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1.  Introduction
Geodynamic reconstructions presenting cross-sections, maps, or elaborate large-scale plate reconstructions 
over time are essential to conceptualize lithospheric processes such as subduction or mountain building 
and to reconstruct Earth’s history. These geodynamic reconstructions are based on quantitative data ob-
tained with a wide range of techniques from field mapping to geophysical imaging. Among these data, 
pressure-temperature-time-deformation (P − T − t − ϵ) paths obtained from petrological, geochronolog-
ical, and mineral deformation studies constitute key constraints. These features are indeed the only way 
to estimate the burial, temperature and deformation evolution of a piece of rock and, by extension, of the 
geological unit to which it belongs. In particular, estimated depths, in conjunction with geochronological 
data, are used to reconstruct the formation process of orogens (e.g., Agard et al., 2009; Chopin, 2003; Ernst 
et al., 2007).

Abstract  Pressure-to-depth conversion is a crucial step toward geodynamic reconstruction. The most 
commonly used pressure-to-depth conversion method assumes that pressure corresponds to the lithostatic 
pressure. However, deviatoric stresses can cause pressure to deviate from the lithostatic case strongly, thus 
adding considerable uncertainty to pressure to-depth conversion. First, we rederive formulas of pressure-
to-depth conversion that take into account deviatoric stresses. Then, we estimate the range of possible 
depth independently for each point in a data set containing peak and retrograde metamorphic pressure 
data (one-point method). In a second time, we use both the peak and retrograde pressure of a rock sample 
together, assuming that both pressures were recorded at the same depth (two-point method). We explore 
different cases to explain the transition from peak to retrograde pressure by varying the direction and 
magnitude of stresses. This alternative model is consistent with all data points but for a more restricted 
range of stress state and depth than the one-point model. Our results show that (1) even small deviatoric 
stresses have a significant impact on depth estimates, (2) the second principal stress component σ2 plays 
an essential role, (3) several models can explain the pressure evolution of the data but lead to different 
depth estimates, and (4) strain data offer a mean to falsify our proposed two-point pressure-to-depth 
conversion. The maximum predicted depth at peak pressure is 170 km using the assumption that pressure 
is lithostatic, compared to <75 km for our two-point model, which could correspond to the crustal root 
Moho’s depth.

Plain Language Summary  During the formation of mountain belts, rocks are buried deep in 
the Earth and then exhumed. In this journey, rocks undergo transformations that record the pressure. We 
use the pressure to estimate the depth at which a rock was buried to reconstruct the history of mountain 
belts. The pressure is the sum of the weight of the overlying column of rock and shear/volumetric 
stresses. However, since these stresses cannot be measured, there has been a long-standing debate on 
how much they influence the record of pressure in rocks. Here, we use mathematics and computer code 
to recalculate to recalculate the burial depth of a set of rock from pressure data. Two extreme scenarios 
emerge: (1) when ignoring tectonic forces (classical approach), we interpret the pressure history as 
the result of deep burial (up to 160 km) followed by fast exhumation (1 −10 cm/yr) to ∼20 km. The 
mechanism of such fast exhumation is itself intensely debated; (2) when considering tectonic forces, an 
alternative scenario is that the rock was buried to an intermediate depth (<75 km), followed by a change 
in tectonic forces without exhumation. If this second scenario is verified, then we must re-evaluate the 
history of mountain belts.
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The conversion of pressure to depth is crucial in establishing a geodynamic reconstruction based on petro-
graphic data. Depth can be retrieved from the lithostatic pressure Plitho, that is, the weight of the overlying 
column of rock, by the formula:

,lithoPz
g

� (1)

where ρ is the average density of the rock column, g is the gravitational acceleration and z is depth, and 
under the assumption that Plitho = 0 at z = 0. However, Plitho cannot be directly estimated from metamorphic 
rocks; instead, we can estimate the mean stress, also called the pressure, P (Moulas et al., 2019). Note that 
P = Plitho only in the case where deviatoric stresses are negligible. Therefore, an additional step is required 
to relate P to Plitho. This additional step involves information about the three-dimensional deviatoric stress 
state responsible for rock deformation. Unfortunately, deviatoric stresses cannot be measured, therefore, 
assumptions regarding the stress state are needed to retrieve Plitho. Depending on the assumption made, 
the final depth estimate can vary by more than a factor of two. Since these crucial assumptions are hard 
or maybe impossible to falsify, there has been a long-standing debate over (1) what is the most adequate 
stress state assumption to use for pressure-to-depth conversion, (2) how deeply were metamorphic rocks 
buried, and (3) how are metamorphic rocks exhumed (e.g., Agard et al., 2009; Brace et al., 1970; Ernst, 1963; 
Gerya, 2015; Godard, 2001; Green, 2005; Hobbs & Ord, 2015; Hobbs & Ord, 2017; Jamieson, 1963; Manck-
telow, 1993; Moulas et al., 2013, 2019; Reuber et al., 2016; Schenker et al., 2015; Schmalholz & Podladchik-
ov, 2014; Tajčmanová, 2015; Wheeler, 2014; Yamato & Brun, 2017).

The most common assumption is to ignore deviatoric stresses which follows from the argument that met-
amorphic rocks are assumed to be weak at the depths and temperature considered (e.g., Agard et al., 2009; 
Beltrando et al., 2007; Guillot et al., 2009; Rubatto et al., 2011). Thus, P = Plitho and Equation 1 can be used. 
We call this assumption the “lithostatic case.” In a rock, the magnitude of deviatoric stresses can vary from 
zero to the point of rock failure. Hence, the mean deviatoric stress can be of a magnitude comparable to 
lithostatic pressure, and P can vary from 1 to 2 times the value of Plitho in compression for a homogeneous 
rock (Petrini & Podladchikov, 2000). The difference between P and Plitho is referred to as “tectonic pressure” 
(N. S. Mancktelow, 2008), “tectonic overpressure” (Mancktelow, 1993; Schmalholz & Podladchikov, 2013) 
or simply “overpressure” when it is positive or “underpressure” when it is negative (Moulas et al., 2013). 
Therefore, it is essential to consider variations in the stress state when interpreting pressure-temperature 
(P − T) paths. Note that the overpressure model is a general model of which the “lithostatic case” consti-
tutes one special case. In addition, (1) the presence of topography and crustal roots in mountain belts always 
cause deviation of pressure from the lithostatic case (Schmalholz et al., 2014, 2019); (2) even rocks with no 
deviatoric stress can experience of pressure that deviates significantly from the lithostatic case depending 
on the local geometry (Moulas et al., 2014; Schmalholz & Podladchikov, 2013); (3) density changes, which 
we do not consider in this article, can also locally modify the pressure (Vrijmoed et al., 2010).

In most cases, the P − T evolution of a (ultra-)high pressure ([U]HP) metamorphic rock can be approximat-
ed by three linear segments. A prograde segment (highlighted in blue in Figure 1a) that shows increases in 
both P and T and a retrograde part (in green in Figure 1a) divided in two segments: a retrograde stage 1 and 
a retrograde stage 2 (see Figure 1a). The first stage of the retrograde path generally shows a large decrease in 
pressure and only minor variations in temperature, while the second stage presents decreases in both pres-
sure and temperature conditions (see Yamato & Brun, 2017). Hereafter, we use the notations Pp and Tp to 
refer to the pressure and temperature conditions at the peak of (U)HP metamorphism (time t1 in Figure 1a), 
respectively. Similarly, Pr and Tr refer to the pressure and temperature conditions at the end of retrograde 
stage 1 (time t2 in Figure 1a).

