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Determination of dispersion relations in quasi-stationary plasma 
turbulence using dual satellite data 

T. Dudok de Wit, 1,2 V. V. Krasnosel'skikh, 1 S. D. Bale? M. W. Dunlop, 4 H. LQhr, 5 
S. J. Schwartz? and L. J. C. Woolliscroft 6 

Abstract. The joint frequency-wavenumber spectrum is one of day 304 of 1984. This data set has already been discussed in 
the basic quantities for analyzing plasma turbulence. It is shown 
how the full spectrum can be recovered from wavefields 
measured by two or more satellites via spectral methods based on 
wavelet transforms. Compared to standard cross-correlation 
techniques, different branches in the dispersion relation can be 
resolved and quasi-stationary wavefields can be accessed. Using 
this new approach, low frequency magnetic field data from the 

[Schwartz et al., 1992; Mann et al., 1994]. The turbulence in 
the foreshock region reveals a great variety of wave phenomena, 
among which solitary structures termed Short Large Amplitude 
Magnetic Structures (SLAMS) [Schwartz et al., 1992] have 
received much attention. The SLAMS, which are a subset of more 

general pulsations [Thomson et al., 1990] and which are related 
to kinetic magnetosonic waves [Omidi et al., 1990] and to 

AMPTE-UKS and AMPTE-IRM spacecraft are investigated and soliton Alfv6n waves [Hada et al., 1989], try to propagate 
the impact of nonlinear processes on wave propagation at the 
Earth's foreshock is revealed. 

Introduction 

Two fundamental problems in the statistical analysis of plasma 
turbulence are the identification of deterministic dispersion 
relations and the separation between spatial and temporal 
dynamics. Both require knowledge of the joint frequency- 
wavenumber spectrum [Lefeuvre et al., 1992] for which 
measurements with both temporal and spatial resolution are 
necessary. Although the former is rarely a problem in practice, the 
spatial resolution is constrained by the number of simultaneous 
measurements. This problem is particularly acute in space 
plasmas where each individual measurement requires a satellite. 

In this paper, we present a technique for inferring wavefield 
dispersion relations using two or more satellites. While traditional 
approaches based on cross-spectral estimates have been 
successfully applied to ISEE data [Hoppe et al., 1980], it is shown 
how a small modification can provide new insight into wavefield 
properties and nonlinear processes in plasma turbulence. 

Turbulence at the Earth's Bow Shock 

As a typical example of strong plasma turbulence we consider 
magnetic field data recorded by the AMPTE-UKS and AMPTE- 
IRM spacecraft upstream the Earth's quasi-parallel bow shock on 

against the solar wind but are convected back towards the Earth. 
They are generally preceded at their upstream edge by high 
frequency whistler wavetrains. These nonlinear structures are 
expected to play a significant role in the dynamics of the quasi- 
parallel bow shock, hence the large interest devoted to them. 

Figure 1 shows an excerpt of the magnetic field data, which 
have been collected on an outbound portion of the orbit with a 
spacecraft separation of - 148 km. The eigenvalues of the 
variance tensor [S0nnerup et al., 1967] are respectively 1, 0.77 
and 0.12, indicating that the wavefield structure is on average 
•]uite planar. The solar wind flow, the spacecraft separation vector 
d and the average wave-vector are all approximately parallel 
within 10 ø. Although this condition is not necessary for our 
analysis procedure, it will nevertheless ease the interpretation. 

Estimation of the Joint Frequency-Wavenumber 
Spectrum 

We start by considering the traditional procedure for 
estimating dispersion relations, and then show how it can be 
improved. Let B(•,t) be a stationary and homogeneous quantity 
whose ensemble-average satisfies < B(•,t) > = 0. In our case, it is 
the projection of the fluctuating magnetic field along the direction 
of maximum variance. The basic assumption is that B(•',t) can be 
decomposed into a superposition of plane waves 

B(x,t) = B0c,to) exp (-j(tot-•c.x))d•cdto + c.c. (1) 
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Figure 1. Time evolution of the magnetic field (excerpt), taken 
from the time interval 10:54:15 to 11:03:00 of day 304 of 1984. 
The UKS satellite is ahead (i.e. farther away from the shock front) 
of the IRM satellite. A typical SLAMS is observed at 10:59:20. 
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where the wavefield dispersion relation reads •c= •c(•). The 
quantity of interest is the joint frequency-wavenumber spectrum 

S(g½0) = < B 0c, m) B0c, m) > (2) 

which provides direct insight into the wavefield properties. The 
main difficulty arises from its estimation with a limited spatial 
resolution [C•l_,son, 1991 ]. With two probes, one only has access 
to r,d=•.d/ [dl, the projection of the wave-vector on the 
separation vector. The usual approach consists in computing the 
cross-spectrum between two measurements and relating the cross- 
phase to ra by 

P(d,½0) = <B*(x,½0) B(x+d,½0) > = [PI exp (j •d Il> (3> 
One can then in principle estimate •c from the knowledge of • 
and the minimum variance orientation. This simple approach is 
not suited for dispersion relations which have several branches. 
Indeed, one can show that the outcome of Eq. 3 is not the 
wavenumber itself but its first moment •d: 

