, Advances in Organic Geochemistry, vol.13, pp.489-502, 1987.

T. Lilloe-olsen and N. A. Bang, DNO and Tawke in Kurdistan: How an Iraq oil giant has emerged, 2012.

, Oil & Gas Journal 1-19

O. Macsotay, R. N. Erlich, and T. Peraza, Sedimentary structures of the La Luna, p.600, 2003.

, Upper Cretaceous of Venezuela, Querecual Formations, vol.18, pp.334-348

A. Mahboubi, R. Moussavi-harami, R. B. Collins, and J. R. Muhling, Petrography and 602 geochemical signatures in cracks filling calcite sequences in septarian concretions, Sanganeh 603 Formation, vol.10, pp.526-534, 2010.

H. Maillot and A. Bonte, Cone-in-cone texture from Deep Sea Drilling Project Leg 71, vol.511, p.605, 1983.

F. Plateau, South Atlantic Ocean. Initial Reports of the Deep Sea Drilling Project, vol.71, issue.1, pp.345-349

X. Mangenot, M. Gasparrini, V. Rouchon, and M. Bonifacie, Basin-scale thermal and fluid flow 608 histories revealed by carbonate clumped isotopes (?47)-Middle Jurassic carbonates of the Paris 609 Basin depocentre, Sedimentology, vol.65, issue.1, pp.123-150, 2018.

F. O. Marques, F. C. Nogueira, F. H. Bezerra, D. L. Castro, and . De, , p.611, 2014.

, Brazil: An intracontinental graben inverted to a high-standing horst, Tectonophysics, vol.630, pp.251-612

J. D. Marshall, Isotopic composition of displacive fibrous calcite veins; reversals in pore-water 614 composition trends during burial diagenesis, J. Sediment. Petrol, vol.52, pp.615-630, 1982.

A. W. Martinius, J. Hegner, I. Kaas, C. Bejarano, X. Mathieu et al., Sedimentology and 616 depositional model for the Early Miocene Oficina Formation in the Petrocedeño Field (Orinoco 617 heavy-oil belt, Venezuela), Mar. Petrol. Geol, vol.35, pp.354-380, 2012.

A. Mora, V. Blanco, J. Naranjo, N. Sanchez, R. A. Ketcham et al., , p.621

M. Nemcok, B. K. Horton, and H. Davila, On the lag time between internal strain and 622 basement involved thrust induced exhumation: The case of the Colombian Eastern Cordillera, 2013.

, Struct. Geol, vol.52, pp.96-118

A. Mora, W. Casallas, R. A. Ketcham, D. Gomez, M. Parra et al., , p.625

W. Robles and B. Ghorbal, Kinematic restoration of contractional basement structures using 626 thermokinematic models, Am. Assoc. Petrol. Geol. Bull, vol.99, issue.8, pp.1575-1598, 2015.

R. Mourgues and P. R. Cobbold, Some tectonic consequences of fluid overpressures and seepage 628 forces as demonstrated by sandbox modeling, Tectonophysics, vol.376, pp.75-97, 2003.

S. Nollet, J. L. Urai, P. D. Bons, and C. Hilgers, Numerical simulations of polycrystal growth in 630 veins, Journal of Structural Geology, vol.27, pp.217-230, 2005.

S. Nollet, T. Koerner, U. Kramm, and C. Hilgers, Precipitation of fracture fillings and cements in 632 the, Buntsandstein (NW Germany). Geofluids, vol.9, pp.373-385, 2009.

S. F. Nomura, A. O. Sawakuchi, R. M. Bello, J. Méndez-duque, K. Fuzikawa et al., , p.634

M. S. Dantas, Paleotemperatures and paleofluids recorded in fluid inclusions from calcite 635 veins from the northern flank of the Ponta Grossa dyke swarm: Implications for hydrocarbon 636 generation and migration in the Paraná Basin, Mar. Petrol. Geol, vol.52, pp.107-124, 2014.

J. Parnell, N. J. Blamey, A. Costanzo, M. Feely, and A. J. Boyce, , p.638, 2014.

, Mesoproterozoic age deep burial fluid signatures, NW Scotland. Mar. Petrol. Geol, vol.55, pp.275-281

P. N. Pearson, C. J. Nicholas, J. M. Singano, P. R. Bown, H. K. Coxall et al., , p.640

B. T. Karega, A. Lees, J. A. Macleod, K. Mcmillan, I. K. Pancost et al., , p.641

E. , Further Paleogene and Cretaceous sediment cores from the Kilwa area of coastal 642 Tanzania: Tanzania Drilling Project Sites 6-10, J. Afr. Earth Sci, vol.45, pp.279-317, 2006.