There are arguably two events in the P − T path that cause most of the debate: peak metamorphism (Pp, 
Tp) and retrograde stage 1 (i.e., the transition from Pp to Pr). Thermobarometric studies often provide Pp, Tp 
and Pr, Tr, sometimes in association with geochronological dating. We present the data set of Pp, Tr-Pr, Tr 
collected from the literature in the P – T space in Figure 1b and in the space Pp-Pr in Figure 1c. In Pp-Pr space, 
most data points are contained within a fan centered on 0, which suggests that Pp and Pr are proportional, 
with coefficients of proportionality, Pp/Pr, between 2.4 and 4.8. A few data points with values Pp <1.5 have a 
coefficient of proportionality <2.4 as low as 1.4. We term these points “Others (outliers).”
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To illustrate the consequence of stress state assumptions on geodynamic interpretations, let us consider a 
rock presenting a mineral paragenesis equilibrated at 3.0 GPa. This rock can be interpreted as having been 
buried up to 100 km depth under the “lithostatic” assumption (using ρg = 28,000 kg/m2/s2) but only ∼50 km 
when considering a magnitude of deviatoric stresses close to the brittle yield stress in compression. While 
the former corresponds to mid-lithospheric depth, the latter would correspond to crustal-root depth. Pleu-
ger and Podladchikov (2014), for example, proposed a geodynamic reconstruction of the central Alps based 
on structural arguments wherein the Adula nappe, an eclogite-bearing metamorphic unit in the Alps, was 
buried to 50–60 km depth. This depth estimate implies an overpressure of 40%–80% of the lithostatic pres-
sure and suggests that the burial and exhumation of this unit occurred within an orogenic crustal wedge. 
In alternative models using the “lithostatic assumption,” the nappe was buried to 80 km depth during sub-
duction and then rapidly exhumed by slab breakoff (Froitzheim et al., 2003; Schmid et al., 1996) or sub-
vertical extreme thinning (Nagel, 2008). The scenario of Schmid et al. (1996) employs one subduction zone 
in conjunction with a normal fault, while the models of Froitzheim et al. (2003) and Nagel (2008) involve 
two subduction zones. Thus, different assumptions regarding pressure-to-depth conversion lead to differ-
ent interpretations of the process of mountain building. Therefore, it is crucial to understand, compare, 
and evaluate the implications of different assumptions about the stress state when designing geodynamic 
reconstructions.

Retrograde stage 1, when the pressure decreases from Pp to Pr in a relatively short amount of time, is also at 
the center of heated debate. Using the “lithostatic assumption,” the transition from Pp to Pr is interpreted as 
an exhumation event. In conjunction with dating data, this phase of exhumation is generally interpreted as 
fast, with exhumation rates comparable to subduction rates (1–10 cm/yr) (e.g., Rubatto & Hermann, 2001; 
Parrish et al., 2006). Various mechanisms have been proposed to explain these fast exhumation rates, such 
as buoyancy-driven exhumation (Beaumont et  al.,  2009; E. Burov et  al.,  2014; Butler et  al.,  2013, 2014; 
Schmalholz & Schenker,  2016; Wheeler,  1991), slab breakoff (Huw Davies & von Blanckenburg,  1995), 
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Figure 1.  (a) Typical example of a P − T path. (b) Data set in P − T space. Colors correspond to the orogenic system 
from which data come as presented in C. (c) Repartition of the data (see supporting information for references) in a Pp 
versus Pr diagram.
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normal faulting (Platt, 1986; Ring et al., 1999; Schmid et al., 1996), rollback (Brun & Faccenna, 2008), or 
channel flow (e.g., Guillot et al., 2009). These and other mechanisms are discussed in detail in several re-
views (Guillot et al., 2009; B. R. Hacker & Gerya, 2013; Warren, 2013). In contrast to the fast exhumation 
interpretation, Yamato and Brun (2017) showed that when considering the large deviatoric stresses assump-
tion, the transition from Pp to Pr can be explained, for many rock samples, by a switch from a compressional 
to an extensional stress state without exhumation.

In this contribution, we first review the mathematical background of pressure and stress. Then, we formu-
late a “one-point method” of pressure-to-depth conversion to estimate depth based on a single pressure data 
point and a “two-point method” that uses both Pp and Pr with the assumption that zp = zr. We apply these 
methods to our data set (Figure 1b) to determine an estimated depth range for each sample. Finally, we dis-
cuss the consequences of different assumptions for geodynamic interpretation and point out ways of falsify-
ing some assumptions. Our goal is both to raise awareness about the issue of pressure-to-depth conversion 
and to provide tools allowing one to perform such conversion easily. For this reason, we provide computer 
codes (Jupyter notebooks) as supporting information S2–S10. These scripts allow readers to reproduce most 
of the figures presented in this article readily and to extend the database with their own data. The codes can 
also be used to experiment with stress states and material properties.

2.  One-Point Method of Pressure-to-Depth Conversion
2.1.  Overview of the Model

2.1.1.  Sketch, Coordinate System and Equations of Stress

Let us consider an ideal and simplified orogen submitted to horizontal tectonic stresses in a three-dimen-
sional Cartesian orthonormal system (x, y, z) where z is vertical and points downward, and x is the direction 
in which tectonic loading is applied (Figure 2a). σx, σy, σz are the normal components of the stress tensor 
in this coordinate system, and σ1, σ2, σ3 are the principal stresses. We use the convention that stresses are 
positive in compression. All notations are listed in Table 1. We assume that the topography is flat, so we ig-
nore sources of overpressure due to variations of gravity potential energy (Schmalholz et al., 2014). We also 
assume the material is homogeneous. We assume, in a first step, that the stress state is Andersonian, that 
is, one principal stress direction is vertical, and the other two are horizontal (Anderson, 1905). We fix the 
y-axis in the direction of σ2. Thus, we only consider cases where the stress state can induce normal or reverse 
faulting, and we ignore the stress states that would result in strike-slip faulting. We will treat the case of 
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Symbol Meaning Unit

x, y, z Components of the spatial carthesian coordinate system (z is vertical) m

σx, σy, σz Normal components of the total stress tensor Pa

σ1, σ2, σ3 Principal stresses Pa

Δσx Horizontal tectonic stress Pa

σn, τ Normal and shear stress (used in Mohr diagrams) Pa

P Pressure or mean stress Pa

 ,  , P , Normal stress, shear stress and pressure when normalized by σz -

α Factor that determines the value of σ2 as a function of σ3, σ1 -

ρ Average density of rocks kg.m−3

g Gravity acceleration m.s−2

Φ Friction angle -

θ Angle between σ1 and the horizontal -

F Yield function -

Table 1 
List of Notation



Geochemistry, Geophysics, Geosystems

BAUVILLE AND YAMATO

10.1029/2020GC009280

5 of 24

Figure 2.  Overview of the principal characteristics of the model and definitions. See text for details concerning notation. Δσx corresponds to the stress 
magnitude applied in the x-direction. Graphics presenting σn versus τ (i.e., normal stress vs. shear stress) correspond to Mohr diagrams.



Geochemistry, Geophysics, Geosystems

non-Andersonian stresses in Section 3.2. Under these assumptions, the total vertical stress σz corresponds 
to the weight of the column of rock above the considered point (or Plitho) and is given by:

,z gz � (2)

where ρ is the density of the overlying rocks, g is the gravitational acceleration and z is the depth where 
the computation is performed. When a tectonic stress of magnitude Δσx is applied in the x-direction, the 
following equation applies:

Δx z x   � (3)

Three tectonic regimes can be considered depending on the horizontal loading condition (Figure 2a): (1) 
lithostatic, when Δσx = 0; (2) compression, when Δσx > 0; (3) extension, when Δσx < 0. Equations describ-
ing the stress state for these three tectonic regimes are presented in Figure 2b. Note that the stress state 
described by the model is point-wize in essence. When applying the model to data, it is up to the researcher 
to estimate whether the pressure data is representative of the regional or local stress state.

