R. W. Allmendinger and P. A. Judge, The Argentine Precordillera: A foreland thrust belt 487 proximal to the subducted plate, Geosphere, vol.10, issue.6, pp.1203-1218, 2014.

A. Almendral, W. Robles, M. Parra, A. Mora, R. A. Ketcham et al., , p.489, 2015.

, Coupling kinematic restorations and temperature to predict thrusting, exhumation histories, and 490 thermochronometric agesCoupling Kinematic Restorations and Temperature, AAPG Bulletin, issue.8, pp.491-1557

O. Álvarez, S. Nacif, M. Gimenez, A. Folguera, and A. Braitenberg, Goce derived vertical gravity 493 gradient delineates great earthquake rupture zones along the Chilean margin, Tectonophysics, vol.622, pp.494-198, 2014.

P. Ávila and F. Dávila, Lithospheric thinning and dynamic uplift effects during slab window formation, 496 southern Patagonia (45?-55? S), Journal of Geodynamics, vol.133, p.101689, 2020.

F. A. Bense, K. Wemmer, S. Löbens, and S. Siegesmund, Fault gouge analyses: K-Ar illite 498 dating, clay mineralogy and tectonic significance-a study from the Sierras Pampeanas, 2014.

, Int. J. Earth Sci, vol.103, pp.189-218

J. Braun, Pecube: A new finite-element code to solve the 3D heat transport equation 501 including the effects of a time-varying, finite amplitude surface topography, Computers &, p.502, 2003.

. Geosciences, , vol.29, pp.787-794

J. Braun, P. Van-der-beek, P. Valla, X. Robert, F. Herman et al., , p.504

T. Simon-labric and C. Prigent, Quantifying rates of landscape evolution and tectonic 505 processes by thermochronology and numerical modeling of crustal heat transport using PECUBE, 2012.

. Tectonophysics, , vol.524, pp.1-28

G. Collo, F. M. Dávila, J. Nóbile, R. A. Astini, and G. Gehrels, Clay mineralogy and thermal history of the 508, 2011.

, Neogene Vinchina Basin, central Andes of Argentina: Analysis of factors controlling the heating 509 conditions, Tectonics, vol.30, pp.1-18

G. Collo, F. M. Dávila, W. Teixeira, J. C. Nóbile, S. Anna et al., Isotopic and 511 thermochronologic evidence of extremely cold lithosphere associated with a slab, p.512, 2015.

, Central Andes of Argentina. Basin Research

G. Collo, M. Ezpeleta, F. M. Dávila, M. Giménez, S. Soler et al., , p.514

R. Calegari, J. Lovecchio, and M. Schiuma, Basin Thermal Structure in the Chilean-515, 2018.

, Pampean Flat Subduction Zone, The Evolution of the Chilean-Argentinean Andes, pp.537-564

C. Springer,

I. Coutand, D. M. Whipp, D. Grujic, M. Bernet, M. G. Fellin et al., , p.518

C. Duncan, Geometry and kinematics of the Main Himalayan Thrust and Neogene crustal 519 exhumation in the Bhutanese Himalaya derived from inversion of multithermochronologic data, Journal of Geophysical Research: Solid Earth, vol.520, issue.2, pp.1446-1481, 2014.

F. M. Dávila and A. Carter, Exhumation history of the Andean broken foreland revisited, 2013.

, Geology, vol.41, issue.4, pp.443-446

M. Gutscher, R. Maury, J. Eissen, and E. Bourdon, Can slab melting be 551 caused by flat subduction?, Geology, vol.28, issue.6, pp.535-538, 2000.

M. Gutscher, Andean subduction styles and their effect on thermal structure and 553 interplate coupling, Journal of South American Earth Sciences, vol.15, issue.1, pp.3-10, 2002.

M. A. Gutscher and S. M. Peacock, Thermal models of flat subduction and the rupture zone 556 of great subduction earthquakes, Journal of Geophysical Research: Solid Earth, vol.108, issue.B1, p.2, 2003.

T. Hantschel and A. I. Kauerauf, Fundamentals of basin and petroleum systems modeling, 2009.

G. D. Hoke, L. B. Giambiagi, C. N. Garzione, J. B. Mahoney, and M. R. Strecker, Neogene 560 paleoelevation of intermontane basins in a narrow, compressional mountain range, p.561, 2014.

, Central Andes of Argentina. Earth Planet. Sci. Lett, vol.406, pp.153-164

W. L. Huang, J. M. Longo, and D. R. Pevear, An experimentally derived kinetic model for 563, 1993.

, Clays and Clay Minerals, vol.41, issue.2, pp.162-564

B. Isacks, T. Jordan, R. Allmendinger, and V. A. Ramos, La segmentaci6n tectónica de los 566, 1982.

, Andes Centrales y su relaci6n con la placa de Nazca subductada, Congr. Latinoamericano Geol, vol.567

C. Jaupart and J. C. Mareschal, Heat generation and transport in the Earth, 2010.

Y. Ji, S. Yoshioka, V. C. Manea, M. Manea, and T. Matsumoto, Three-dimensional 571 numerical modeling of thermal regime and slab dehydration beneath Kanto and Tohoku, Japan. 572 Journal of Geophysical Research: Solid Earth, vol.122, issue.1, pp.332-353, 2017.

