ -- 

with Kv = K, for fl > 1 and Kv = -K. 2 for fl <1. 
The comparison between the results obtained from 

the analytic series (18) and the approximation given by 
(33) is shown in Figures 6 through 9. As a general 
feature, we see that for the real part of the potential, 
the Landau wave approximation is quite satisfactory 
for p larger than about 15, as well as for the imaginary 
part when fl > 1. But, obviously the approximation is 

unable to produce the strongly damped waveform of 
the imaginary part when O (_ 1 

6. Application to Mutual Impedance 
Probes 

Modeling of mutual impedance response is one of 
the main applications of this work, as the measured 
response, compared to the theoretical one, is used for 
plasma diagnostic. We show in Figure 10 an example 
of the mutual impedance response expected to be 
obtained from a device developed for the Russian 
MARS 96 mission. For an electron density of 
500 e/cm 3 and temperature of 1000 K in the Martian 
ionosphere, which are typical values around 300 km 
of altitude [Hanson et al., 1977], we get XD • 10 cm. 
The simplified model of the device is made of two 
single charges +Q and -Q located 30 cm each other and 
a double-point receiving dipole 1-m long (see inset of 
Figure 10), so that we are everywhere in conditions 
such as p < 10. As long as the sensor-receiver system 
is a high-impedance coupling one, and the source a 
constant-current generator [B•ghin et al., 1982], the 
induced voltage V• in each sensor is the same as the 
space potential induced by the two charges at this 
location, and the charge distribution in the source is the 
same in the plasma as in vacuum. Then, the mutual 
impedance is defined by 

Z AV 
-- = •' (34) 
z0 

where A Vv is the differential voltage between the two 
receiving sensors (V• - V2) in the plasma, A V 0 is its 
free-space value, and V• or V: are given by 

V,. = • s•gn (Qj) 4•,(Po.) (35) 
where p o. is the normalized distance between the 
charge Qs and the receiving sensor of index i. 

The modulus and the phase of Z/Zo are plotted in 
Figure 10, as calculated using the power expansion 
(solid line) and the Landau wave approximation 
(dashed line). The exact solution exhibits a well- 
marked maximum for the phase very close to • = 1, 
while the modulus reaches a flat maximum around 

fl --- 1.5. The fact that the phase leads to a precise 
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Figure 10. Theoretical normalized response, in modulus 
and phase, of an idealized mutual impedance probe made of 
two single charges and two potential sensors, for 
•'O = 10 cm. Shown are the exact value using the power 
expansion (solid line) and the Landau wave approximation 
(dashed line). 

determination of •or is consistent with the measure- 
ments performed at large Debye lengths [D•cr•au et 
al., 1978]. However, a more realistic modeling would 
be necessary in the attempt to calculate the true probe 
response, considering the actual shape and taking 
account of the charge distribution induced among all 
conductive surfaces. The method consists of solving 
(35) on a three-dimensional finite-element grid array, 
with limit conditions on constant potential surfaces 
which satisfy the charge neutrality equation. The 
power series expansion theory is well adapted for such 
a computation as long as the considered distances are 
shorter than •- 15 Zo. At larger distances the Landau 
wave approximation would be used. 

7. Conclusion 

A revised mathematical treatment of the classical 

problem of the electrostatic potential induced by point 
source in a Maxwellian isotropic plasma has been 
presented. The new formalism for Mittag-Lefler 
expansion of the plasma function l/e• leads to a 
different expression of the potential from that 
previously considered. The first result is a better 
understanding of the real contribution of the 
higher-order Landau poles, which has been found to be 
included in what was interpreted before as the cold 
plasma contribution. Then, using the Mittag-Lefler 
series, the syrmnet• properties of the plasma 
dispersion function and the expansion of the auxiliary 
functions of the family of exponential integrals, the 
power expansion for the potential has been obtained, 
with coefficients depending only on the frequency. 
Moreover, considerations about the asymptotic 
behavior of this expansion at large distances allows 
one to justify the classical Landau wave approximation 
in such conditions. The power series expansion for the 
potential reveals to be of considerable practical interest 
for exact computation and probe modeling when sises 
are smaller than about 15 to 20 )•. 