2.1.2.  Deformation

The magnitude of the deformation is proportional to Δσx, and the direction of maximum stretch is parallel 
to the direction of σ3. Thus, there is no deformation in the lithostatic case, and the maximum stretch is 
horizontal in the extensional case and vertical in the compressional case. The total stress in the y-direction 
is always σy = σ2, and we use the variable α that ranges between 0 and 1 to describe σ2 as a function of σ1 
and σ3 such that:

2 1 3(1 ) .     � (4)

Figure 2c shows how α is related to the mode of deformation. When α = 0, σ2 = σ3 (see Equation 4), and the 
rock deforms by flattening. When α = 1, σ2 = σ1, and the rock deforms by constriction. When α = 0.5, σ2 = 
(σ1 + σ3)/ 2 = P, and the deformation is plane strain.

2.1.3.  Pressure

By definition, pressure (P) corresponds to the isotropic part of the stress tensor and, in principal stress coor-
dinates, it can be expressed as follows:

1 2 3 .
3

P    
� (5)

Hence, P = σz in the lithostatic case, P < σz in extension (because Δσx < 0), and P > σz in compression 
(because Δσx > 0). The Mohr diagrams in Figure 2d illustrate these relationships. In the diagrams, the hori-
zontal and vertical axes represent the normal stress σn and shear stress τ on planes within the rock mass, 
respectively. Pressure is represented by a cross symbol, where the central vertical bar represents the value of 
pressure when the rock deforms under plane-strain conditions (α = 1/2) and the horizontal bar represents 
the range of pressure associated with values of α between 0 (flattening) and 1 (constriction). The equation 
for P as a function of α is obtained by substituting Equation 4 into Equation 5, which yields

1 3
(1 ) (2 ) .

3 3
P    
 � (6)

2.1.4.  Limit of Stress and Rock Failure

When tectonic loading is applied, rocks first undergo (visco-)elastic. Stress loading can be increased up to 
the point where the rock breaks. At this point, the maximum stresses on a given plane within the rock are 
given by the Mohr-Coulomb law. If we ignore the cohesion in rocks the Mohr-Coulomb becomes
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tan ,n � (7)

which is consistent with Byerlee  (1978), and where ϕ is the friction angle. Rock experiments show that 
ϕ ≈ 30° for most rock types (Byerlee, 1978). To simplify the derivation, we ignore cohesion since it is small 
(order of 10 −50MPa) compared to the pressure of metamorphic rocks considered here (order of GPa). The 
supporting information (S2–S10) also allow the reader to reproduce most figures in this publication while 
taking cohesion into account (see Yamato and Brun (2017) for the derivation). Mohr’s circle is defined by

1 3 1 3 sin
2 2n

     
 � (8)

and

1 3 cos .
2

  
� (9)

Substituting Equations 8 and 9 into Equation 7 yields

1 3Φ , with � (10)

1 sinΦ .
1 sin








� (11)

Figure 2e illustrates the possible stress states associated with different tectonic regimes. This figure presents 
the whole range of possibilities from the “lithostatic” case to the brittle case.

In extension, σx = σ3, and σz = σ1; therefore, the minimum total horizontal stress is min(σx) = σz/ Φ (Fig-
ure 2e, middle panel). Conversely, in compression, σx = σ1, and σz = σ3; therefore, the maximum total hori-
zontal stress is max(σx) = Φσz (Figure 2e, right panel). The quantity (σ1 − σ3) / 2, that is, the radius of the 
Mohr circle, is also called the second invariant of the deviatoric stress tensor or the “magnitude of deviatoric 
stresses.”

2.1.5.  Summary

Finally, Figure 2f presents a Mohr-Coulomb diagram that summarizes the discussion to this point. The 
diagram is presented in a non-dimensional form where the overbar indicates that a quantity is normalized 
by σz (e.g., /x x z   ). The pressure in the lithostatic case, or lithostatic pressure, is equal to σz (i.e., the 
weight of the column of rocks). The nondimensional lithostatic pressure is therefore equal to 1z   (Fig-
ure 2f). In compression, the normalized total horizontal stress x  can vary from 1 (no deformation) to Φ 
(onset of brittle deformation), and P > σz. In extension, x  can vary from 1/Φ (brittle deformation) to 1 (no 
deformation), and P < σz. In these three cases, following Equation 5, the nondimensional pressure P can 
then be written as:

1,lP � (12)

2 1 ,
3 3e xP   

 � (13)

1 2 ,
3 3c xP   

 � (14)

where the subscripts c, e, and l relate to the compression, extension and lithostatic tectonic regimes, respec-
tively (see also Figure 2f). Another useful result is obtained by solving the previous equations for σz:
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3 , when 0,
1 (2 )

3 , when 0.
2 (1 )

z x
x

z x
x

P

P

 
  

 
  

     

  
   

� (15)

2.2.  Pressure-to-Depth Conversion Ratio z/P

To convert metamorphic pressure estimates (P) into depth (z), one can use the simple relation 
zz P
P

 , 

where z/P is the gradient of depth as a function of pressure, which we refer hereafter as the “pressure-to-
depth conversion ratio,” expressed in km/GPa, and is equal to

1 ,wherez
P g P

� (16)

/ .zP P � (17)

Figure 3 shows graphs of 1 / P and z/P as a function of the horizontal stresses expressed by x  (horizontal 
axis) and α (different lines). The graphs were calculated by substituting P in Equation 16 with Equation 13 
when 1x   (i.e., in extension) or Equation 14 when 1x   (i.e., Panels a to e show Mohr diagrams illus-
trating the stress state for given values of x ). Throughout this article, we use ρg = 28,000 kg/m2/s2, repre-
senting crustal rocks. A value of tan(ϕ) = 0.6 is often used in the literature. This value is the result of fitting 
data from rock friction experiments by Byerlee (1978). In the main article, we use the value tan(ϕ) = 0.65 
that offers a better fit to the data in the absence of cohesion. The difference has only a negligible influence 
on pressure estimates. Readers can easily recompute our results using any value of cohesion, ϕ, or ρ by using 
the scripts provided in the supporting information (S2–S10).
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Figure 3.  Pressure-to-depth conversion ratio (z/P) as a function of normalized horizontal stress /x x z   . The 
vertical axis indicates the ratio of vertical stress to pressure (Sz/P, blue axis) or the pressure-to-depth conversion ratio 
(z/P, red). We use ρg = 28,000 kg/m2/s2, and   tan ϕ = 0.65. The three lines correspond to different values of α (i.e., σ2). 
The mode of deformation associated with α is illustrated by the cartoons on the left, where the white and blue boxes 
represent the undeformed and deformed states, respectively. The Mohr diagrams represent the outer envelope of stress 
states at points a–e. In these panels, pressure P is represented by a cross, as in Figure 2F.
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When the pressure is considered lithostatic ( 1x  , Figure 3c), the pressure-to-depth conversion ratio is 
z/P = 35 km/GPa. However, this ratio varies significantly when x  increases (compression) or decreases 
(extension). For example, in the case where σ2 = σ1 and x  is minimum, z/P = 64 km/GPa (Figure 3a). 
In contrast, when x  is maximum, z/P = 16 km/GPa (Figure 3e). Small deviations of x  from 1 have sig-
nificant impacts on the pressure-to-depth conversion ratio. For example, when the applied tectonic stress 
Δ (Δ ) / 4x xmin  , z/P = 39 km/GPa (Figure 3b), and when Δ (Δ ) / 4x xmax  , z/P = 25 km/GPa (Fig-
ure 3d). The value of α also exerts a strong control on the pressure-to-depth conversion ratio, particularly in 
extension; e.g., when 1Φx

 , the conversion ratio varies from 45 to 64 km/GPa depending on the value 
of α.

