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Abstract13

We apply unsupervised machine learning to three years of continuous seismic data to un-14

ravel the evolution of seismic wavefield properties in the period of the 2009 L’Aquila earth-15

quake. To obtain sensible representations of the wavefield properties variations, we ex-16

tract wavefield features (i.e. entropy, coherency, eigenvalue variance and first eigenvalue)17

from the covariance matrix analysis of the continuous wavefield data. The defined wave-18

field features are insensitive to site-dependent local noise, and inform the spatiotempo-19

ral properties of seismic waves generated by sources inside the array. We perform a sen-20

sitivity analysis of these wavefield features, and track the evolution of source properties21

from the unsupervised learning of the uncorrelated features. By clustering the wavefield22

features, our unsupervised analysis avoids explicit physical modeling (e.g. no require-23

ment for event location and magnitude estimation) and can naturally separate peculiar24

patterns solely from continuous seismic data. Our model-free unsupervised learning of25

wavefield features reveals distinct clusters well correlated with different periods of the26

seismic cycle, which are consistent with previous model-dependent studies.27

1 Introduction28

Seismological observations are a primary source of information about fault physics29

and its evolution in time and space (Gutenberg & Richter, 1956; Scholz, 2002; Aki & Richards,30

2002). Seismic catalogs are nowadays the main way of labeling seismic data, by associ-31

ation of waveforms with earthquakes occurring in a given position and at a certain time32

(Gutenberg & Richter, 1956; Scholz, 2002; Aki & Richards, 2002). While earthquake cat-33

alogs are among the main source of information to study faults, the continuous stream34

of seismic data is likely to hide important additional information about fault physics, which35

cannot be easily summarized into discrete observables. For example, the slow earthquakes36

and tremors show very different wavefield properties compared to that of regular earth-37

quakes, requiring alternative approaches to derive information about their physics (Ide38

et al., 2007; Beroza & Ide, 2011). Therefore, it is worthwhile to explore the potential to39

assess physical properties of faults from direct analysis of continuous seismic wavefields.40

The latter idea has been recently explored in laboratory-scale fracture experiments.41

Indeed, recent studies based on laboratory observations, show that continuous acoustic42

emission (AE) contain essential information about the physical state of the rock (Rouet-43

Leduc et al., 2017; Bolton et al., 2019; Hulbert et al., 2019). In these studies, statisti-44

cal features of the continuous AE signals (e.g. amplitudes, variance etc.), are used for45

supervised or unsupervised machine learning (ML) and classification, to characterize the46

wavefield variations and study the evolution of the (laboratory) seismic cycle (Bolton47

et al., 2019), including the estimation of failure time (Rouet-Leduc et al., 2017). The ex-48

periments carried at a laboratory scale already involve complex, nonlinear relationships49

between the continuous signal properties and the fault states, suggesting that systems50

of higher complexity such as the real geological settings should also be investigated with51

machine learning tools, as in the present study.52

In addition to the laboratory studies, unsupervised machine learning has been ap-53

plied to real continuous seismic data in volcanic settings to classify volcanic tremors and54

monitor volcanic activities (Langer et al., 2009; Esposito et al., 2008; Köhler et al., 2010;55

Langer et al., 2011; Carniel et al., 2013; Unglert et al., 2016). Unsupervised machine learn-56

ing can distinguish seismic wavefield of distinct characteristics (e.g. spectral content) gen-57

erated by different volcanic activities, such as pre-, co- and post-eruption, thus permits58

the recognition of different types of volcanic activities directly from continuous seismic59

data.60

In summary, both laboratory experiments (Rouet-Leduc et al., 2017; Bolton et al.,61

2019; Hulbert et al., 2019; Shreedharan et al., 2020) and real volcanic seismic data anal-62

ysis (Esposito et al., 2008; Köhler et al., 2010; Langer et al., 2011; Carniel et al., 2013;63
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Unglert et al., 2016) show promising potential to utilize real continuous seismic wave-64

field and ML algorithms to understand physical processes occurring inside the Earth. How-65

ever, to our knowledge, no studies have been performed so far on clustering of long-term66

real continuous array seismic data to establish the space-time evolution of the physical67

state of the faults where significant earthquakes occur.68

We here present an unsupervised class-membership identification (clustering) of en-69

semble wavefield features, which capture the nature of the seismic wavefield as seen by70

an array of stations. The choice of array features is aimed at reducing the sensitivity of71

single-station statistical features to noise intensity (e.g. daily/weekly variation of human72

activity and variation of meteorological conditions, Cara et al., 2003; Poli et al., 2020)73

and enhancing the identification of spatio-temporal properties of (possibly mixed) seis-74

mic sources (Seydoux et al., 2016a; Soubestre et al., 2019). We can thus recognize pat-75

terns within seismic signals and track their temporal evolution, which can be related to76

particular fault states occurring at different stages of the seismic cycle (e.g. earthquake77

nucleation, afterslip etc.). Differently from laboratory experiments (Rouet-Leduc et al.,78

