Lidar observation of gravity and tidal waves in the stratosphere and mesosphere - INSU - Institut national des sciences de l'Univers Access content directly
Journal Articles Journal of Geophysical Research. Oceans Year : 1981

Lidar observation of gravity and tidal waves in the stratosphere and mesosphere

Alain Hauchecorne
  • Function : Author
  • PersonId : 839224

Abstract

Lidar measurements of atmospheric density and temperature in the altitude range 30‐to 80 km have been performed during the last 2 years from the Observatory of Haute‐Provence (latitude 44°N, longitude, 6°E). The potential of this technique for studying the middle atmospheric structure is presented and preliminary results on wave propagation are discussed. It is shown that wave‐like structures are observed systematically in this height range. Fourier analysis indicates that most of the energy is transported by waves of vertical wavelengths on the order of 8 to 15 km. The amplitude of the density variations is shown to follow a ρ−l/2 law up to 70 km. The characteristics of the observed density waves suggest that they are caused by a superposition of internal gravity waves propagating upward from the troposphere and a diurnal tide component in the range 30–50 km. Such waves are able to induce quite significant perturbations in atmospheric density and therefore temperature on an hourly basis. The Lidar technique is able to monitor those variations for the first time from a ground station operating continuously.
Fichier principal
Vignette du fichier
ark _67375_WNG-BC6DJ0XF-2.pdf (840.01 Ko) Télécharger le fichier
Origin : Publisher files allowed on an open archive

Dates and versions

insu-03117564 , version 1 (02-03-2021)

Identifiers

Cite

Marie-Lise Chanin, Alain Hauchecorne. Lidar observation of gravity and tidal waves in the stratosphere and mesosphere. Journal of Geophysical Research. Oceans, 1981, 86 (C10), pp.9715-9721. ⟨10.1029/JC086iC10p09715⟩. ⟨insu-03117564⟩
35 View
65 Download

Altmetric

Share

Gmail Facebook Twitter LinkedIn More