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Abstract17

In recent years, major progress has been made in measuring weakly absorbing atmospheric18

trace gases from high spectral resolution space observations. In this paper, we apply the19

so-called whitening transformation on spectra of the Infrared Atmospheric Sounding Inter-20

ferometer (IASI), and show that it allows removing most of the climatological background21

from spectra, leaving a residual that contains those spectral signatures that depart from nor-22

mality. These can subsequently be attributed to changes in the abundance of trace species.23

This is illustrated for two diverging cases: (1) a biomass burning plume from the 2019/202024

Australian bushfires, leading to the unambiguous identification of nine reactive trace gases,25

including a first observation of glycolaldehyde; (2) spectra observed a decade apart, from26

which changes in eight long-lived halogenated substances are identified; three of them never27

observed before by a nadir sounder.28

Plain Language Summary29

In recent years, several techniques have been developed for the detection of gases present30

in very small quantities in the atmosphere, which has significantly improved our knowledge31

on atmospheric composition and chemistry. In this paper, we describe a powerful com-32

plementary technique that transforms atmospheric spectra to highlight and attribute the33

spectral signatures of different species. We apply it on spectra measured by the spaceborne34

IASI (Infrared Atmospheric Sounding Interferometer) for two different cases: (1) a plume35

from the 2019/2020 Australian bushfires leading to the clear identification of nine rare gases36

including a first observation from space of glycolaldehyde; (2) spectra observed a decade37

apart, of which eight long-lived halogenated substances were identified; three of them never38

observed before by a nadir sounder. The detection of these reactive and long-lived trace39

gases is very promising for the monitoring of their temporal evolution and the attribution40

of their sources.41

1 Introduction42

The outgoing longwave radiation spectrum of the Earth-atmosphere system features43

strong absorption bands of CO2, H2O, CH4, N2O, O3 and CO. Routine measurements44

of several of these strong absorbers are now available from nadir observing polar orbiting45

infrared sounders, which have led over the years to major advances in our understanding of46

their distribution (Crevoisier et al., 2014). Unexpectedly, hyperspectral nadir sounders have47

also proven most useful for the measurements of other, much weaker, absorbers. Harries et48

al. (2001) for instance demonstrated that infrared sounders can be used to monitor long-49

term changes of the ozone depleting halocarbons CFC-11 and CFC-12 (see also Coheur et50

al. (2003)). Beer et al. (2008) and Coheur et al. (2009) showed the first observations of51

NH3, C2H4, HCOOH, CH3OH and PAN in fire plumes and above highly polluted urban52

areas. Progress in retrieval techniques (see Franco et al. (2018) and references therein)53

has now allowed measuring these and other compounds also outside of highly concentrated54

plumes, in turn leading to major discoveries on their emission sources, e.g. Stavrakou et55

al. (2011) and Van Damme et al. (2018). Noticeable progress has been made using the56

Infrared Atmospheric Sounding Interferometer (IASI) on-board the Metop-A/B/C platforms57

(Clerbaux et al., 2009). The IASI instrument measures a very large continuous part of the58

thermal infrared (645–2760 cm−1) and, thanks to its high radiometric performances, high59

spectral resolution (0.5 cm−1, apodized) and bi-daily global coverage, has played a major60

role in the monitoring of weakly absorbing trace gases (e.g. Clarisse et al. (2011), Hilton61

et al. (2012) and Franco et al. (2019)). As a summary of past achievements, the list of62

29 species that have been observed with IASI, either globally or in concentrated plumes is63

given in Table 1.64

In recent years, remote sensing of weakly absorbing trace gases has benefited greatly65

from the discovery of improved algorithms for detecting very small features in spectra. In66
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particular, the method introduced by Walker et al. (2011) increased drastically the detection67

sensitivity over traditionally approaches and formed the basis of several quantitative retrieval68

techniques (Franco et al., 2018; Taylor et al., 2018; Clarisse et al., 2019). In this paper,69

we introduce a complementary technique based on ‘whitening’ spectra, which is suitable70

for analyzing spectra with unknown signatures. In the next section, we review briefly the71

detection method of Walker et al. (2011) and show how it naturally leads to the concept72

of whitening spectra. In section 3, we apply it on spectra from the 2019/2020 Australian73

fires and show that it enables, much easier than with alternative methods, to highlight and74

identify the different trace gas signatures, leading to the unambiguous identification of nine75

reactive trace gases. An entirely different application of whitening occurs when spectra are76

compared to those of a different period. As we show in section 4, whitening allows in this77

instance, highlighting small changes in a series of long-lived halogenated substances, most78

of which have until now never been identified in IASI spectra.79

Table 1. Chemical species observed by IASI. The species reported in this paper which are ob-

served for the first time with a nadir sounder are indicated in italics.