2017; Hulbert et al., 2019; Shreedharan et al., 2020), we have no independent informa-79

tion about the fault state (e.g. stress, friction). That is why we use unsupervised anal-80

ysis and self-learn from the continuous data.81

To test our approach, we used three years of vertical-component seismic data recorded82

in the region of L’Aquila, Italy (Figure 1). We use this region as a test case, as it host-83

ing a magnitude 6 earthquake (6 of April, 2009, Chiarabba et al., 2009; Di Luccio et al.,84

2010) preceded by a long-lasting preparatory phase (Sugan et al., 2014; Vuan et al., 2018).85

Previous studies also reported that the fault properties may have changed dramatically86

in the preparatory phase of the main event due to fluid movement (Di Luccio et al., 2010;87

Chiarabba et al., 2020), velocity change (Baccheschi et al., 2020), and variation of elas-88

tic and anisotropic parameters (Lucente et al., 2010). In addition, this region is well in-89

strumented with permanent seismic stations (Figure 1a), allowing an array-based anal-90

ysis. The complex faulting processes and high quality continuous seismic data make the91

L’Aquila earthquake a perfect test case to investigate the feasibility of tracking fault states92

directly from continuous seismic wavefield.93

We explore spatial wavefield features of long time windows (60 days) and their tem-94

poral evolution with respect to the main earthquake in the area using cluster analysis.95

We highlight different patterns in the wavefield and relate them to the physical processes96

of the fault (e.g. the preparation, afterslip etc.). Our results show the feasibility of us-97

ing array-based wavefield properties to directly assess the fault state and characterize98

different stages of the seismic cycle.99

2 Data and Processing100

We focus on a time period of about 3 years (2008-2010, included) around the Mw101

6.1 L’Aquila earthquake (6 April 2009, Chiarabba et al., 2009; Di Luccio et al., 2010).102

This event has been chosen because it presented a prominent and long-lasting prepara-103

tion period, starting 3-4 months before the mainshock, and including several dozens of104

foreshocks and possible significant changes in the fault rock properties (Di Luccio et al.,105

2010; Lucente et al., 2010; Di Stefano et al., 2011; Herrmann et al., 2011; Sugan et al.,106

2014; Vuan et al., 2018; Chiarabba et al., 2020).107

The three years of continuous vertical-component seismic data (from 2007-11-03108

to 2010-08-23) recorded by the six nearest stations (Figure 1a) at a 50 Hz sampling rate109

were downloaded from the Istituto Nazionale Geofisica e Vulcanologia (INGV) data cen-110

ter (INGV Seismological Data Centre, 2006). Data have been transformed into veloc-111

ity using the instrument response and processed to remove gaps and glitches. Data gaps112

and glitches are filled or replaced with white random noise of minimal amplitudes (∼10113
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Figure 1. (a) Location of the 2009 L’Aquila earthquake and the nearby permanent seismic

array. Yellow star indicates the epicenter of the mainshock. Blue triangles represent the seis-

mic stations. Green square denotes the GPS (Global Positioning System) station. Black dots

show the locations of earthquakes including the foreshocks and aftershocks of the 2009 L’Aquila

earthquake from 2008-2010 in this region (seismic catalog from INGV). Red rectangular in the

bottom-right inserted regional map highlights the current study area. (b) Hour-long example

of vertical ground velocity and corresponding spectrogram recorded at the station FAGN. The

records start at 2009-04-05 10:00:00 (UTC).

orders of magnitude lower than the average signal amplitudes) to allow a continuous anal-114

ysis of seismic data and eliminate data anomalies. We have tested that this random noise115

is not affecting our subsequent analysis. Spectral analysis of the continuous data shows116

the dominant frequency range of the local earthquakes is around 0.5-18 Hz (Figure 1b),117

while below 0.5 Hz, micro-seismic noise dominates. We thus focus on the frequency range118

of 0.5-18 Hz to reduce the effects of ambient noise and also influence of regional or re-119

mote earthquakes.120

3 Decomposition of the Wavefield and Features Extraction121

3.1 Covariance Matrix Analysis of Continuous Seismic Data122

We define a set of features relevant for characterizing the propagation of seismic123

waves beneath the seismic array, over a broad frequency range (0.5-18 Hz). Following124

Seydoux et al. (2016a), we extract these features from the factorization of the covariance125

matrix of continuous array seismic data. Such analyses were successfully used for detect-126

ing and classifying seismovolcanic tremors (Soubestre et al., 2018), teleseismic earthquakes127

(Seydoux et al., 2016a), and for analyzing ambient noise wavefield (Seydoux et al., 2016b).128