Appendix 
By integration of the quantity 1/•- I along the 

negative K axis (where there is no pole), performed 
using both (6)' and (9), we obtain after some 
development 

0 

Lo = 0 f z,<x> (AI) 

which is a finite integral except for fi = 1, due to the 
pole for x infinite. If we extend this integral along a 
closed contour including the positive imaginary axis y, 
since Z' (iy) turns to be purely real, we recover the 
result given by (26) and (27) for q = 0, that is, the real 
part of Lo is the residue for the imaginary pole 
iy = •/(K.2 •/2) when •<l. Using the syrmnetw 
properties of Z', we can also write 

f - [•-lm f•-x•Z/(x) Ira(Lø)= V I• o 
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For fl-O the main contribution of the integrant occurs 
around x = 0; then, using the first order expansion of 
Z', we obtain 

2 2 
a-o) (A3) 

For fl > 1, expanding the integrant versus 1/fl 2, one 
obtains the following asymptotic expansion 

I f * [z'(x)F & x 

(A4) 

where the constants C• are computed once and for all. 
The first ones can be determined analytically after a 
quite tedious effort using the power expansion of the 
function Z' and the following relation 

o 

& - x Z'fx)F 

(A7) 

where the coefficients B• are constants computed once 
and for all, as the previous series C r Values of these 
coefficients for both series are listed in Table A 1, up to 
p=10. 

Having obtained an analytic expression for Im(Lo), 
the problem now is to deduce from it the other 
coefficients Im(L2•), using a recurrent relationship. 
Unfortunately, these coefficients do not obey a simple 
recurrent law do the coefficients S. Starting from the 
definition Lo in (17) and using the following relation 

2 

dK,, K. 1-D •+K. 
2 

dD D l-f12+3K. 
(A8) 

we obtain the differential recurrent equation between 
the coefficients L and S. 

• (-l)•"2•'•(n!) 2 2 In(1 V•) (A5) 
0 (2. + 1)! V/• 

The first three terms of the series C• are 

3 D-•'- d • + dD (Lrø- D ) =[P+3- (P+I)D]Lr 
dL (A9) 

g (g 2 - 1) dD 

Co= 1 ; C, = 3 In (1 +V/•) 
I 31 la(I+v• ) 

C'2 = --- + 
6 Ill •/• 27 

(A6) 

One can notice that the coefficients of the sum in 

(A4) are close to those of the expansion of the function 
[•2/(•2-1)]½1, in accordance with the behavior of 
Im(Lo), shown in Figure 5, as well as when fl tends to 
infinity, as when approaching 1. 

For 0 < fl < 1 one can find a converging power 
expansion of Im(Lo) for the variable rl = 1/2 - f12, 
with rl varying from 1/2 to -1/2, using the fact that 
11/2-x2Z'(x)[ >_ 1/2. One obtains 

Table A1. First Coefficients of L2q Series 

0 1. 

1 0.4348378 

2 0.3091567 

3 0.2503295 

4 0.2151077 

5 0.1911903 

6 0.1736555 

7 0.1601198 

8 0.1492772 

9 0.1403465 

10 0.1328291 

0.644588 

-0.098254 

0.120390 

-0.072666 

0.118156 

-0.079526 

0.167482 

-0.099190 

0.289021 

-0.11875 

0.57312 
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which allows one, in principle, to calculate 
higher-order terms starting from the power expansions 
of L0. For instance, we obtain for L 2 the following 
expressions 

- ] E p+l Cr-,-C r (f•>l) 
;,-• 3p f• •'-• 

1 • lm (L:) = i f• v• {I . • 2 • 3V/• r-• 
(A10) 

.( (1 -2 n2)r [2 2(02-1)] 

•,-o k+l (0< 1) 
where tz =-0.058053 and 13 =-0.4468417 are 
integration constants determined numerically from the 
direct computation of L:. 

However, for practical reasons, the direct computa- 
tion of coefficients L for a limited number of frequen- 
cies is more efficient than the analytic method, though 
the number of data to be stored is significantly larger. 
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