Greenhouse gases and ozone-related
substances (14)

H2O, CO2, CH4, N2O, O3, HNO3, CFC-11,
CFC-12, HCFC-22, CCl4, CF4, HCFC-142b,
HFC-134a, SF6

Air quality and VOCs (12) CO, CH3OH, HCOOH, CH3COOH,
CH3C(O)CH3, C2H2, C2H4, NH3, HCN,
PAN, SO2, OCS

Concentrated plumes (7) HCl, H2S, C3H6, C4H4O, HONO, HCHO,
HOCH2CHO

2 Whitening transformation80

The detection method presented in Walker et al. (2011) is based on a formula that
quantifies in a single number the integrated spectral contributions of a target species, in a
given spectral range. It relies on the mean ȳ and the associated covariance matrix S of a
set of spectra that are representative for IASI observations in the absence of enhancements
of the target species. The pair {ȳ, S} describes the distribution of spectra and how they
are expected to vary (driven mostly by differences in temperature, surface emissivity, water
vapor and interferences with other absorbers). The single number is sometimes referred to
as a hyperspectral range index (HRI) (Van Damme et al., 2014) and is defined as

HRI =
KTS−1(y − ȳ)√

KTS−1K
, (1)

with K the Jacobian of the target species calculated from radiative transfer simulations81

(Van Damme et al., 2014). This formula was originally derived from the least squares82

estimate, and in that context the covariance matrix can be interpreted as a generalized83

noise covariance matrix, where all background variability is treated as noise. Note that, by84

construction, the HRI is normalized to provide a mean of zero and a standard deviation85

of one on the set of background spectra. Its value can therefore be interpreted in terms of86

standard deviations from the mean. Higher values (typically above 4σ in absolute value)87

usually indicate the presence of an anomalous abundance of the target species (or at least88

an anomaly in the spectrum that sufficiently resembles its Jacobian). The expression can be89

interpreted geometrically as the weighted projection of the Jacobian onto the zero-centered90

observed spectrum.91

It turns out that Equation (1) has been known since the 1970s (Reed et al., 1974) under
the name ‘matched filter’ and is used very frequently in the domain of hyperspectral imagery
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(Manolakis et al., 2016). In this field, the covariance matrix is appropriately referred to as
the background clutter matrix, the HRI as the signal-to-clutter or signal-to-noise ratio, and
its expression is sometimes written as (Manolakis et al. (2016), p520)

HRI =
K̃T ỹ

‖K̃‖
, (2)

with
K̃ = S− 1

2K (3a)

ỹ = S− 1
2 (y − ȳ) (3b)

The operation y → ỹ, transforms the spectra into a set of spectra with a zero mean and92

an identity covariance matrix. As this transforms the generalized noise into white noise,93

the operation is referred to as whitening or pre-whitening (Scharf, 1991; Rodgers, 2000;94

Manolakis et al., 2016; Kessy et al., 2018). Whitening transforms the spectral channels to95

uncorrelated random variables with unit variance and zero mean. In this form, the HRI is96

simply the projection of the whitened spectrum ỹ onto the normalized whitened Jacobian97

K̃.98

Instead of the HRI, one can also analyze the entire unprojected whitened spectra.99