The covariance matrix is built from the time average of the Fourier cross-spectra129

matrices calculated over a set of half-overlapping sub-windows (Seydoux et al., 2016a,130

and Figure 2a). Two types of time window are involved in the calculation of covariance131

matrix. A short one (sub-window, W1) where the Fourier cross-spectra matrix is calcu-132

lated, and a longer one (averaging-window, W2) used to average the cross-spectra ma-133

trices, which in turn defines the covariance matrix of a particular time scale (Figure 2a).134

We here use a backward-looking approach to time stamp the results: the end time of each135

averaging time window (W2) is assigned as the time stamp associated with the covari-136
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ance matrix of the time window, hence the obtained results are causal. The size of W1137

depends on the size of seismic array and the frequency range of interest (Seydoux et al.,138

2016a). In this study, we use a W1 of 80 seconds to ensure the slowest waves to fully travel139

the aperture of the seismic array.140

The size of W2 is crucial to define the time resolution of our analysis. We here aim141

at classifying long-lasting patterns in the seismic signals, and thus we average the co-142

variance matrix over 60 days and shift W2 by one day. The use of long averaging win-143

dow would probably increase the influence of external wavefield properties originated out-144

side the seismic array. However, as we perform our analysis at relatively high frequen-145

cies (0.5-18 Hz), the analysis inherently focuses on a local area (i.e. inside the array) due146

to the attenuation of high-frequency waves generated from distant sources. Because we147

want to analyze seismic sources seen by the ensemble of seismic stations, we apply spec-148

tral whitening to the daily seismograms before computing the covariance matrix (Seydoux149

et al., 2016a, 2016b). In this way, the spectral energy is not taken into account and the150

analysis mostly relies on the phase coherence between the seismic stations, thus cancelling151

non-propagative signals (e.g. local noise, traffic, wind).152

3.2 Wavefield Features153

From the eigendecomposition of the covariance matrix, the eigenvalues λ(f, t) and154

corresponding eigenvectors v(f, t) are obtained for each frequency f and time t (Figure155

2a). Note that the covariance matrix is inherently Hermitian and positive semi-definite;156

the matrix is therefore always diagonalizable and the eigenvalues are positive and real.157

From the eigenvalues, we define four features: (1) the Shannon entropy, (2) the coherency,158

(3) the eigenvalue variance, and (4) the first eigenvalue.159

1. The Shannon entropy, initially developed in the frame of information theory (Shannon,160

1948) and applied to the case of discrete operators by Von Neumann (1986), provides161

a measurement of the quantity of information present in a multivariate dataset. If we162

consider the normalized covariance matrix eigenvalues pi(f, t) = λi(f, t)/
∑N

i=1 λi(f, t)163

such as
∑N

i=1 pi(f, t) = 1 (where N is the total number of stations in the array and pi164

represents the normalized i-th eigenvalue of the covariance matrix at a given time and165

frequency), we can consider each normalized eigenvalue (pi) to represent the probabil-166

ity of each source (identified by each corresponding eigenvector) to be observed in the167

studied time period. The Shannon entropy σe is then defined as:168

σe(f, t) = −
N∑
i=1

pi(f, t)ln (pi(f, t)) . (1)169

Following Shannon (1948), the higher the entropy, the more chaotic the wavefield and170

the lower the wavefield spatial coherence. A coherent wavefield generated by only one171

source or many co-located sources in the analyzed time window is likely to be spanned172

by a single dominating eigenvalue (Figure 2b). Therefore, low values of the entropy will173

be observed when the wavefield is dominated by the coherent sources localized in space.174

175

2. The coherency function, commonly used in exploration geophysics (Gersztenkorn176

& Marfurt, 1999), is defined as the ratio between dominating wavefield component (first177

eigenvalue) and the full wavefield (sum of all eigenvalues), and reports the wavefield co-178

herence σc:179

σc(f, t) =
λ1(f, t)∑N
i=1 λi(f, t)

. (2)180

181
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3. To estimate the flatness of covariance matrix eigenvalues distribution, we define182

the eigenvalue variance σv as:183

σv(f, t) =

∑N
i=1 (λi(f, t) − µ)

2

N
, (3)184

where µ =
∑N

i=1 λi(f, t)/N is the mean eigenvalue at a given time and frequency. The185

eigenvalue variance is related to both wavefield coherence and source energy (Figures 2b-186

2d). For example, for one dominating source in the studied time window (W2), the cor-187

responding eigenvalue variance will be large and the wavefield is coherent as well.188

4. Finally, we use the first eigenvalue σf :189

σf (f, t) = λ1(f, t). (4)190

Theoretically this value defines the coherence of a single source over the time window191