T. E. Jordan, B. Lsacks, V. A. Ramos, and R. W. Allmendinger, , 1983.

, Andes. Episodes, vol.1983, issue.3, pp.20-26

T. E. Jordan, B. Isacks, R. Allmendinger, J. Brewer, V. A. Ramos et al., Andean 576 tectonics related to geometry of subducted plates, Geol. Soc. Am. Bull, vol.94, issue.3, pp.341-361, 1983.

T. E. Jordan, R. W. Allmendinger, J. F. Damanti, and R. E. Drake, Chronology of motion in a 578 complete thrust belt: the Precordillera, 30-31 S, Andes Mountains, The Journal of Geology, vol.101, issue.2, pp.135-156, 1993.

T. E. Jordan, F. Schlunegger, and N. Cardozo, Unsteady and spatially variable evolution of the 581, 2001.

, Argentina. Journal of South American Earth Sciences, vol.582, pp.775-798

S. M. Kay and J. M. Abbruzzi, Magmatic evidence for Neogene lithospheric evolution of the 584 central Andean "flat-slab" between 30 S and 32 S, Tectonophysics, vol.259, pp.1-3, 1996.

S. M. Kay and C. Mpodozis, Magmatism as a probe to the Neogene shallowing of the Nazca plate 586 beneath the modern Chilean flat-slab, Journal of South American Earth Sciences, vol.15, pp.39-57, 2002.

R. A. Ketcham, Forward and inverse modeling of low-temperature thermochronometry 588 data. Reviews in mineralogy and geochemistry, vol.58, pp.275-314, 2005.

R. A. Ketcham, A. Carter, R. A. Donelick, J. Barbarand, and A. J. Hurford, Improved 590 modeling of fission-track annealing in apatite, American Mineralogist, vol.92, issue.5-6, pp.799-810, 2007.

M. Levina, B. K. Horton, F. Fuentes, and D. F. Stockli, Cenozoic sedimentation and 592 exhumation of the foreland basin system preserved in the Precordillera thrust belt (31-32 S), 593 southern central Andes, Argentina. Tectonics, vol.33, issue.9, pp.1659-1680, 2014.

E. A. Lynch and B. Van-der-pluijm, Meteoric fluid infiltration in the Argentine Precordillera fold-595 and-thrust belt: Evidence from H isotopic studies of neoformed clay minerals, Lithosphere, vol.9, issue.1, pp.596-134, 2017.

V. C. Manea and M. Manea, Flat-slab thermal structure and evolution beneath central Mexico, 2011.

, Pure and Applied Geophysics, vol.168, issue.8-9, pp.1475-1487

M. Marot, T. Monfret, M. Gerbault, G. Nolet, G. Ranalli et al., Flat versus normal 600 subduction zones: a comparison based on 3-D regional traveltime tomography and petrological 601 modelling of central Chile and western Argentina (29°-35°S), Geophysical Journal International, vol.602, issue.3, pp.1633-1654, 2014.

N. Mcquarrie and T. A. Ehlers, Influence of thrust belt geometry and shortening rate on 604 thermochronometer cooling ages: Insights from thermokinematic and erosion modeling of the, p.605, 2015.

, Bhutan Himalaya. Tectonics, vol.34, issue.6, pp.1055-1079

F. S. Nassif, H. Canelo, F. Davila, and M. Ezpeleta, Constraining erosion rates in thrust belts: 607 Insights from kinematic modeling of the Argentine Precordillera, Jachal section, Tectonophysics, vol.608, pp.1-11, 2019.

F. Nassif, A. Barrea, F. Davila, and ;. A. Mora, Fetkin-hydro, a new thermo-hydrological algorithm 610 for low-temperature thermochronological modeling. Geoscience Frontiers, 2020.

V. Olivetti, M. Balestrieri, C. Faccenna, M. Fin, and . Stuart, Dating the topography through 612 thermochronology: application of Pecube code to, vol.613, 2017.

S. Massif and . Italy, Italian Journal of Geosciences, vol.136, issue.3, pp.321-336

M. A. Pérez, D. Graneros, V. Delpiano, M. Lauría, and K. Breier, Exploración de 615 frontera: del modelo superficial a la perforación profunda. Áreas exploratorias Jáchal y Niquivil en 616 la Precordillera de, 2011.

V. A. Ramos, T. E. Jordan, R. W. Allmendinger, C. Mpodozis, S. M. Kay et al., Paleozoic terranes of the central Argentine-Chilean Andes, Tectonics, vol.5, issue.6, pp.855-880, 1986.

V. A. Ramos, Cuyania, an exotic block to Gondwana: review of a historical success and the 620 present problems, Gondwana Research, vol.7, issue.4, pp.1009-1026, 2004.