•d(•0) = •d S0C,•0) d•c / S0c,•0) d•c (4) 

This problem, however, can be overcome by first estimating • 
for each ensemble in Eq. 3 and subsequently building its 
distribution function vs •0 [Beall et el., 1982]. This yields the so- 
called local spectrum 

S(g½0) = < B (x,½0) B(x,½0) + B (x+d,½0) B(x+d,½0) •5(rq-•:) > 

(5) 

where •d is calculated for each ensemble using Eq. 3. This local 

spectrum converges towards the true one (E•q•2) provided that the 
condition of planarity is satisfied and that •c. d < 2•. In the case of 
sampled data, one just has to consider the discrete equivalent of 
S0c,•0), which is a histogram vs •c and to with discrete cells. 

With this improvement, we can now resolve different branches 
in the dispersion relation. The applicability of this technique, 
however, is often limited in practice by the conditions of 
planarity, stationarity and homogeneity, which are too restrictive. 
We therefore loosen these constraints and let the wavefield be 

composed of plane wave packets rather than plane waves. From 
a practical point of view, this means replacing Fourier time 
transforms by wavelet transforms [Farge, 1992]. The wavelet 
transform of B(•', t) is 

-* f -* 1 . t-x. B(x,a,x) = B(x,t) •aa li (•-) dt (6) 
where h(t) is the analyzing wavelet, t its position and a its scale. 
In this paper, Morlet wavelets 

h(t) = 1 exp(-2•jt) exp(-t2/2) (7) 
Ii; TM 

are used because of their good simultaneous time-frequency 
resolution. Their scale a is related to the instantaneous angular 
frequency by •0 = 2• / a. The estimation of S0c,•0) is again carried 
out using Eq. 5, but the ensemble average is now replaced by an 
average over t. In practice, both high time resolution (to improve 
the statistics of the histograms) and good frequency resolution are 
needed. Wavelets are appropriate for such purposes, because their 
time resolution is adapted to the frequency band of interest 
[Meyer et el., 1993]. The wavelet transform not only 
considerably improves the statistical robustness of the spectral 

estimates but it also allows transient and soliton-like features to be 

better resolved. Thus, it is a natural tool for analyzing quasi- 
stationary turbulence. 

The Dispersion Relation and Nonlinear Effects 

The joint frequency-wavenumber spectrum estimated from the 
AMPTE data is shown in Figure 2a. We recall that•the abscissa 
represents •d= •:.d/ I•[-Since, however, •: and d are in this 
instance on average colinear, the abscissa is almost equivalent to 
the magnitude of the wave-vector. Note also that all quantities are 
expressed in the satellite frame, in which the turbulence is 
convected by the solar wind flow. This effect will be discussed 
further below. For visualization purposes, we have artificially 
unfolded the spectra by extending the wavenumber domain to 
twice the Nyquist limit. With this, ridges can be followed without 
discontinuities throughout the (k,f) plane (where k = •:/2•: and 
f = c0 / 2•r). 

The spectral density depicted in Fig. 2a is by definition heavily 
weighted by large amplitude fluctuations. One may, however, also 
consider adapting the weighting to the fluctuation level. This 
opens the interesting perspective of investigating amplitude- 
dependent properties of the turbulence. A particular choice 
consists in putting equal weights on all the fluctuations, regardless 
of their amplitude. We do this by setting B(x'*,•) -- 1 in Eq. 5. The 
result, shown in Figure 2b, is simply a probability density as a 
function of •c for each •. 

A comparative study of Figures 2a and 2b now allows us to 
assess the impact of nonlinear processes on turbulence. Indeed, 
these figures respectively reveal the dynamics of the large and the 
small amplitude fluctuations. A first result is the occurrence of a 
unique and linear dispersion branch in Fig. 2b, and consequently 
the absence of the dispersive behavior one would expect from 
finite Larmor radius and Hall term effects. Some such dispersive 
effects, however, may be hidden by the low signal-to-noise ratio 
of Fig. 2b, in which much weight is given to small fluctuations 
and noise. Figure 2a, in contrast, clearly reveals two branches 
which coincide at low frequencies. These two branches most 
probably correspond to the fast magnetosonic (I) and to the 
Alfv6n (II)mode. Such modes are known to overlap at low 
frequency in the quasi-parallel case but their unambiguous 
identification would require a simultaneous analysis of the 
fluctuating electron density. 

Given these results, we may attribute the observed bifurcation 
to the role played by nonlinear effects, whose main manifestation 
is an amplitude-dependent frequency shift [Whitham, 1973]. A 
comparison between Figures 2a and 2b in this sense clearly 
illustrates the impact of nonlinear processes on wave propagation. 
It also strongly recalls the behavior of nonlinear waves which fall 
in the framework of the derivative nonlinear Schr6dinger equation 
[Mj01hus et el., 1988]. Indeed, this equation also gives rise to an 
amplitude-dependent dispersion relation •0 = v^•c + {xr 2 + [ir• 2 
where in the cold plasma approximation {X=VA/4Bo 2, 
• = VA 2 /2•i, Bo is the average magnetic field, •i the ion 
cyclotron frequency, v^ the Alfv6n velocity and A the wave 
amplitude. 