W2. As it is resulting from phase multiplication, this value can be affected by noise, for192

example biasing the estimation of the phase correlation. There is thus an imprint of the193

frequency dependent signal-to-noise level in this measure. For example, stronger source194

and/or a large number of co-located coherent sources in the studied time window (W2)195

will result in larger phase correlations (because of higher signal-to-noise ratio after av-196

eraging) and thus lead to a larger eigenvalue. Therefore, the first eigenvalue provides a197

measurement of the strength of the dominating source in the wavefield.198

These four features are obtained at each time step (1 day) and frequency (from 0.5199

to 18 Hz). We thus have a time-frequency representation of the wavefield (Figure 2a),200

which can be used to track its evolution. As mentioned above, the features contain in-201

sights about the wavefield spatio-temporal properties, and thus provide insights on the202

seismic signals generated inside the array. Since the wavefield features are calculated us-203

ing a long window (60 days), many seismic sources can exist in the same time window204

of analysis. Among the different potential scenarios, we can distinguish the following ex-205

treme cases.206

If many seismic sources occur in a small region with respect to the wavelength and207

the array aperture (e.g. an earthquake swarm or co-located sources), the average covari-208

ance matrix will exhibit a dominant eigenvalue while the other eigenvalues will be small209

(scenario illustrated in Figure 2b), giving small values for the entropy and high values210

for the coherency, eigenvalue variance and first eigenvalue.211

If many independent seismic sources are acting in the same time window (W2) and212

scattered in a vast area with respect to the array aperture, the eigenvalue distribution213

will follow a steadily decaying distribution (scenario illustrated in Figure 2c) specific to214

the array geometry, the structure of the underlying medium and the duration of the av-215

eraging window W2 (Seydoux et al., 2016a). In this situation, the entropy and first eigen-216

value will be high and the coherency and eigenvalue variance will be small, indicating217

an incoherent ensemble wavefield with many incoherent seismic sources in the analyzed218

time scale (W2).219

Finally, if the records only contain electronic noise or spatially distributed incoher-220

ent perturbations (e.g. rain, wind, road traffic etc.), the covariance matrix eigenvalues221

will be approximately equal and small (scenario illustrated in Figure 2d) depending on222

the estimation parameters (Menon et al., 2014). In this situation, the entropy will be223

high and the coherency, eigenvalue variance and first eigenvalue will be small, indicat-224

ing an incoherent ensemble wavefield with no sources in the analyzed time scale (W2).225

In summary, the defined wavefield features permit to discern the behavior of the226

wavefield over different frequencies and as a function of time. We use these features to227
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Figure 2. (a) Workflow of wavefield features extraction and analysis, which includes: 1. seis-

mic data processing (e.g. filtering etc.) and time window determination, 2. covariance matrix

calculation, 3. eigendecomposition of covariance matrix, and 4. wavefield feature extraction.

Right panel shows three representative scenarios of source distribution and the corresponding

eigenvalue distribution of covariance matrix in the time window of analysis, which are (b) many

co-located seismic sources, (c) many independent (spatially scattered) seismic sources, and (d)

electronic or local non-seismic sources. Blue triangles indicate seismic stations and red stars

indicate seismic sources.

track the evolution of the wavefield during the seismic cycle (short term in this case, 3228

years), and to assess if seismic signals contain information about the evolution of the fault229

state.230

4 Feature Analysis and Clustering231

4.1 Feature Relationship and Sensitivity Analysis232

The extracted wavefield features over the full dataset are shown in Figure 3 as a233

function of time and frequency over the 3 years centered on the L’Aquila earthquake.234

In particular, the coherency and entropy features (Figures 3a and 3b) are increasing and235

dropping respectively before the mainshock, suggesting the activation of localized sources236

in the 3 months before the mainshock at 1-10 Hz. After the strike of the mainshock, dur-237

ing the aftershock sequence, the frequency content of the coherent wavefield moves to238

a lower frequency range (below 5 Hz). Yet, depending on the ratio between the wave-239

length of the seismic wavefield and the seismic array aperture, multiple sources distributed240

in space are likely to induce a low coherence value (as depicted in Figure 2c). As observed241

in the wavefield features (Figures 3a and 3b), at high frequencies, the coherence almost242

vanishes, whereas at lower frequencies (below 5 Hz), a high coherence is still observed243

(due to larger wavelengths). This is in agreement with the spread of aftershocks near the244

rupture zone due to the stress redistribution after the mainshock. The eigenvalue vari-245

ance and first eigenvalue features (Figures 3c and 3d) indicate that the fault is most ac-246

tive during the aftershock periods. In addition, the eigenvalue variance tends to increase247
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Figure 3. The extracted wavefield features using an averaging window of 60 days. For each

sub-figure, the top panel shows the feature with respect to time and frequency (frequency axis in

log scale, ranges from 0.5 to 18 Hz), and the bottom panel shows the features averaged in three

different frequency bands. The horizontal axis shows time (ranges from 2008-01-01 to 2010-08-