Whitening removes most of the background signal. Therefore, on background spectra, each100

channel of a whitened spectrum has an expected mean value of zero and a standard de-101

viation of 1 (this is a property inherited from the HRI). Conversely, a whitened spectral102

channel with an absolute value above 4 indicates a significant departure from Gaussian nor-103

mality. Large negative values indicate an anomalous large absorption, while large positive104

values indicate either an emission signal or a decrease of a given trace gas with respect to105

background conditions (defined by the set of spectra used to generate ỹ and S). So rather106

than associating with each spectra a single number like the HRI, whitening a spectrum107

produces another spectrum in which all spectral aberrations are exposed. The strength108

of the whitening technique is that it allows highlighting anomalies without knowing the109

spectral signature (Jacobian) in advance. Once a candidate species is suspected, it can be110

unambiguously assigned by comparing the shape of the whitened Jacobian with the spectral111

signatures in the whitened spectrum. Unambiguous identification is another clear advantage112

over the HRI, which can be prone to false detections caused by a partial match of a spectral113

signature with the Jacobian of the target species. Note that by weighting with the inverse of114

the covariance matrix, the spectral components that normally exhibit the largest variability115

(e.g. the baseline, due to variation in the surface temperature and clouds, or the absorption116

features due to O3, H2O or CO2) will carry the least weight in the whitened spectrum.117

When we talk about departure from normality, this is with respect to a set of spectra118

taken from a reference time period and/or geographic area of our choice. This freedom gives119

rise to at least two important applications: (1) when the covariance is representative for the120

entire set of IASI spectra, whitening can be used to study special events such as volcanic121

eruptions or large fires; (2) when the covariance matrix is representative for a specific time122

period and used on spectra from another time period, whitening, as we will show, can123

reveal small changes in the concentrations of long-lived compounds. A case study of each124

application is presented next.125

As a side comment, the HRI formula can also be derived from standard linear discrimi-126

nant analysis, and through the use of the covariance matrix, is also closely linked to principal127

component analysis (PCA). We refer to Clarisse et al. (2013) for a detailed discussion of128

this. Whitening can be seen as an alternative to PCA-based analysis of anomalies in spectra129

(Grainger et al., 2013).130

Whitening can be seen as an alternative to analyzes based on principal components131

(PC) (Hurley et al., 2009; Grainger et al., 2013). In such approaches, the signatures of132

interest are contained in the orthogonal part to the PC. A key difference between the two133
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approaches, is that whitening disregards no components but instead weights them inversion-134

ally proportional to their weight in the covariance matrix (see also Clarisse et al. (2013)).135

As a consequence of this, it can more readily be used for the detection of species already136

present in the set of spectra that was used to create the covariance matrix, as illustrated137

in the following sections. Other statistical transformations of the spectra or residuals exist,138

such as the random projections technique used for quantifying OCS in the IASI spectra (see139

Camy-Peyret et al. (2017) and references therein).140

3 Short-lived gas detection in Australian bushfires141
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Figure 1. Spectrum from the Australian bushfires of 5 January 2020 revealing nine trace gas

species and carbon monoxide. Panel a shows the spectrum as measured by IASI before the whitening

transformation (in black), together with a spectrum measured just outside the plume (in red). The

whitened spectrum is shown in panels b to d for selected spectral ranges.

This first case study concerns the massive bushfires which took place in Australia142

around the turn of year 2019–2020 (Nolan et al., 2020; Boer et al., 2020). IASI spectra143

of similarly large fires in Australia in 2009 were analyzed in Clarisse et al. (2011) with a144

physical retrieval approach, and revealed very strong spectral signatures of some well-known145

fire tracers. Here we will focus on a particular spectrum that was observed over the South146
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Pacific Ocean (28.75◦S, 173.71◦W) on January 5, 2020. This spectrum was selected on the147

basis of HRI-maps of C2H4 (see Figure A1 of Annex A). These indicate that the observation148

was made in the central part of a large fire plume originating from South-East Australia149

two or three days earlier. Calipso measurements (Winker et al., 2009) reveal that the plume150

was located between 4 and 6 km above sea level.151

The chosen (untransformed) spectrum is shown in Figure 1a together with a spec-152

trum measured outside the fire plume (their location is indicated in Figure A1 of Annex153

A). Immediately obvious is the strong absorption band of CO in the 2100–2200 cm−1 re-154

gion, and the large absorption in the atmospheric window between 1080 and 1230 cm−1
155

due to smoke aerosols and other broadband absorbers. Figure 1b–d shows the whitened156

spectrum calculated with {ȳ, S} built using a subset of around 107 IASI spectra measured157

throughout 2013 and across the globe, from (Franco et al., 2018). From this spectrum,158

we identified nine species between 700 and 1400 cm−1, namely acetylene (C2H2), ethylene159