2.3.  Application of the One-Point Method

We now apply the pressure-to-depth conversion ratio derived in the previous section to our data set of peak 
(Pp) and retrograde (Pr) metamorphic pressures. Figure 4 shows the depths estimated from this conver-
sion. Depth estimates at peak pressure (zp) are shown only for compressive stress states (Figure 4a), while 
depth estimates at retrograde pressure (zr) are shown for both compressive and extensional stress states 
(Figure 4b). We indicate two reference depths: (a) 30 km (red dashed line), which is the depth of a “normal 
continental Moho” defined as the thickness of an isostatically balanced continental crust with topography 
at sea level, and (b) 75 km (thick red line), which is the depth of the Moho below the Tibetan Plateau and is 
the present-day “deepest Moho” on Earth. For each sample, the black horizontal bar indicates the lithostatic 
pressure case. The two columns for each sample indicate the two extreme deformation regimes: flattening 
(α = 0, or σ2 = σ3) and constriction (α = 1, or σ2 = σ1).
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Figure 4.  Depth estimates at peak pressure (a) and at retrograde pressure (b) for all samples in our data set. Colors are coded for areas. The “normal Moho” 
depth corresponds to the average depth of the continental Moho in regions where the crust is neither thickened nor thinned and is 30 km. The deepest Moho 
(75 km) corresponds to the current depth of the Moho below the Tibetan Plateau. This figure can be reproduced using the computer script from supporting 
information S4.
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At peak pressure conditions, the upper estimate of depth zp (Figure 4a, black bars) corresponds to lithostatic 
conditions (i.e., with no deformation), with a conversion ratio z/P = 35 km/GPa (Figures 4a and 3c). Under 
this condition, zp values are ∼165 km for samples from the Kokchetav and Sulu-Dabie regions, 140 km for 
the Tso Morari and Caledonides, and 120 km for the Alps and Kaghan valley. The minimum estimate of zp 
results from assuming constricting deformation at brittle failure under compression (i.e., α = 1 and Φx  ).  
The conversion ratio is then z/P = 16 km/GPa (Figure 3e) and zp < 75 km for all samples, that is, shallower 
than the present-day deepest Moho on Earth. The uncertainty range for zp for a single data point varies from 
≈15 km for sample #40 to ≈100 km for samples #16 and #23.

Under retrograde conditions, the lithostatic case represents an intermediate estimate because we consider 
both compressive and extensive tectonic regimes (Figure 4b). The upper estimate for zr results from as-
suming flattening deformation at brittle failure in extension (i.e., α = 0 and 1 / Φx  ). The conversion 
ratio is then z/P = 64 km/GPa (Figure 3a). A few samples from the Alps have a maximum depth estimate 
of zr > 85 km. For samples from the Kokchetav and Sulu-Dabie orogens, zr = 75 km, and zr = 50 km for 
samples from the Kaghan valley, Tso Morari and Caledonides. The minimum estimate of zr results from 
assuming constricting deformation at brittle failure in compression (i.e., α = 1 and Φx  ). zr can be as 
shallow as 10–20 km for all samples. The uncertainty range on the estimate of zr for a single data point is 
up to 70 km for sample #11 whose maximum depth is ≈90 km. All samples have at least part of their range 
shallower than the deepest present-day Moho at both peak and retrograde pressures.

Figure 5a shows the estimated exhumation calculated as the difference between zp and zr. We present six 
special cases involving different values of , ,p r

x x r   , and αr to illustrate the dependence of the estimated 
exhumation on the stress state. In Figures 5c–5h, we present Mohr diagrams for these six cases calculated 
using Pp and Pr from a reference sample.

The maximum exhumation is predicted when Pp corresponds to lithostatic pressure and Pr is recorded at 
brittle failure in compression (Figure 5a, top of color bars, and Figure 5c). The maximum predicted exhu-
mation in our data set varies between 20 and 150 km.

We use the term “always lithostatic” for the case where both Pp and Pr are lithostatic pressures. This case is 
shown with black horizontal bars in Figures 5a and 5b and illustrated in Figure 5d. In this case, exhumation 
varies between 25 and 125 km for our data set. Since the “always lithostatic” case is the most commonly 
used solution in the literature, we use it as a reference to normalize the results. The normalized graph 
(Figure 5b) allows us to express the exhumation amount as a percentage of a reference case and outline 
similarities between samples.

The red rectangle symbol Figures (5a and 5b) corresponds to a case where deformation is compressive for 
Pp and extensive for Pr, the magnitude of deviatoric stress is a quarter of the maximum value, and deforma-
tion is plane strain (Figure 5e). This stress state represents a conservative estimate for rocks that deform by 
viscous deformation at depth. This low-deviatoric stress has a significant impact on the quantity of exhu-
mation: on average, this case results in an estimate of exhumation that is, only 60% of that for the “always 
lithostatic” case (see red line in Figure 5b). The blue rectangle symbol (Figures 5a and 5b) represents a case 
of intermediate stress where the magnitude of deviatoric stress is half of the maximum value (Figure 5f). 
On average, this case’s results are 35% of the estimate for the “always lithostatic” case (see red line in Fig-
ure 5b). The dark yellow rectangles indicate the scenario where deformation is brittle in compression at 
peak pressure, and Pr corresponds to lithostatic pressure under plane strain deformation. This scenario 
predicts at most 30 km of exhumation and a minimum of −10 km (i.e., 10 km of additional burial). In this 
case, the predicted exhumation is ≈10% of that for the “always lithostatic” case, on average. The minimum 
exhumation estimate is obtained when deformation is brittle and constrictive in compression for Pp, and 
deformation is brittle in extension and occurs by flattening for Pr. The minimum exhumation estimate is 
between 0 and −50 km.

For most samples, the normalized amount of exhumation for a specific case, for example, low stress (red 
rectangles), is contained within a small range around an average value. However, the samples from the cate-
gory “Others (outliers)” have significantly different values. Although their values of Pp and Pr are not anom-
alous (e.g., Figure 1), their combination clearly differs from other samples (see Figure 1c). The relatively 
low dispersion of exhumation is related to the apparent proportionality between Pp and Pr (see Figure 1c).
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Figure 5.  (a) Estimated amount of exhumation calculated as the difference between the estimated depth at peak and retrograde pressures (zp − zr) for all 
samples from our data set. Bar colors indicate the provenance. (b) Same as (a) but normalized by the amount of exhumation obtained by considering Pp and 
Pr as lithostatic pressures (i.e., “always lithostatic” case). We calculated six special cases by combining different values of , , ,p r

x x p r    , that is, maximum and 
minimum exhumation, and four intermediate cases (colored rectangles). The values used are shown in the table inset in (b). (c–h) Mohr diagrams for the six 
special cases using Pp, Pr from a reference sample indicated by red arrows in (a and b). The characteristics of the special cases are (c) maximum exhumation 
case, (d) “always lithostatic” case, (e–f) cases with moderate deviatoric stress, (g) exhumation amount close to zero, and (h) minimum exhumation (negative 
exhumation, i.e., burial). This figure can be reproduced using the computer script from supporting information S5.
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In this section, we show that the transition from Pp to Pr can be interpreted as the result of exhumation 
from great depth (Figures 5c and 5d). The data are also compatible with an opposite interpretation: that this 
transition is the result of a change in stress state while depth is constant (Figure 5g) or even while burial 
continues (Figure 5h).