23). The red dashed line and star highlight the origin time of the 2009 L’Aquila earthquake. (a)

Coherency; (b) Entropy; (c) Eigenvalue variance; (d) First eigenvalue.

as the mainshock is approaching, especially in the frequency range of 1-10 Hz, suggest-248

ing an activation of relatively strong sources in the area (Figure 3c). The overall time-249

frequency evolution of the wavefield features in the studied region visually suggests that250

different physical processes are acting during the pre- and post-seismic stages.251

To quantitatively asses if the observed features can isolate different stages of the252

seismic cycle (e.g. pre- and post-seismic) we apply an unsupervised class-membership253

identification (clustering). Our approach is similar to the clustering of laboratory data254

of Bolton et al. (2019). Our scope is to naturally separate periods with potential differ-255

ent physical processes in the fault region, solely from data. We thus avoid any explicit256

physical modeling (e.g. location of events, magnitude estimation) and time constrain (e.g.257

before and after the earthquake), and learn relevant characteristics with implicit mod-258

els from the data itself.259

Visually, some of the proposed features (e.g. entropy and coherency, Figure 3) show260

some similarities, and will be likely redundant in the identification of classes. To quan-261

tify any redundancy in our dataset, we analyze the relationship between wavefield fea-262

tures and select the uncorrelated ones (i.e. features that are independent and respon-263

sible for different source properties) for clustering.264

To that scope, we calculate the correlation coefficients between different features265

in different frequency ranges. Results of this analysis are reported in Figure 4. The en-266

tropy and coherency, which provide an estimate of the wavefield coherence, are well cor-267
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Figure 4. Correlation analysis between different features. (a) Cross-plot of different features

at frequency band: 2-2.1 Hz (corresponds to the lower triangular part of the correlation coeffi-

cient matrix in (b)). (b) Average correlation coefficients between different features over the full

frequency range (0.5-18 Hz). Correlation coefficients are first calculated based on the average fea-

tures of 0.1 Hz frequency bins, and then are averaged to obtain the final correlation coefficients

over the whole frequency band.

related with each other over a broad frequency range (0.5-18 Hz) with an average cor-268

relation coefficient of 0.7. The eigenvalue variance shows an average correlation coeffi-269

cient of 0.57 and 0.59 with the coherency and first eigenvalue respectively, which indi-270

cates it contains information about the wavefield coherence and the source energy at the271

same time.272

4.2 Cluster Analysis273

According to the sensitivity analysis of all features (Section 4.1), the coherency, eigen-274

value variance and first eigenvalue are poorly correlated (Figure 4) indicating a sensi-275

tivity to different properties of the wavefield (Figures 2 and 3). These three features are276

thus selected for the unsupervised analysis. For each time window, the number of fre-277

quency points is large (2800 points), therefore defining a very large feature space of 3278

x 2800 dimensions. In order to reduce the dimension of the feature space, we focus on279

the sensitive frequency range (0.5-10 Hz) and average each feature in frequency bins of280

0.1 Hz from 0.5 to 10 Hz. We end up with 95 frequency bins for each of the three fea-281

tures. In addition, we linearly normalize the feature magnitude in the interval [0, 1] with282

the feature maximum over all the frequencies in order to balance the information pro-283

vided by each feature (e.g. Bolton et al., 2019). In this way, the relative amplitude of284

the features in different frequency bins is kept. Finally, the three normalized features are285

combined together, forming a feature space of 285 dimensions (3 x 95) for cluster anal-286

ysis.287

We extract 966 samples (time segments of W2) in total over the dataset for clus-288

tering analysis. Clusters found in seismic data are likely to be unbalanced, because dif-289

ferent physical processes may occur at different timescales (e.g. seismic data are mostly290

composed by noise). Yet, many clustering approaches are essentially based on the clus-291

ter size balance in order to evaluate the clustering quality (for instance K-Means). More292
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generally, class imbalance is a general issue in clustering, and only few algorithms allow293

to overcome this problem. Hierarchical clustering (Maimon & Rokach, 2005) is recog-294

nized as one of the most powerful approach to cluster unevenly distributed class of data.295

This is done by building a hierarchy of nested clusters by successively merging or split-296

ting data samples based on any pairwise distance between the data points. In this study,297

we use an agglomerative strategy which treats each data sample as a cluster and suc-298

cessively merges the two clusters with the smallest distance until all clusters are gath-299

ered by a root cluster (Pedregosa et al., 2011). We use L1 distance to measure the dis-300

tances between data samples.301

The hierarchy of our clustering can be represented by a dendrogram, which indi-302

cates the distance and splitting between clusters (Figure 5a). We then use a silhouette303

analysis (Rousseeuw, 1987) to determine the optimal number of clusters (Figures 5b and304