(C2H4), methanol (CH3OH), formic acid (HCOOH), hydrogen cyanide (HCN), peroxyacetyl160

nitrate (CH3C(O)O2NO2, abbreviated as PAN), furan (C4H4O), acetic acid (CH3COOH)161

and glycolaldehyde (HOCH2CHO or hydroxyacetaldehyde). The identification was made162

with Jacobians obtained from a forward model (with temperature and main absorbers of163

the US standard atmosphere (NASA-USAF, 1976), where each whitened Jacobian was scaled164

to match its maximum absolute value with the observed signature in the whitened spectrum.165

Note that for the figures, the scaling factor was slightly offset, so that the whitened spectra166

and the whitened Jacobian would not obscure each other.167

The observation of HOCH2CHO is the first from space to our knowledge. The detection168

of the Q-branch associated with the ν10 vibrational mode at 860.5 cm−1 (Johnson et al.,169

2013) is promising for future exploitation, as HOCH2CHO measurements are very limited170

at the moment (Treadaway et al., 2018). HOCH2CHO, as well as all the other detected171

species, are well-known products of biomass burning (see e.g. Akagi et al. (2011); Andreae172

(2019) and references therein). In the troposphere it is formed from the oxidation of alkenes,173

in particular isoprene and several of its degradation products, and it is a key intermediate174

in the formation pathways of oxygenated compounds such as HCOOH and glyoxal (Paulot175

et al., 2009; Taraborrelli et al., 2012). Strong Q-branches of HCN, C2H2 and C4H4O are176

observed between 700 and 800 cm−1, as well as several R lines for HCN and C2H2. Note177

that the strong ν2 band of CO2 present in this spectral region is completely removed by178

the whitening transformation. For C2H2, a weaker signal is also detected around 1300–1352179

cm−1. C2H4 is the species that exhibits the largest signal in the whitened spectrum with180

a value of -33 at 949.5 cm−1 and several other features on both sides. The detection of181

the ν8 band of CH3OH is also straightforward with the removal of the large ozone band.182

At longer wavenumbers, HCOOH is observed in its ν3 band around 1105 cm−1. Finally,183

we observe the broadband absorbers PAN and CH3COOH, which partially overlap between184

1150 and 1170 cm−1. PAN also has a remarkable broadband absorption between 780 and185

800 cm−1. The remaining part of the spectrum (1400–2760 cm−1) was analyzed carefully,186

but apart from the large CO absorption features in the region at 2000–2250 cm−1, no other187

spectral anomalies were identified. However, there are several notable enhancements in the188

800–1350 cm−1 range which we were unable to attribute to a specific species. The strongest189

features are identified by dotted lines in Figure 1, and in particular those that we could190

also observe in other spectra of the fire plume. Some are very sharp, such as the feature at191

840.75 cm−1; others are wider (815–837 cm−1) and these could be due to heavier molecules192

or a combination of different absorbers. Note that in general, heavier molecules tend to193

have broader absorption features, for which unambiguous identification can become more194

difficult, especially when only one feature is identified or when its magnitude is weak.195

We also analyzed the whitened spectrum of a fresh fire plume (measured at 39.28◦S,196

153.48◦E on December 30, 2019), as displayed in Figure B1 of Annex B. The fresh plume197

exhibits very strong signatures of nitrous acid (HONO) and ammonia (NH3) that are not198

seen in the transported plume. This makes sense as these species are known to be emitted199
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in very large quantities by fires (Whitburn et al., 2017; Theys et al., 2020), but are quickly200

degraded to form secondary products. A weak absorption feature compatible with the pres-201

ence of propene (C3H6) is also detected. In contrast, HOCH2CHO, HCOOH and PAN are202

only seen in the transported plume. Whereas these three species are well-known secondary203

products, HOCH2CHO is also primarily emitted by fires; the fact that it is not observed in204

the fresh plume could be explained by the overlapping prominent HONO absorption feature.205

4 Long-lived gas analysis over the Pacific Ocean206
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Figure 2. Whitened spectrum of Pacific Ocean from October 2017 revealing eight halocarbons,

carbon dioxide and nitric acid.

