Skip to Main content Skip to Navigation
Journal articles

Version 4 CALIPSO IIR ice and liquid water cloud microphysical properties, Part I: the retrieval algorithms

Abstract : Following the release of the Version 4 Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data products from the Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations (CALIPSO) mission, a new version 4 (V4) of the CALIPSO Imaging Infrared Radiometer (IIR) Level 2 data products has been developed. The IIR Level 2 data products include cloud effective emissivities and cloud microphysical properties such as effective diameter and ice or liquid water path estimates. Dedicated retrievals for water clouds were added in V4, taking advantage of the high sensitivity of the IIR retrieval technique to small particle sizes. This paper (Part I) describes the improvements in the V4 algorithms compared to those used in the version 3 (V3) release, while results will be presented in a companion (Part II) paper. To reduce biases at very small emissivities that were made evident in V3, the radiative transfer model used to compute clear sky brightness temperatures over oceans has been updated and tuned for the simulations using MERRA-2 data to match IIR observations in clear sky conditions. Furthermore, the clear-sky mask has been refined compared to V3 by taking advantage of additional information now available in the V4 CALIOP 5-km layer products used as an input to the IIR algorithm. After sea surface emissivity adjustments, observed and computed brightness temperatures differ by less than ± 0.2 K at night for the three IIR channels centered at 08.65, 10.6, and 12.05 µm, and inter-channel biases are reduced from several tens of Kelvin in V3 to less than 0.1 K in V4. We have also aimed at improving retrievals in ice clouds having large optical depths by refining the determination of the radiative temperature needed for emissivity computation. The initial V3 estimate, namely the cloud centroid temperature derived from CALIOP, is corrected using a parameterized function of temperature difference between cloud base and top altitudes, cloud absorption optical depth, and the CALIOP multiple scattering correction factor. As shown in Part II, this improvement reduces the low biases at large optical depths that were seen in V3, and increases the number of retrievals in dense ice clouds. As in V3, the IIR microphysical retrievals use the concept of microphysical indices applied to the pairs of IIR channels at 12.05 μm and 10.6 μm and at 12.05 μm and 08.65 μm. The V4 algorithm uses ice look-up tables (LUTs) built using two ice crystal models from the recent TAMUice 2016 database, namely the single hexagonal column model and the 8-element column aggregate model, from which bulk properties are synthesized using a gamma size distribution. Four sets of effective diameters derived from a second approach are also reported in V4. Here, the LUTs are analytical functions relating microphysical index applied to IIR channels 12.05 µm and 10.6 µm and effective diameter as derived from in situ measurements at tropical and mid-latitudes during the TC4 and SPARTICUS field experiments.
Document type :
Journal articles
Complete list of metadata

https://hal-insu.archives-ouvertes.fr/insu-03031265
Contributor : Catherine Cardon <>
Submitted on : Monday, November 30, 2020 - 1:58:18 PM
Last modification on : Saturday, December 12, 2020 - 12:10:12 PM
Long-term archiving on: : Monday, March 1, 2021 - 7:07:01 PM

File

amt-2020-387.pdf
Publisher files allowed on an open archive

Licence


Distributed under a Creative Commons Attribution 4.0 International License

Identifiers

Citation

Anne Garnier, Jacques Pelon, Nicolas Pascal, Mark Vaughan, Philippe Dubuisson, et al.. Version 4 CALIPSO IIR ice and liquid water cloud microphysical properties, Part I: the retrieval algorithms. Atmospheric Measurement Techniques, European Geosciences Union, 2020, ⟨10.5194/amt-2020-387⟩. ⟨insu-03031265⟩

Share

Metrics

Record views

28

Files downloads

48