3.  Two-Point Method of Pressure-to-Depth Conversion
In this section, we re-examine our data set with the additional constraint that zp = zr. In this way, we can use 
Pp and Pr together to reduce the uncertainty range for the depth estimate. We call this method “two-point 
pressure-to-depth conversion.” In the case of a homogeneous rock and ignoring the possible role of fluids, 
the stress state can be modified in only two ways: (1) by modifying the magnitude of the horizontal stress 
or (2) by rotating the stress field. We explore these mechanisms independently, as well as a special case, in 
the following sections.

3.1.  Mechanism 1: Change in the Magnitude of Horizontal Stress (S-model 1)

First, we consider the change in pressure triggered by a change in the magnitude of the horizontal stress  
( x ). Figure 6a shows five Mohr circles constructed with various values of x . Note that the Mohr circle with 

1x   is a point. In Figures 6b–6j, we represent our data set as colored circles in the Pp versus Pr space. These 
data points are placed on top of a colored contour map of r

x  computed for given values of , , , ,p
p r x p rP P    , 

where subscripts or overscripts p and r refer to the peak and retrograde stages, respectively. The values used 
are indicated at the top of columns and the beginning of rows of panels. A contour map of z = zp = zr is 
also shown (black horizontal lines). The range of values calculated for r

x  covers stress states that do not 
exceed the Coulomb failure criterion. Gray areas correspond to areas where r

x  has no meaningful solution 
(i.e., because the stress magnitude would exceed the brittle yield stress). This means that the model cannot 
explain data plotting in the gray area. In contrast, when a data point is on top of the colored contour map, 
the combination of Pp, Pr for this data point can be obtained using Equations 13–16, the combination of 

, ,p
x p r    given and the value of r

x  and z shown by the contour map.

When the stress state is lithostatic at peak conditions, that is, 1p
x  , only outliers plot in the solution 

domain (Figures  6b–6d), which means that the transition from Pp to Pr observed in the data cannot be 
explained only by increasing or decreasing the horizontal stress at constant depth if the stress state is litho-
static under peak conditions. When the initial horizontal stress is (1 Φ) / 2p

x   , a few data points lie in 
the solution domain for the combinations αp = 0, αr = 1 (Figure 6e) and αp = αr = 1/2 (Figure 6f). However, 
approximately half of the points lie in the solution domain when αp = 1, αr = 0 (Figure 6g). Outliers can be 
explained by 1r

x   (i.e., compressive stress state), while other points are explained by 1r
x   (i.e., exten-

sional stress state, Figure 6g). When the initial horizontal stress is Φp
x   (i.e., brittle deformation), few 

data points lie in the solution domain for the combinations αp = 0, αr = 1 (Figure 6h). When αp = αr = 1/2, 
half the points lie in the solution and these points correspond to values of 1r

x   (except for outliers, Fig-
ure 6i). When αp = 1, αr = 0, all the points have a solution (Figure 6j). Most points have 1r

x  , but a few 
points are also associated with small values 1r

x  . Outliers are characterized by high values of r
x .

In all models except the one in Figure 6j, some data points have a higher Pp than acceptable within the 
model bounds. On the other hand, there is no data point with Pp lower (or Pr higher) than that predicted 
by the model. The outlier points also plot within the bounds of the model. Overall, each data point is 
within the model boundaries or close to its boundary on at least one graph (e.g., Figure 6j). Therefore, 
the model where the transition from Pp to Pr is triggered by a change in the stress state at constant depth 
(zp = zr) explains the data. While some points lie within the model boundaries only for a deviatoric stress 
with a large magnitude, other points can be explained by a change in stress with only moderate deviatoric 
stresses (Figure 6g). Values of αp, αr are also important to explain the data; for example, some data points 
can be explained only when αp = 1, αr = 0. For these data points, the model predicts a change in the mode 
of deformation from constriction to flattening during the transition from Pp to Pr. Therefore, analyses of 
the mode of deformation in metamorphic rock samples provide a way to validate or falsify our model.

We compute the depth depending on the given value of p
x  and αp from Equations 14 and 16. For 1x  , 

the pressure-to-depth conversion ratio increases with decreases in both x  and α (see Figure 3). Graphically, 
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Figure 6.  Results for the horizontal stress change-driven model. (a) A Mohr diagram illustrating the stress states 
associated with different values of x . The normal stress (horizontal axis) and shear stress (vertical axis) are normalized 
by σz. (b–j) Peak pressure as a function of retrograde pressure for data (colored circles) and model (colored contour 
plot). The estimated depths, in km, for each model are indicated by black contour lines. Gray areas indicate zones 
where the model does not have a solution (i.e., the deviatoric stress would exceed the yield stress). The model peak 
pressure is calculated from Equation 16 with parameters ρg = 28,000 kg/m2/s, tan(ϕ) = 0.65, p

x x  , α = αp. The 
model retrograde pressure uses r

x , αr. Each panel in a row uses the value of p
x  indicated in the leftmost panel of 

the row. Each panel in a column uses the values of αp and αr indicated at the top of the column. This figure can be 
reproduced using the computer script from supporting information S6.
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this is expressed as the spacing between depth contours widening toward the right (e.g., from 6B to D) and 
bottom panels (e.g., from 6B to H). The cases where 1p

x   provide the highest pressure-to-depth conver-
sion, but only outliers lie within the solution domain. Their maximum depth is ∼55 km (Figure 6d). The 
deepest depth estimates, ∼75 km, are obtained when (1 Φ) / 2p

x    (Figures 6f and 6g). In the case where 
Φp

x  , many points lie in the solution range, but a low pressure-to-depth conversion ratio limits the depth. 
Thus, the maximum depth is ∼65 km (Figures 6i and 6j). We discuss depth estimates in detail in Section 3.4.

3.2.  Mechanism 2: Stress Rotation (S-model 2)

We now consider the change in pressure triggered by a rotation of the stress field. We assume that when 
the rock records Pp, the vertical and horizontal directions are principal stress directions, as in the previous 
sections. Then, the stress field rotates by an angle θ around axis y, and the rock records Pr. Figure 7a shows 
Mohr circles with five different values of θ.

Graphically, when we apply a rotation to a stress state where σ1 is initially horizontal (i.e., compressional tec-
tonic regime), the Mohr circle is shifted to the left (Figure 7a). The maximum shift corresponds to θ = 90°, 
and σ1 is vertical (i.e., extensional tectonic regime). Eventually, the Mohr circle may become tangent to the 
Coulomb yield envelope. Since the model does not admit stress states beyond this envelope, the radius of the 
Mohr circle has to decrease upon further rotation to remain tangent to it (see Figure 7a, θ ≥ 45°).

To formalize this behavior mathematically, we first define the yield function for Mohr-Coulomb plasticity:

1 3 1 3 sin .
2 2

F      
 � (18)

Then, the principal stresses σ1 and σ3 as a function of θ are expressed as
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Note that the first equation is only valid for 1p
x   σ2 is calculated using Equation 4, Pp is the mean stress 

for θ = 0, and Pr is the mean stress for a given value of θ.

Figures 7b–7h are constructed in the same way as Figure 6, but the brownish colored contour map now 
represents θ.