W. A. Richardson, Petrology of the Shales-with-"Beef, Q. J. Geol. Soc. Lond, vol.79, pp.88-99, 1923.

N. Rodrigues, P. R. Cobbold, H. Loseth, and G. Ruffet, Widespread bedding-parallel veins of 645 fibrous calcite ("beef") in a mature source rock (Vaca Muerta Fm, J. Geol. Soc. Lond, vol.166, pp.695-709, 2009.

B. Rybak-ostrowska, A. Konon, K. Nejbert, and A. Kozlowski, Bedding-parallel calcite veins in 649 the Holy Cross Mountains Fold Belt, central Poland, Geological Quarterly, vol.58, issue.1, pp.99-116, 2014.

A. L. Silva and . Da, Estratigrafia física e deformação do sistema lacustre carbonático, p.651, 2003.

, Albiano) da Bacia do Araripe em afloramentos selecionados

P. Pernambuco and . Geociências, , vol.118, p.pp

A. P. Smith, M. P. Fischer, and M. A. Evans, On the homogeneity of fluids forming bedding-parallel 654 veins, Geofluids, vol.14, pp.45-57, 2014.

V. Suchy, P. Dobes, J. Filip, M. Stejskal, and A. Zeman, Conditions for veining in the Barrandian 656, 2002.

, Czech Republic: evidence from fluid inclusion and apatite fission 657 track analysis, Basin (Lower Palaeozoic), vol.348, pp.25-50

J. Tarney and B. C. Schreiber, Cone-in-cone and beef-in-shale textures from DSDP site, vol.330, p.659, 1976.

F. Plateau and S. Atlantic, Initial Reports of 660 the Deep Sea Drilling Project, U.S. Government Printing Office, vol.36, pp.865-870

K. J. Tobin, K. R. Walker, D. M. Steinhauff, and C. I. Mora, , p.662, 1996.

, Tennessee: preservation of marine oxygen isotopic composition and its implications

, Sedimentology, vol.43, pp.235-251

J. Trabucho-alexandre, J. Dirkx, H. Veld, G. Klaver, and P. L. De-boer, Toarcian black shales in 665 the Dutch Central Graben: Record of energetic, variable depositional conditions during an 666 oceanic anoxic event, J. Sed. Res, vol.82, pp.104-120, 2012.

E. Ukar, R. G. Lopez, J. F. Gale, S. E. Laubach, and R. Manceda, New type of kinematic indicator 668 in bed-parallel veins, Late Jurassic-Early Cretaceous Vaca Muerta Formation, Argentina: EW 669 shortening during Late Cretaceous vein opening, Journal of Structural Geology, vol.104, pp.31-47, 2017.

E. Ukar, R. López, D. Hryb, J. F. Gale, R. Manceda et al., , p.671

R. Weger, D. Marchal, A. Zanella, and I. Lanusse, Natural fractures in the Vaca Muerta 672 Formation: from core and outcrop analog observations to subsurface models, AAPG Memoir, vol.673, issue.120, 2018.

J. R. Underhill and R. Stoneley, Introduction to the development, evolution and petroleum geology 675 of the Wessex Basin, Geol. Soc, vol.133, pp.1-18, 1998.

E. A. Vera, A. Folguera, G. Z. Valcarce, G. Bottesi, and V. A. Ramos, Structure and 677 development of the Andean system between 36 and 39 S, Journal of Geodynamics, vol.73, pp.34-52, 2014.

L. Voisin, Le "beef" de Chaumiau (08), Bull. d'Inform. Géol. Bassin de Paris, vol.36, issue.2, pp.13-16, 1999.

H. Volk, B. Horsfield, U. Mann, and V. Suchy, Variability of petroleum inclusions in vein, fossil 680 and vug cements -a geochemical study in the Barrandian Basin (Lower Palaeozoic, Czech 681 Republic), Organic Geochemistry, vol.33, pp.1319-1341, 2002.

N. L. Watts, Displacive calcite: Evidence from recent and ancient calcretes, Geology, vol.6, pp.699-683, 1978.

R. J. Weger, S. T. Murray, D. J. Mcneill, P. K. Swart, G. P. Eberli et al., , p.685

M. Rueda and L. , Paleo thermometry and distribution of calcite beef in the Vaca Muerta 686, 2018.

, AAPG Bulletin

I. M. West, Geology of the Wessex coast of southern England -the World Heritage Jurassic 688, 2015.

C. More,

B. G. Woodland, The nature and origin of cone-in-cone structure, Fieldiana: Geology, vol.13, issue.4, pp.262-274, 1964.


A. Zanella, P. R. Cobbold, and L. Rojas, Beef veins and thrust detachments in Early Cretaceous 696 source rocks, foothills of Magallanes-Austral Basin, southern Chile and Argentina: structural 697 evidence for fluid overpressure during hydrocarbon maturation, Mar. Petrol. Geol, vol.55, pp.250-261, 2014.