We finally note that branch II has a nonlinear dispersion, 
which means that the wave group and phase velocities differ. The 
competition between this effect and the nonlinear steepening of 
the SLAMS has been shown [Dudok de Wit et el., 1995] to be 
one of the causes for the occurrence of whistler waves at the 

leading edge of SLAMS. A comprehensive analysis of these 
results is presently the subject of a forthcoming publication. 
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Figure 2. Representation of the joint frequency-wavenumber 
spectrum (a) and the probability density (b) in the spacecraft 
frame. Positive wavenumbers correspond to an earthward 
propagation. The dashed rectangle represents the principal domain 
limited by the Nyquist wavenumber, which has been artificially 
unfolded. The ridge originating from (k=-6-10 -6, f=0) is an 
artefact of this unfolding. The number of samples is 4120 and the 
sampling rate 8 Hz. 

Figure 4. The wavefield polarization (a) and ellipticity (b) 
associated with Fig. 2. The polarization ranges from 0 for 
unpolarized to 1 for fully polarized waves. Negative (positive) 
values of the ellipticity correspond to right- (left-) handed waves 
in the plasma rest frame. Blank regions denote cells for which the 
number of samples is too small (< 30) or the degree of 
polarization insufficient (< 0.6) to provide reliable estimates. In 
other regions, the uncertainty on the polarization is at most + 0.15. 
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Figure 3. The wavefield spectrum after correction of the Doppler 
shift induced by the solar wind flow. The waves now propagate 
sunwards 

It was mentioned above that the turbulence is convected 

earthwards by the solar wind flow. Consequently, the angular 
frequency coo in the plasma rest frame should differ from the one 
we measure. Both are related by the Doppler shift 
(o = ](a o-•C.vsw ] which can be estimated here since the_, solar 
wind velocity •sw is known and is almost parallel to d. The 
corrected spectrum is displayed in Fig. 3. While the ridges in Fig. 
2a revealed an anti-sunward motion, we now find that the waves 

actually try to propagate against the solar wind flow, in agreement 
with previous observations [Schwartz et al., 1992]. The group 
velocities estimated from Fig. 3 are v = 150-280 km/s for the 
large amplitude fluctuations and v = 80-120 km/s for the small 
amplitude ones. The latter value is in close agreement with the 
fast magnetosonic speed of the bulk plasma and thus supports the 
magnetosonic nature of branch I. 

Although the power spectral density S0c,•0) provides a wealth 
of information on the wavefield properties, the picture remains 
incomplete as long as other quantities such the polarization and 
the ellipticity are not considered. Their estimation proceeds from 
that of S0c,•0) except that now all three components of the 
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wavefield are processed. Figure 4a displays the polarization, 
which is the fraction of energy stored in fully polarized wave 
packets over the total energy (e.g. [Arthur et al., 1976]). An 
outstanding feature is the high polarization observed above f = 0.4 
Hz. Deeper insight is provided by the ellipticity, which ranges 
between-1 for right-handed circulafiy polarized waves (in the 
plasma rest frame) and + 1 for left-handed waves, see Figure 4b. 
The region which has a high degree of polarization is found to 
correspond to intrinsic right handed circularly polarized waves. 
Such properties, together with the dispersion relation allow us to 
identify these waves as whistlers, which are indeed frequently 
observed as shocklets in the ultra low frequency waves upstream 
bow shocks [Hoppe et al., 1983]. As one proceeds downwards in 
frequency, the ellipticity suddenly changes sign, in agreement 
with what is predicted for certain classes of soliton-like Alfvtn 
waves [Hada et al., 1989]. These results thus corroborate 
previous observations and in addition ease their interpretation. A 
major improvement is the possibility to provide a statistical 
description for phenomena whose understanding was so far 
essentially based on a patchwork of individual observations. 

Conclusions and Perspectives 

It has been shown how the combination of different existing 
techniques provides a new and more powerful framework for 
estimating wavefield parameters in plasma turbulence on the basis 
of two or more simultaneous measurements. Using this 
framework, we have established the impact of nonlinear processes 
on wave propagation and provided the main elements for 
identifying wavefield properties. 

A direct application of this two-point technique to multipoint 
experiments such as CLUSTER is straightforward and in principle 
allows the full spectrum S0c,•o) to be determined. A more 
rigorous generalization, however, requires a self-consistent and 
therefore more complex processing of all the different wavefield 
components. Multivariate approaches [Lefeuvre et al., 1992] 
may be more appropriate for such purposes. The present work, 
however, shows that major progress can still be achieved by a 
suitable combination of techniques such as the wavelet transform, 
which is particularly appropriate for resolving plasma turbulence. 
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