A lithostatic stress state is isotropic. Thus, pressure remains constant upon rotation 1p r
x x p rP P      

(Figure 7b). The resulting line in the Pp, Pr space does not cross the data cloud, that is, does not explain the 
data. For stress states tangent to the Coulomb envelope, the upper limit of the contour map for θ (θ = 90°) is 
the same as the upper limit of r

x  ( 1 / Φr
x  ) (see Figure 6), while the lower limit (θ = 0°) corresponds to the 

case r p
x x   in the previous model. Therefore, the boundaries of the model are similar for this model (involv-

ing θ) and for the previous model (involving r
x ). Although extreme stress states are identical, intermediate 

cases are different (e.g., compare Figure 6a and Figure 7a). When (1 Φ) / 2p
x   , a minimum of θ = 45° is 

required to explain the data (Figures 7c–7e). As with the previous model, all data points are consistent with a 
model where Φ, 1, 0p

x p r      (Figure 7h). In this case, outliers are explained by θ = 0°–30° and other 
points by θ = 30°–90°. Since the depth contour map is computed based on ,p

x p   only and the model range is 
similar to the previous model, the remarks concerning depth made in Section 3.1 also apply here.

Since both this model (Figure 6) and the previous one (Figure 7) can explain the data, there is an ambiguity 
about which mechanism is responsible for the stress change. Once again, the predictions of this model can 
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Figure 7.  Summary of results for the stress rotation-driven model. θ is the counterclockwise rotation angle. (a) Mohr diagram illustrating the stress states 
associated with different amounts of rotation. The normal stress (horizontal axis) and shear stress (vertical axis) are normalized by σz. (b–h) Peak pressure as 
a function of retrograde pressure for different parameters (see text for details). Colored dots correspond to the data from our data set. The estimated depths, 
in km, for each model are indicated by black horizontal lines. Gray areas indicate zones where the model does not have a solution. We use parameters 
ρg = 28,000 kg/m2/s and tan(ϕ) = 0.65. Each panel in a row uses the value of p

x  indicated in the leftmost panel of the row. Each panel in a column uses 
the values or αp and αr indicated at the top of the column. The colors of the contour maps are coded for values of θ. This figure can be reproduced using the 
computer script from S7.
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be validated or falsified using strain data. Indeed, the rotation of the principal stress directions implies a 
rotation of the principal strain direction.

3.3.  A Special Case: Compression to Extension in the Brittle Limit (YB-Model)

When Φp
x  , depending on the values of αp, αr, the solution for θ = 90° (which corresponds to the upper 

limit of the solution domain) can outline the lower extent of the data point cloud (Figure 7f), pass through 
it (Figure 7g), or outline its upper extent (Figure 7h). In other terms, the data distribution can also be ex-
plained by a more restrictive model where depth is constant, Φp

x  , θ = 90° (or 1 / Φr
x  , cf. Figure 6) 

and αp and αr are free parameters. This model has previously been employed by Yamato and Brun (2017). 
Here, we extend their analysis by providing the associated pressure-to-depth conversion.

To obtain a mathematical expression for Pp, we substitute Equation 14 with Φx   for P in Equation 16 and 
solve for P. For Pr, we use Equation 13 with 1 / Φx   instead of Equation 14. This process yields:

(2 Φ(1 )),
3

p p
p

gzP      � (21)

1(1 Φ (2 )).
3

r r
r

gzP      � (22)

Similar to previous figures, Figure 8 shows the domain of the solution of Equations 21 and 22 for values of 
αp and αr between 0 and 1. Data points are also plotted in this Pp versus Pr space. We also show contours of 
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Figure 8.  Data points in the Pp versus Pr space. Contours of depth according to (a) the lower estimate and (b) upper estimate of our model. The model has 
solutions within the white fan and no solution in the gray domain. The color of the data points indicates the geographic region. This figure can be reproduced 
using the computer script from supporting information S8.
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depth obtained by solving Equations 21 or 22 for z. The value of ρg influences the distance between depth 
contours but not the shape of the solution domain. The parameter Φ (or ϕ, cf. Equation 11) controls the 
orientation and opening angle of the fan-shaped solution domain. The outlier points (gray) lie outside the 
solution domain, while the other data points (colored) lie within it or close to its boundary. The location of 
a point within the solution domain reflects the depth and mode of deformation under peak and retrograde 
conditions (αp, αr). Points along the central line αp = αr have the same mode of deformation in the peak and 
retrograde stages. Points below this line deform by flattening under peak conditions and by constriction 
under retrograde conditions, and points lying above the central line deform by constriction under peak con-
ditions and by flattening under retrograde conditions. Samples from one orogen tend to span a large range 
of αp, αr that could reflect local differences in the mode of deformation.

For a given depth, a range of Pp, Pr is possible depending on the value of αr, αp (see Equations 21 and 22). The 
opposite is also true: for a given Pp, Pr, there is a range of possible depths. We represent the lower and upper 
estimates of this range in Figures 8a and 8b, respectively. In this model, all points lie below the “deepest 
Moho” reference depth for the lower depth estimate, and only one point is deeper than the “deepest Moho” 
when using the upper depth estimate.

3.4.  Depth Estimates Using the Two-Point Method

Figure 9 shows depth estimates for our data according to the horizontal stress change-driven model and 
the stress rotation model (“S-model,” thin bars) and the compression to extension model of the previous 
section (“YB-model,” thick bars). Depth estimates for peak pressure assuming a lithostatic stress state (see 
Section 2.3) are also shown as the “L model” for reference (short bars).

In the following passage, we use the terms L-, S-, and YB-depth to refer to the depth estimates according to 
the L-, S-, and YB-models, respectively. The methods for computing the depth ranges for the S- and YB-mod-
el are given in A.

The minimum and maximum YB-depths are equal for points on the border of the solution domain fan, 
while the range is largest for points along the central line (Figure 8). The range of S-depth tends to be larg-
er for points with a low Pp/Pr ratio and decreases with increasing Pp/Pr (because fewer solutions exist; see 
Figures 6 and 7). For all samples except the outliers, the S- and YB-depths are significantly lower than the 
L-depth. For example, one point in Kokchetav and one point in Sulu-Dabie have L-depths >160 km, where-
as their S- and YB-depths are 65–70 km and 60–85 km, respectively. For outliers, the upper estimate of the 
S-depth is close to the L-depth. In the L-model, the depth is proportional to the peak pressure. Thus, large 
differences in peak pressure between two samples result in large differences in depth. However, the S- and 
YB-models take both peak and retrograde pressures into account, which can smooth out this difference. 
For example, the two data points with the highest pressures in the Alps have L-depths of 95 and 125 km, 
whereas the maximum S-depth is 70 km for both. Conversely, points with the same L-depth (i.e., same 
peak pressure) can have different YB- and S-depths. This contrast is best exemplified by comparing points 
with the same Pp in Figure 8: points in the upper half of the fan (αp > αr) align on a lower depth estimate 
contour, while points in the lower half of the fan (αp < αr) align on the upper depth estimate contour. Thus, 
at constant Pp, the mean depth estimate increases with increasing Pr, and the uncertainty increases toward 
the center of the fan (αp = αr line). For example, for points at Pp = 3 GPa, the mean depth estimate increases 
from 40 km at Pr = 0.6 GPa to 60 km at Pr = 1.2 GPa. At these two extreme Pr values, the depth estimate has 
a unique value, while at the center of the fan (Pr = 0.85 GPa), the depth estimate ranges between 40 and 
60 km. Overall, the most striking features of the S- and YB-models are that all data points have at least part 
of their range shallower than the “deepest Moho” line and that the deepest S-depth is ∼90 km compared to 
165 km for the L-depth.

4.  Discussion
Pressure is a function of both depth, deviatoric stresses and volumetric stress. However, since deviatoric and 
volumetric stress cannot be measured, pressure-to-depth conversions require assumptions. In the previ-
ous sections, we propose several pressure-to-depth conversion methods involving one or two pressure data 
points. For simplicity, we ignored volumetric stress. In particular, we show that the proportionality between 
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Pp and Pr can be explained by a model where Pp and Pr are recorded by the rock at the same depth but un-
der different stress states (Figures 6–8). For simplicity, we only present two-point models with either stress 
rotation or horizontal stress magnitude change and no exhumation. Combining rotation and magnitude 
change may further decrease the magnitude of deviatoric stresses required to explain the data. Relaxing 
the assumption that zp = zr and accounting for some exhumation would also decrease the magnitude of 
deviatoric stresses required.