5c). The silhouette score is a measure of the average distance between a sample in one305

cluster to the samples in the neighboring clusters and thus provides a way to assess clus-306

ter separation. It is calculated from the normalized difference between the mean near-307

est inter-cluster distance and the mean intra-cluster distance. Therefore, a large aver-308

age silhouette score generally indicates large separating distances between the resulting309

clusters, and hence better clustering results. We vary the number of clusters between 3310

to 15, and found that 6 clusters allow to achieve the best separation (Figures 5b and 5c).311

4.3 Clustering Results312

Because the dimension of the feature space is large, we propose to visualize the clus-313

tering results from the two main principal features components. We extract these com-314

ponents with principal component analysis (PCA) as shown in Figure 6. PCA projects315

data from the original feature space into a principal component (PC) space. Each PC316

is a linear combination of all the original features, scaled by a corresponding correlation317

coefficient. PCA also allows to observe the data variance explained by each component.318

In our case, we see that the first three PCs (PC1-PC3) respectively explain about 80%,319

10% and 6% of the total data variance, while all other PCs account for less than 1% of320

the total data variance each (Figure 6a). Since the first two PCs account for almost 90%321

of the data variance together, we can thus effectively represent and visualize our data322

in a 2D PC space.323

We use PCA to identify the most relevant wavefield features and frequency ranges324

to each PC by looking at the linear combination coefficients of the original features, which325

is useful to interpret the clustering results in a more physical way (Figure 6b). The PCA326

results indicate that the first PC is highly correlated with the first eigenvalue (Figure327

6b), while the second PC is highly related to the wavefield coherence (Figure 6b).328

The clustering results are presented in the space formed by the first two principal329

components in Figure 7. Six clusters are presented along with other independent mea-330

surements, i.e. GPS displacement and seismic catalog (Figure 7c). As shown in Figure331

7a, the six clusters are well separated in the PC space indicating there are clear and well332

recognizable patterns in the continuous seismic wavefield. The distribution of different333

clusters in the original feature space also demonstrates the clustering results are a nat-334

ural partition according to the wavefield property variations (Figures 8 and 9). The tem-335

poral evolution of the clustered data points is shown in the PC space (Figure 7b) and336

corresponding to each measurement (i.e., PC1-PC3, GPS and seismic catalog, Figure 7c).337

In Figure 7c, the different PCs, GPS measurements and seismic catalog are color-coded338

according to the identified clusters to better observe differences among the different clus-339

ters.340

Before discussing the properties for each cluster, it is worth to remind that the fea-341

tures are extracted from 60 days of data, and each point in Figure 7 is at the end of the342

time window. Thus, each point has seen data for the preceding 60 days (see Figure 7c),343
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Figure 5. (a) Dendrogram of hierarchical clustering. Different clusters are marked by different

colors and annotated using the cluster labels: A-F. The color-code and label of different clusters

are consistent with that in Figure 7. The sample index correspond to the date index. (b) Varia-

tion of average silhouette score with the number of clusters. Red dashed line indicates that when

the number of clusters is 6, the silhouette score reaches to a maximum of about 0.54. (c) Silhou-

ette scores of the data points in each cluster when the number of cluster is 6. Different colors

correspond to different clusters. Red dashed line shows the average silhouette score. Most data

points in the six clusters have a silhouette score larger than the average score, which indicates a

favorable clustering result.

–11–



manuscript submitted to JGR: Solid Earth

Figure 6. PCA of all the input features. (a) Black line shows the explained data variance (in

percentage) of the first 20 principal components (correspond to the left axis). Blue line shows the

cumulative explained data variance for the number of principal components used (correspond to

the right axis). Red dashed line highlights 95% cumulative percentage. (b) The correlation coef-

ficients between the first four principal components and the features in different frequency bins.

The number marked on each section shows the cumulative correlation coefficient over the whole

adopted frequency range (0.5-10 Hz) for the coherency, eigenvalue variance and first eigenvalue

feature, respectively.

and for example, cluster C contains a mixture of signals from times prior and after the344

mainshock.345

Cluster A identified with a low wavefield coherency (Figures 3a, 3b, and 9) and small346

first eigenvalues (Figures 3d and 9), corresponds to a quiet period (low seismicity). Clus-347

ter B exhibits increased wavefield coherency (especially in the frequency band of 1-10348

Hz, see in Figures 3a, 3b, and 9), eigenvalue variance (Figure 3c and 9), and first eigen-349

values (Figures 3d and 9). It corresponds to the increment of seismic activity prior the350