In this section, we show how small spectral changes that appear over longer time periods207

in mean spectra can be exposed with the help of the whitening transformation. Focusing208

over an area in the North Pacific Ocean (25◦–45◦N; 170◦–165◦W), we chose 120,000 clear-sky209

spectra measured in 2008 to calculate a reference mean spectrum and associated covariance210

matrix. 2008 is the first complete year where IASI L1c reprocessed data are available211

(Bouillon et al., 2020). The spectrum on which we applied whitening was calculated from212

N = 20,000 clear-sky spectra measured in October 2017 over the same area. Using a mean213

rather than an individual spectrum is not strictly needed, but it helps focusing on long-214

lived compounds, as an individual spectrum might always exhibit anomalies compared to215

the reference due to natural variations in short-lived trace species. For instance plumes of216

volatile organic compounds are regularly observed in the North Pacific Ocean (Franco et217

al., 2018, 2019). The whitened mean spectrum is shown in Figure 2. As we work with mean218

spectra, the maximum values observed in the whitened spectrum are much lower than in219

the previous example. However, for the same reason, a significant value is in theory already220

obtained for values as low as 4/
√
N ≈ 0.03.221
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Changes in eight halocarbons were identified, these are: CFC-11 (CFCl3), CFC-12222

(CF2Cl2), HCFC-22 (CHF2Cl), HCFC-142b (CH3CF2Cl), HFC-134a (CH2FCF3), carbon223

tetrafluoride (CF4), sulfur hexafluoride (SF6) and carbon tetrachloride (CCl4). Halocarbons224

are synthetic halogenated compounds used in many industrial and domestic applications225

(Martinerie et al., 2009). Most of them are powerful greenhouse gases and contribute,226

for chlorinated and brominated compounds, to the depletion of stratospheric ozone and to227

the development of ozone hole (World Meteorological Organization, 2010). Of these eight228

species, five of them (CFC-11, CFC-12, HCFC-22, CCl4 and CF4) have been observed in229

IASI spectra before (Clerbaux et al., 2009; Liuzzi et al., 2016).230

The absorption bands of the two CFCs, located around 849 cm−1 for CFC-11 and at231

∼923 and∼1161 cm−1 for CFC-12 (here and also later, the wavenumbers refer to the position232

of strong Q-branches), have whitened signals of 0.3, 0.7 and 0.9 respectively. Those positive233

values indicate that their atmospheric abundance was smaller in 2017 than in 2008, which is234

consistent with independent satellite measurements (Chen et al., 2020), independent in-situ235

measurements (Prinn et al., 2018) and a direct consequence of the 1987 Montreal Protocol236

to limit the use and production of CFCs (World Meteorological Organization, 2018). The ν3237

band of CCl4 shows up at ∼796 cm−1 with a whitened signal’s value of 0.2. The production238

of CCl4 has been controlled by Montreal Protocol as long as CFCs, explaining its decrease239

between 2008 and 2017.240

The other halocarbons in Figure 2 are all detected with a negative value, indicating241

an increase in their atmospheric concentration between 2008 and 2017. Four absorption242

bands of HCFC-22 are observed: ν4 (∼809.25 cm−1), 2ν6 (∼829.00 cm−1), ν3 (∼1114.00243

cm−1) and ν8 (∼1132.25 cm−1). In the spectral region between 1178 and 1200 cm−1,244

HFC-134a and HCFC-142b are both absorbing. Although the detection of HFC-134a is245

unambiguous, the detection of HCFC-142b is less certain, but still very likely considering246

the presence of a sharp feature at 1192.50 cm−1 that would correspond to its ν14 Q-branch.247

Note that constraints on the production of both HCFCs and HFCs were only added in later248

amendments of the Montreal Protocol (World Meteorological Organization, 2018). The249

signatures of SF6 and CF4 are clearly observed at 947.75 cm−1 (Q-branch of the ν3 band250

with value of -0.6) and around 1283.25 cm−1 (value of -1.1) respectively, and are consistent251

with increases observed from ground-based measurements (Prinn et al., 2018).252

The region 1220–1370 cm−1 is quite complicated for a definite analysis of the individual253

trends of the atmospheric species contributing to the absorption: CH4, N2O, H2O, HDO,254

HNO3, O3. However, in this region the (negative) spectral signatures of CF4 around 1283255

cm−1 clearly indicate an increase of its abundance over the considered time frame i.e. 2008256