4.1.  Perspectives on Using Strain Data

In our formulation of the pressure-to-depth conversion, we use α instead of a stress value (see Equation 4). 
α characterizes the shape of the stress ellipsoid and is thus similar to commonly used parameters for char-
acterizing the shape of ellipsoid such as Lode’s ratio or Flinn’s k-value (Mookerjee & Peek, 2014). Because 
strain results from applied stress, obtaining a value for α using markers of deformation could provide key 
data to better constrain depth. The two-point models relying on a change in the magnitude of horizontal 
stress (Figure 6) or stress orientation (Figure 7) give ambiguous results since both models can explain the 
data. However, the predictions of the model could be falsified based on stress rotation (Figure 7) by using the 
directions of the strain ellipsoid or paleostress inversion of fault orientations to estimate stress directions.
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Figure 9.  Estimated depth of each sample using the two-point method of pressure-to-depth conversion. The graph also shows depth estimates using the 
one-point lithostatic case for reference. L-model: peak pressure in the one-point lithostatic case. S-model refers to the models described in Sections 3.1 and 3.2. 
The YB-model refers to the model described in Section 3.3. For the YB-model, filled rectangles indicate depth estimates for points that lie within the model 
boundaries, while open rectangles apply to points outside the model boundaries. The depth estimates indicated by open rectangles are relevant for points 
close to the model boundary (e.g., samples #1 and #14) but less relevant for points far from the boundary (i.e., category Others [outliers]). This figure can be 
reproduced using the computer script from supporting information S9.
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4.2.  Data Distribution and Model

The data suggest that Pp and Pr are proportional (see Figure 1). However, by using the one-point method, be-
cause Pp and Pr are considered independently, it is difficult to explain this proportionality. In the lithostatic 
case, for instance, the decompression from Pp to Pr is controlled only by the exhumation of rocks. However, 
the currently proposed exhumation mechanisms (e.g., subduction channels and corner flows) do not sug-
gest that exhumation would be proportional to maximum depth. On the other hand, the two-point model 
treats both Pp and Pr together. Since we assume that zp = zr, the maximum change from Pp to Pr is limited 
by Byerlee’s law, and the yield stress function is linearly dependent on P. Considering reasonable values for 
the friction coefficient (e.g., 0.65), the limits of the model outline the distribution of the data. For example, 
for the models shown in Figures 6j and 7h, the extent of the model domain outlines the upper extent of the 
distribution, and the lower limit of the model corresponds to the lower extent for outliers.

The YB-model simulates the case where rocks are brittle in both compression and extension and thus con-
stitutes a particular case of the two-point model. It is interesting to note that although the YB-model allows 
us to largely explain the data, it excludes the outliers (Figure 8). However, all data (including outliers) can 
be explained considering the more general S-models (Figures 6 and 7).

The upper extent of the data distribution (Pp/Pr 4.8) can only be explained when Φ, 1p
x p    (brittle 

constrictive deformation in compression) and 1 / Φ, 0r
x r    (brittle flattening deformation in exten-

sion). The lower extent of the data distribution excluding outliers (Pp/Pr 2.4), however, can have several 
explanations. In the YB-model, it corresponds to αp = 0, αr = 1. For S-models (e.g., Figures 6g, 6i, 6j, 7e, 7g, 
and 7h), the lower bound of the data can be within the solution domain and coincides with different values 
of r

x  or θ. Interestingly, the lower limit coincides with Sxr = 1 (i.e., lithostatic case) in Figure 6j. Two-point 
models can fit all data points from the data set (or lie very close to the model boundary), which suggests that 
in all orogens, a change in stress state may be responsible for the decompression from Pp to Pr. The different 
predictions in terms of the change mode of deformation (αp to αr) bring additional constraints concerning 
the mechanism responsible for the change in the stress state. Monitoring the evolution of α in 3D numerical 
geodynamic models may provide more answers.

Furthermore, the pressure data are not direct measurements but the result of models based on for example, 
Gibbs energy minimization. Those models themselves contain approximations and assumptions such as the 
existence of a local thermodynamic equilibrium or homogeneous pressure.

4.3.  Other Causes of Over/Under-Pressure

The models presented here explain pressure variations in a homogeneous material subjected to a change 
in depth or deviatoric stresses. In a heterogeneous system, the pressure in one material may be affected 
by deviatoric stresses in another material. A well-studied example is the case of an elliptical inclusion 
embedded in an elastic or linear viscous matrix. In this system, the magnitude and sense of deviatoric 
stresses are functions of the relative strength between the matrix and the inclusion, as well as the orien-
tation of the inclusion in the stress field (Moulas et al., 2014; Schmid & Podladchikov, 2003, 2005). The 
pressure in the inclusion is controlled both by the stress state in the inclusion and by the stress state in 
the host rock. An important point is that deviatoric stresses in a weak inclusion may be negligible, while 
the pressure can still be as high as σ1 = Φ in a strong host rock. This is very different from a homogeneous 
material where the pressure is lithostatic in the absence of deviatoric stresses. Thus, pressure can vary 
between the values of σ3 and σ1 for the strongest material in the inclusion/host system, whereas in a ho-
mogeneous material, pressure can vary only between 2/3σ3 + 1/3σ1 and 1/3σ3 + 2/3σ1 (see Equation 6) 
(Moulas et al., 2014, 2019; Schmalholz & Podladchikov, 2013). Field examples of this phenomenon have 
been documented by Luisier et al. (2019) in the Monte Rosa nappe (Alps) and by Jamtveit et al. (2018) 
in the Bergen Arc (Caledonides). In addition, Jamtveit et al.  (2018) already noted that σ2 can play an 
important role in the generation of overpressure. Pressure deviations can also be caused by, among oth-
er, lateral variations of gravity potential energy (Schmalholz et  al.,  2014, 2019), volume changes (Vri-
jmoed et al., 2010), elastic bending (Reuber et al., 2016), or grain-scale diffusion of elements (Tajčmanová 
et al., 2015; Zhong et al., 2017).
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4.4.  Local Versus Regional Stress State

In this study, we present several methods that can be used to determine possible stress states associated with 
peak and metamorphic pressures. Stress states are by essence local. Some researchers even propose that 
metamorphic pressure may reflect the stress state in only a single grain (see the discussion about inclusions 
in the previous paragraph) and that large pressure gradients responsible for pressure differences on the 
order of GPa can be recorded within a single grain (Tajčmanová et al., 2014, 2015). In our data set, samples 
from the same region have a wide variety of Pp/Pr ratios (see Figure 1c) and are often distributed from one 
side of the fan to another (between Pp/Pr = 1.4 and Pp/Pr = 4.8), which indicates differences in the change 
in stress magnitude, stress orientation or relative magnitude of σ2 (α). This could be an indication that 
pressure data reflect the local (grain-to 10 km-scale) rather than regional (100 km) stress state. Thus, using 
the stress states determined in this study to interpret regional-scale processes requires taking some caution. 
For example, the YB-model assumes that the peak to retrograde pressure can be explained by a transition 
from a compressional to an extensional stress state, with both stress states close to the brittle limit. These 
stress states reflect km-scale conditions or are smaller in the sense that the whole system is submitted to 
convergence (i.e., in Figure 1). The distance between two points far from the subduction zone, one located 
on the subducting plate and the other located on the overriding plate, is constantly decreasing, but the part 
undergoing exhumation is locally subjected to extension. This corresponds well with the fact that the ex-
humation of a coherent metamorphic unit is impossible without a normal fault on top. As we have shown, 
stress orientation has a strong control on pressure changes, and in a complex orogen, stress orientations 
can vary significantly in space and time, for example, due to changes in the subduction angle or the friction 
along the plate boundary (Wang & Hu, 2006), the proximity to magma chambers (Gerbault et al., 2018) or 
faults (e.g., Martínez-Díaz, 2002; Maerten et al., 2002; Shao & Hou, 2019), or the position within the orogen 
(e.g., Kastrup et al., 2004).