2009 L’Aquila earthquake. During this period, the earthquake rate increased in this re-351

gion (Sugan et al., 2014; Vuan et al., 2018) and the earthquakes also tend to localize around352

the fault (Figures 7c and 9).353

Clusters C is likely resolving the last period before the main event, but is also af-354

fected by the mainshock and some aftershocks. It is showing clear differences respect to355

A and B, in particular an increment of first eigenvalue and a reduction of coherency at356

1-10 Hz (Figures 3a, 3d, 7c and 9). The group D, which shows strong wavefield coherency357

in the low frequency range (0.5-1 Hz) and large first eigenvalues (Figures 3a, 3d, and 7c),358

corresponds to a short period of aftershock sequences immediately after the 2009 L’Aquila359

earthquake.360

Compared with cluster D, cluster E shows increasing wavefield coherency (at 1-10361

Hz) and decreasing first eigenvalues (Figures 3, 7c and 9). It is worth to note that al-362

though both clusters D and E fall into aftershock sequences, they exhibit distinct coherency363

variations in different frequency ranges (0.5-1 and 1-10 Hz, see in Figures 3 and 9). More-364

over, there is a jump in PC2 from cluster D to E (Figure 7c). According to the PCA anal-365

ysis (figure 6), PC2 is mainly related to wavefield coherency. Therefore, the jump in PC2366

from cluster D to E is mainly due to a change in the wavefield coherency, which can be367

confirmed in the extracted coherency feature (Figures 3 and 9). Compared with clus-368

ter D, the wavefield coherency of cluster E increases at 1-10 Hz. This behavior can be369

interpreted (see in Figure 2) as an activation of localized seismic sources of low magni-370

tudes (especially the event cluster in 30 km away to the main event, Figure 9). These371

observations suggest an evolution of the aftershock behavior. During the period of clus-372
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Figure 7. Clustering results shown in the 2D PC space with horizontal axis showing the first

PC and vertical axis showing the second PC. Six clusters are color-coded and marked with la-

bels A to F (consistent with Figure 5). (b) Temporal variation of the clustered points in the 2D

PC space. The data points are color-coded according to the days relative to the mainshock as

indicated by the colorbar at the bottom. The star highlights the day when the 2009 L’Aquila

earthquake occurred. (c) Temporal variation of the principal components, GPS measurements

and number of seismic events per day. The red dashed lines exhibits the origin time of the 2009

L’Aquila earthquake. The first to third rows show the variation of the first three PCs with time.

The fourth row shows the ground displacements in the vertical direction measured by a GPS

station in L’Aquila (location shown in Figure 1a). The fifth row shows the detected number of

seismic events per day in the INGV catalog. The different measurements are color-coded accord-

ing to the corresponding cluster. The time window (60 days) for extracting wavefield features

at the last data sample in each cluster is highlighted by the black arrow and the corresponding

color-coded bar in the top panel.

ter E, the earthquake rate is much lower than the previous aftershock stages (C and D)373

and localized swarm-like seismicity of low magnitudes emerges (Figures 7c and 9).374

The last cluster (F) shows low wavefield coherency and steady decreasing first eigen-375

values (Figures 3 and 7). During this period, the aftershocks sequence reduces and the376

earthquake rate in the region starts to recover to a background level (Figures 7c and 9).377

As shown in the dendrogram (Figure 5a) and in Figure 7a, the A and F clusters are close378

to each other and belong to the same root cluster. Compared to the other clusters which379

are more seismically active, they correspond to quieter periods.380
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Figure 8. The distribution of the identified clusters in the wavefield feature space. The wave-

field features are extracted at each frequency point from 0.5-18 Hz. Here for better visualizing

the clustering results in a 2D feature space, the features are averaged and shown in two frequency

bands, which are (1) low frequency band: 0.5-1 Hz and (2) higher frequency band: 2-8 Hz.
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Figure 9. Clustering results with different colors representing different clusters (clusters:

A-F). Seismic events from INGV catalog and the wavefield features are also displayed for com-

parison. The origin time of the 2009 L’Aquila earthquake is marked by the red star and red dash

line. In the top panel, clustering results are shown together with the average coherency feature

in different frequency bands (correspond to the left axis) and local magnitudes of seismic events

(correspond the right axis). In the bottom panel, clustering results are shown together with the

average eigenvalue variance feature (left axis), the first eigenvalue feature (left axis) and the event

distances from the epicenter of the 2009 L’Aquila earthquake (right axis).
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5 Discussion381

We show the existence of the time and frequency evolution of wavefield features382

derived from continuous seismic records, and how the analysis of these features reveals383

distinct clusters well correlated with different periods of the seismic cycle (Figure 7). As384

the analysis is performed over long-term scale, the time-frequency evolution reflects the385

statistical wavefield properties and is related to the evolution in position, size, number386

and distribution pattern of the seismic sources inside the array (Figure 2). Hence, by an-387

alyzing the statistical properties of continuous wavefield, we draw conclusions about phys-388

ical processes occurring in the fault region without the need of any modeling.389