(for the reference) compared to 2017 (for the Pacific data set).257

Apart from the halocarbons, Figure 2 highlights several absorption lines of CO2; the258

signal shows up at 791.5 cm−1 with a succession of rovibrational features around 800, 950,259

975, 1050, 1070 and 2100 cm−1. The negative values indicate an increase in the CO2 signal,260

and thus a rise in concentration between 2008 and 2017. The CO2 features in these spectral261

regions are less saturated than below 750 cm−1, and are less affected by small changes in262

atmospheric temperatures. There are also absorption features of nitric acid (HNO3) in its263

ν5 and 2ν9 bands: the corresponding signatures are stronger around the two Q branches264

centered at 879.00 and 896.00 cm−1 indicating an increasing atmospheric abundance of265

HNO3. This is consistent with a recent study that reported a small positive trend for HNO3266

(Bernath et al., 2020).267

A number of smaller features remain unidentified in this spectrum, of which the strongest268

are spotted by dotted lines in Figure 2. Most of the observed features are found in the at-269

mospheric window between 800 and 1300 cm−1. The broad feature between 1215 and 1240270

cm−1 could possibly due to the spectral contribution of COF2. As a caveat, some of these271

unidentified features could still be due to natural variations of short-lived trace gases. In272

addition, while the IASI L1c reanalyzed dataset was used for this study, small changes in273
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the IASI instrument that occurred in the last decade could also play a role. No major fea-274

tures were identified in the regions impacted by water vapor and CO2 (645–790, 1300–2000,275

2200–2400 cm−1).276

5 Conclusion277

In this letter, we have shown that the whitening transformation allows analyzing anoma-278

lies in high resolution infrared spectra. It enables elimination of the large absorption features279

that usually dominate a spectrum and accentuates those channels which are incompatible280

with the background norm. We have presented two different applications: an analysis of an281

extreme event (the 2019/2020 Australian fires) and an analysis of long-term mean changes282

in IASI spectra. These exploit respectively the spatial variability of reactive species and the283

temporal variability of long-lived compounds. We have provided spectroscopic evidence of284

the occurrence of nine fire tracers and eight halocarbons. This includes four species (gly-285

colaldehyde, HCFC-142b, HFC-134a, SF6) which have never been observed before with a286

nadir sounder. Their detection is very promising, especially for the determination of their287

source emissions and the study of their temporal evolution.288

The advantages of the whitening approach compared to more traditional techniques are289

numerous. For instance, Clarisse et al. (2011) analyzed spectra from the 2009 Australian290

fires using a fitting approach, which aims at reconstructing the observed spectrum by means291

of forward simulations. Especially in extreme cases, it is very difficult and time consuming292

to obtain reasonable fits of the corresponding spectra, and often fitting windows need to be293

restricted to narrow spectral ranges. In contrast, whitening is immediate, does not require294

an inverse model nor the ability of a forward model to account for all the observed features,295

and can be applied on spectral ranges of any size. Likewise, in a more traditional analysis of296

trends in high resolution infrared spectra (Brindley et al., 2015; Strow & DeSouza-Machado,297

2020), it is very challenging to deal properly with variations of O3, CH4, CO2 or H2O due298

to e.g. natural temporal variations, variations in temperature or sampling biases related to299

clouds; whereas these are dealt with automatically using the whitening technique.300

–9–
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Appendix A301

Figure A1. HRI maps of C2H4 of the 2020 Australian bushfires on selected days. The size of the

IASI footprint has been slightly exaggerated for visualization purposes. ( FF and FF respectively

mark the spectra selected inside and outside the fire plume)
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Appendix B302

700 750 800 850 900 950 1000 1050

-40

-30

-20

-10

0

10

994.75

(a)

C
2
H

2

C
2
H

4

CH
3
OH

HCN

C
4
H

4
O

C
3
H

6

CH
3
COOH

HONO

CO

NH
3

1050 1100 1150 1200 1250 1300 1350 1400
-30

-20

-10

0

10

20 (b)

2000 2050 2100 2150 2200 2250

-30

-20

-10

0

10

20 (c)

Figure B1. Whitened spectrum of Australian bushfires from December 30, 2019 revealing 8

trace gas species and carbon monoxide.
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