4.5.  Implications for Geodynamic Models

Rock strength strongly depends on temperature. Hence, considering classic rheological yield stress enve-
lopes (e.g., Burov, 2011), it seems inadequate to consider large deviatoric stresses deep in the lithosphere 
(>120 km) due to the temperature increase with depth. This statement could favor using lithostatic pres-
sure-to-depth conversion but remains debatable. Indeed, the depth estimates using the S- and YB-models 
are consistent with the depth of the crustal roots of orogens, and in these places (i.e., at the base of the crust 
or in the lithospheric mantle), significant deviatoric stresses are possible. Significant deviatoric stresses are 
even more likely at this depth in a subduction zone with a cold geotherm.

Several elements suggest significant deviatoric stresses near the Moho depth: (1) earthquakes are not un-
common at such depths in a subduction context and provide evidence that brittle deformation can occur 
(e.g., Hacker et al., 2003; Hetényi et al., 2007), and (2) several field and petrological studies have already 
evidenced brittle deformation associated with HP metamorphism (e.g., Angiboust et al., 2012; Austrheim & 
Boundy, 1994; Hertgen et al., 2017; John & Schenk, 2006; Yang et al., 2014).

Samples with high Pp/Pr require a stress field close to the brittle limit using the S-model (e.g., Figure 7). 
However, samples with Pp/Pr < Φ are consistent with a stress state where the magnitude of the deviatoric 
stress (second invariant) is only half that required for brittle deformation (i.e., (1 Φ) / 2p

x   ) when peak 
pressure is recorded. This means that even in the ductile realm, the effect of the deviatoric stresses should 
not be neglected.

The release of fluids from dewatering metamorphic reactions can decrease the effective pressure. Thus, 
an increase of fluid pressure could trigger the transition from Pp to Pr. However, this mechanism seems 
unlikely because fluid pressure would need to remain high during exhumation (otherwise, a new peak 
pressure would be recorded). Townend and Zoback (2000) argue that high fluid pressure leads to rock frac-
turing, which creates space and thus causes fluid pressure to decrease.
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5.  Conclusion
In this contribution, we reviewed the basic mathematical formulations of pressure-to-depth conversion for 
a homogeneous rock. First, we derived the standard “one-point method of pressure-to-depth conversion” 
and applied it to a large data set of metamorphic pressures to independently estimate a range of depths at 
which rocks may have recoded their peak (Pp) and retrograde pressures (Pr). Since the most common as-
sumption in the literature is to consider that metamorphic pressure corresponds to the lithostatic pressure, 
we used this “lithostatic case” as a reference.

By introducing deviatoric stress components and considering only the compressional stress regime (σ1 hori-
zontal) at Pp and both compressional and extensional (σ1 vertical) stress regimes for Pr, we showed that the 
deviations from the reference case can be significant. For Pp, the estimated depths vary between 40% and 
100% of the reference case. For Pr, the estimated depth range is 40%–185% of the reference case. Thus, under 
our assumption, the lithostatic case represents an upper bound estimate of depth for Pp and an intermediate 
value for Pr. Moreover, the uncertainty ranges of both peak (zp) and retrograde (zr) depths are large enough 
to lead to overlap for these two depth estimates. This means that the transition from Pp to Pr can be triggered 
by exhumation, a change in the stress state at constant depth, or a combination of both processes.

Second, we presented “two-point methods of pressure-to-depth conversion” that use both Pp and Pr to esti-
mate depth under the hypothesis that zp = zr. For the two-point method, we considered two mechanisms of 
stress change between Pp and Pr: (1) change in the magnitude of horizontal stresses and (2) rotation of the 
stress state. We also treated a particular case where the magnitude of deviatoric stresses is maximum, and 
the stress regime varies from compression at Pp to extension at Pr. The two-point method greatly decreases 
the uncertainty range of depth estimates and yields stricter constraints on the possible stress state. Remark-
ably, all Pp, Pr points in our data set are consistent with a change in the stress state at a constant depth.

In our data set, the maximum depth estimates under the “lithostatic assumption” are ∼160 km for Pp and 
50 km for Pr. Thus, the lithostatic assumption requires deep burial and exhumation from great depth. On 
the other hand, the two-point models reveal that points in our data set are consistent with depths shallower 
than 75 km (i.e., the current deepest Moho). This suggests instead that all metamorphic rocks in our data set 
have been buried at crustal depths with no (or only minor) exhumation between Pp and Pr. The validity of 
either of these models cannot be assessed based only on pressure and temperature data. However, the prin-
cipal stress directions and the relative magnitude of σ2 (i.e., α) may be estimated from the strain ellipsoid 
or paleostress analysis. Thus, a precise analysis of the deformation in association with the P estimates in 
metamorphic rocks could validate or falsify depth estimates from the two-point model and further decrease 
the depth estimate uncertainty.

Appendix A:  Depth Estimates for the Two-Point Model

S-Model
The depth estimate range for S-models is calculated numerically by testing a large array of combinations of 

p
x , αp and αr for each sample. The ranges considered are 1 Φp

x   and 0 ≤ αp, αr ≤ 1, and we use 50 values 
to discretize the range of each parameter for a total of 503 = 125, 000 parameter combinations. We proceed 
in two steps. First, we compute σz using Equation 15 with P = Pp, p

x x  , and α = αp, and we compute 
z = σz/ρg. Second, we need to test whether the previous solution is within the acceptable bounds of the mod-
el (i.e., not in the gray area of Figures 6–8). For this purpose, we compute r

x  using the following equation:

3 / 2 , when 0,
1

3 / 1 , when 0,
2

z
x x

z
x x

P

P

  


  


    
    
 

� (A1)

with P = Pr, 
r

x x  , and α = αr. Then, we test whether 1 / Φ Φr
x   and update the range of depth if 

the test is successful.
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YB-Model
To compute the range of depth for the YB-model, we use the minimum and upper estimates of depth whose 
contours are plotted in Figures 8a and 8b, respectively. In practice, we compute σz using Equation 15 with 
parameters [ , , ]xP   . For data points where Pp/Pr > Φ (i.e., above the line marked αp = αr in Figure 8), we 
use parameters [Pp, 1, Φ] to compute min(σz), and [Pr, 0, 1/Φ] for max(σz). For data points where Pp/Pr ≤ Φ, 
we use [Pr, 1, 1/Φ] for min(σz) and [Pp, 0, Φ] for max(σz). Then, we compute z = σz/ρg. In this algorithm, 
depth is calculated using either [ , , ]pp p xP    or [ , , ]rr r xP   . If αp is used as input, αr can be computed back 
from σz, and we can perform the test 0 ≤ αr ≤ 1 to verify that the solution is within the bounds of the model. 
If αr is used as input, αp is computed instead. If the test is successful, we plot the range as a colored box in 
Figure 9 or as an open box otherwise.

Data Availability Statement
The database used in this study including Pp, Tp, Pr, and Tr estimates and the associated references is available 
from https://doi.org/10.5281/zenodo.4126862. Computer code (Jupyter notebooks) to reproduce most figures 
are available from https://doi.org/10.5281/zenodo.4276958 and as supporting information to this article.
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