V. A. Ramos and A. Folguera, Andean flat slab subduction through time, p.622, 2009.

, Ancient Orogens and Modern Analogues. London, the Geological Society, Special Publication, vol.327, pp.623-654

P. W. Reiners and . Ehlers, , p.625, 2005.

, Interpretations, and Applications, vol.58

T. Richardson, K. D. Ridgway, H. Gilbert, R. Martino, E. Enkelmann et al., Active 628 intraplate deformation inboard of flat-slab subduction, Neogene and Quaternary tectonics of the Eastern Sierras Pampeanas, vol.32, pp.780-796, 2013.

U. Ring, M. T. Brandon, S. D. Willett, and G. S. Lister, , 1999.

L. Society, , vol.154, pp.1-27

V. F. Sachse, F. Strozyk, Z. Anka, J. F. Rodriguez, and R. Di-primio, The tectono-stratigraphic 632 evolution of the Austral Basin and adjacent areas against the background of Andean tectonics, 633 southern Argentina, South America. Basin Research, vol.28, issue.4, pp.462-482, 2016.

M. Sambridge, Geophysical Inversion with a Neighbourhood Algorithm II: appraising the 635 ensemble, Geophys. J. Int, vol.138, pp.727-746, 1999.

M. A. Sánchez, H. P. García, G. Acosta, G. M. Gianni, M. A. Gonzalez et al.,

A. Folguera, Thermal and lithospheric structure of the Chilean-Pampean flat-slab from 638 gravity and magnetic data, Andean Tectonics, pp.487-507, 2019.

T. F. Schildgen, T. A. Ehlers, D. M. Whipp, M. C. Van-soest, K. X. Whipple et al., Quantifying canyon incision and Andean Plateau surface uplift, southwest Peru: A 641 thermochronometer and numerical modeling approach, Journal of Geophysical Research: Earth, vol.642, p.640, 2009.

, Surface, issue.F4, p.114

J. ?rodo?, D. J. Morgan, E. V. Eslinger, D. D. Eberl, and M. R. Karlinger, , p.644, 1986.

, illite/smectite and end-member illite, Clays and Clay Minerals, vol.34, issue.4, pp.368-378

P. Val, G. D. Hoke, J. C. Fosdick, and H. Wittmann, Reconciling tectonic shortening 646 sedimentation and spatial patterns of erosion from 10 Be paleo-erosion rates in the Argentine 647, 2016.

, Precordillera. Earth and Planetary Science Letters, vol.450, pp.173-185

P. G. Valla, F. Herman, P. A. Van-der-beek, and J. Braun, Inversion of thermochronological 649 age-elevation profiles to extract independent estimates of denudation and relief history-I: 650 Theory and conceptual model, Earth and Planetary Science Letters, vol.295, issue.3-4, pp.511-522, 2010.

B. Velde and G. Vasseur, Estimation of the diagenetic smectite to illite transformation in 652 time-temperature space, American Mineralogist, vol.77, issue.9, pp.967-976, 1992.

I. Vitorello and H. N. Pollack, On the variation of continental heat flow with age and the 654 thermal evolution of continents, Journal of Geophysical Research: Solid Earth, vol.85, pp.983-99, 1980.

A. A. Walcek and G. D. Hoke, Surface uplift and erosion of the southernmost Argentine 656, 2012.

. Precordillera and . Geomorphology, , vol.153, pp.156-168

R. A. Wolf, K. A. Farley, and D. M. Kass, Modeling of the temperature sensitivity of the 658 apatite (U-Th)/He thermochronometer, Chemical Geology, vol.148, issue.1-2, pp.105-114, 1998.

T. R. Zapata and R. W. Allmendinger, Growth stratal records of instantaneous and 660 progressive limb rotation in the Precordillera thrust belt and Bermejo basin, Argentina. Tectonics, vol.661, issue.5, pp.1065-1083, 1996.

S. Zapata, E. R. Sobel, C. Del-papa, and J. Glodny, Upper Plate Controls on the Formation of 663, 2020.

, Broken Foreland Basins in the Andean Retroarc Between 26° S and 28° S: From Cretaceous Rifting 664 to Paleogene and Miocene Broken Foreland Basins, Geochemistry, Geophysics, Geosystems, issue.7, p.21

, Fig 1. Geological-structural map of the study area (Jachal-Rodeo section after Nassif et al, p.669, 2019.

, U-Th/He thermochronological 670 samples J701, J707 and J712 after Fosdick et al. (2015) and J272 and J259 are our own AFT, 2014.

, The red lines mark values for the best model 678 obtained from the MC sampling (the model with the minimum misfit over all 4 parameters), 1999.

, Estimates of temperatures at the base of the model (20 Km), after numerical subduction models of 680

. Gutscher, , 2000.

, Forward modeled thermochronological ages. Interpreted present-day structural section of 698

A. Jachal and . Nassif, 2019) and measured %I in mixed I/S (this work), are also shown

. Sm/he and . Fosdick, , 2015.

, Fig. 5. Inverted time-temperature histories and track length distributions of samples J272 and 704 J259, considering length and age FT data