As the used features have physical meanings, they can provide important informa-390

tion about the processes occurring in each cluster. For example, cluster B, which is char-391

acterized by increasing coherence and first eigenvalue, suggests the activation of local-392

ized sources prior to the main event (see Figures 2, 3 and 7). This behavior agrees with393

previous studies on L’Aquila earthquake, suggesting the occurrence of localized foreshocks394

and increased earthquake rate before the mainshock (Sugan et al., 2014). However, dif-395

ferently from previous studies, no explicit modeling is involved in our analysis, and we396

show how this information emerges naturally from our chosen representation of the con-397

tinuous seismic wavefield. Clusters D and E show a reduction of the coherency compared398

to clusters B and C especially in the high frequency range (1-10 Hz). This behavior sug-399

gests that seismicity is spread around the fault, as stress is redistributed after the main-400

shock (Marsan, 2005). Previous study based on earthquake catalog (Marsan et al., 2014)401

shows that earthquakes preceded by accelerating seismicity rate produce more aftershocks402

on average and exhibit more spatial spreading aftershock sequences, which agrees with403

our model free analysis here. A similar phenomenon has also been recently observed for404

the Ridgecrest earthquake (Trugman et al., 2020; Ross et al., 2019), where the tempo-405

ral and spatial variations of the earthquake waveform similarity before and after the 2019406

Ridgecrest earthquake are compared. Significant reduction of the earthquake similarity407

in the aftershock sequences (compared to the pre-event seismicity) is observed and in-408

terpreted as a result of small scale heterogeneities in the residual stress field initiated by409

the main event. Their observations of the temporal variation of coherence using earth-410

quake waveforms of catalogued events correspond well with our results derived from con-411

tinuous seismic data. But again, our observations and analysis are model free and do not412

require additional seismological dateset such as earthquake catalogs and velocity mod-413

els.414

More complex is the interpretation of cluster C, which partially covers the last pre-415

seismic period and a portion of time after the event. This issue comes from the limita-416

tion of our methodology to a given timescale. In fact, the use of a long-term window (60417

days) with daily step, reduces the possibility of resolving short-lasting clusters and fo-418

cuses on long-lasting processes. Attempting to reduce the time window will be the sub-419

ject of future research. However, despite this limitation the method is clearly highlight-420

ing different parts of the seismic cycles (including the quiet period, clusters A and F),421

without the need of modeling.422

As in stick-slip rock failure experiments in laboratory (Bolton et al., 2019), our study423

highlights that fault state can be tracked from continuous seismic data. The ability of424

unrevealing peculiar patterns in seismic data, extend the laboratory-based idea that con-425

tinuous data are rich enough to inform us about evolution of physical properties of the426

fault (e.g. Rouet-Leduc et al., 2017; Bolton et al., 2019). In contrast with the labora-427

tory setting, real data cannot be associated with other boundary conditions (e.g. abso-428

lute stress level), and only part of the seismic cycle can be resolved. It is thus unlikely429

that our features-based approach will permit any kind of machine learning based pre-430

diction of the rupture (e.g. Rouet-Leduc et al., 2017). It will however permit to rapidly431

parse large amount of data and extract peculiar patterns, which can be related to other432

estimates (e.g. geodetic data) to better characterize different stages of the seismic cy-433
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cle. Our features can also be used to regress seismic data into other information (e.g. GPS434

displacement, Frank et al., 2015) to explore slip rate during aseismic slip episodes.435

Finally, in the present study, we defined spatial features for exploring spatially dis-436

tributed sensors. One of the main advantage is the ability to easily identify propagative437

signals and to disregard any site-dependent patterns that may bias the analysis (e.g. lo-438

cal noise level). Given the large number of seismic arrays deployed worldwide, the de-439

velopments of features that account for spatial properties of the wavefield is of great in-440

terest and will be in the scope of future studies.441

6 Conclusions442

We analyze the wavefield properties with unsupervised machine learning to directly443

assess fault state and its temporal evolution from continuous seismic data. Unlike tra-444

ditional statistical features calculated from single station, we extract frequency-dependent445

wavefield features from the array covariance matrix analysis, which provide the inter-446

pretation of the physical properties of the seismic sources. The array-based wavefield fea-447

tures enable to analyze the overall source properties and its temporal evolution for un-448

derstanding the fault activities in the study region. Our study shows the value of advanced449

array processing and machine learning analysis to reveal information embedded in the450

continuous seismic data. Our study builds a bridge between the laboratory experiments451

and the real earthquake observations and is a step towards understanding the fault physics.452

Our future work involves further unraveling hidden signals in continuous seismic data453

for studying fault physics.454
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