A. Zanella, P. R. Cobbold, G. Ruffet, and H. A. Leanza, Geological evidence for fluid 700 overpressure, hydraulic fracturing and strong heating during maturation and migration of 701 hydrocarbons in Mesozoic rocks of the northern Neuquén Basin, 2015.

, S. Am. Earth Sci, vol.62, pp.229-242

A. Zanella, P. R. Cobbold, and T. Boassen, Natural hydraulic fractures in the Wessex Basin, SW 704 England: widespread distribution, composition and history, Mar. Petrol. Geol, vol.68, pp.438-448, 2015.

B. Zhang, C. Y. Yin, Z. D. Gu, J. J. Zhang, S. Y. Yan et al., New indicators from bedding-706 parallel beef veins for the fault valve mechanism, Science China: Earth Sci, 2015.

, Global distribution of compressional basins, where calcite beef or cone-in-cone occur. For 713 localities (numbers at left), see Figure 1

, Figure 1. Map showing distribution of calcite beef (bedding-parallel veins), either within Mesozoic or 716

, Cenozoic sedimentary rocks (light triangles) or within Paleozoic sedimentary rocks (dark triangles)

, Figure 2. A. Physical model of horizontal hydraulic fracturing with no deformation (after Zanella et 720 al, 2014.

B. After-zanella, Physical model of horizontal hydraulic fracturing with shortening, 2014.

C. After-zanella, Cross-section of a 3-D physical model showing the different styles of deformation due to 722 the propagation of a detachment linked to overpressure development, 2014.

, Figure 1: Geological map of the western Cameros Basin.

. Zanella, B. folded and faulted beef veins, the 726 thickness of which is again variable, especially across the main reverse fault (center). C. Locally 727 folded beef, the thickness of which is variable (thicker in syncline, thinner in anticline). D. Steeply 728 dipping but curved calcite fibers, The Landsat image (left) shows sub-Andean folds, 1998.
URL : https://hal.archives-ouvertes.fr/hal-00314099

. Vera, Field observations (bottom right) show that beef is common in the Vaca Muerta Formation at various 734 scales. B. Geological section through the fold and thrust belt of the Neuquén Basin (located with the 735 red line in Figure 4A, 2014.

M. After, B. Calcite beef (bedding-parallel) veins (white to yellow), which vary 739 in thickness across folds (Cobbold, 2013). C. On the western side of the Cordillera, near Villeta, folds 740 and thrusts verge westward and Cretaceous shales contain layers of calcite beef. D. At the eastern edge 741 of the Cordillera, in the Macanal Formation (Lower Cretaceous) near Villavicencio, some beef 742 contains thin layers of yellow pyrite, which are folded, while calcite has grown epitaxially above and 743 below them, Geological map and cross-section, showing the main structures of the eastern Cordillera, vol.738, 2013.

. Mangenot, Figure 1: Geological map of the western Cameros Basin.

B. J. Katz, The Schistes Carton ? the Lower Toarcian of the Paris Basin, Casebooks in Earth Sciences, vol.750, pp.51-65, 1995.

, Wasserburg calcite lower intercept age of 155 ± 19 Ma (Oxfordian) for the 753 formation of the calcite beef (Chew et al., work in progress). B&C. Scanning electron microscopy 754 (SEM) analyses of calcite beef (bedding-parallel veins) from the Liassic "Schistes Carton, p.755

. Cobbold, Fig. 5. Micrographs of petrographic thin sections: excretion of pyrite among calcite crystals, c. Durodag (a) and carbonate crust folded, micritic calcite, c. Kechaldag (b)., Gélaucourt in the Paris Basin (see Fig. 6)

A. Google, Earth oblique view of the Pic du Béout hills (1530 m high, near the southeast end of 762

, Lourdes city), shows repetitions of white, thick, resistant layers of Aptian-Albian limestones, which 763 dip at about 30° to 40° to the south forming scarps. The white line represents the main thrust fault

, Road outcrop showing fibrous calcite beef (bedding-parallel veins) in upper Aptian shales (coin 765 diameter: 2.3 cm). C. Scanning electron microscopy and the repartition of the carbon, the calcium and