S. H. Joo, A. J. Feitz, and T. D. Waite, Oxidative Degradation of the Carbothioate Herbicide, Molinate, Using Nanoscale Zero-Valent Iron, Environmental Science & Technology, vol.38, issue.7, pp.2242-2247, 2004.

J. Ma, D. He, R. N. Collins, C. He, and T. D. Waite, The tortoise versus the hare - Possible advantages of microparticulate zerovalent iron (mZVI) over nanoparticulate zerovalent iron (nZVI) in aerobic degradation of contaminants, Water Research, vol.105, pp.331-340, 2016.

S. Tsarev, R. N. Collins, E. S. Ilton, A. Fahy, and T. D. Waite, The short-term reduction of uranium by nanoscale zero-valent iron (nZVI): role of oxide shell, reduction mechanism and the formation of U(v)-carbonate phases, Environmental Science: Nano, vol.4, issue.6, pp.1304-1313, 2017.

D. He, J. Ma, R. N. Collins, and T. D. Waite, Effect of Structural Transformation of Nanoparticulate Zero-Valent Iron on Generation of Reactive Oxygen Species, Environmental Science & Technology, vol.50, issue.7, pp.3820-3828, 2016.

T. Liu, X. Li, and T. D. Waite, Depassivation of Aged Fe0 by Ferrous Ions: Implications to Contaminant Degradation, Environmental Science & Technology, vol.47, issue.23, pp.13712-13720, 2013.

T. Phenrat, T. Thongboot, and G. V. Lowry, Electromagnetic Induction of Zerovalent Iron (ZVI) Powder and Nanoscale Zerovalent Iron (NZVI) Particles Enhances Dechlorination of Trichloroethylene in Contaminated Groundwater and Soil: Proof of Concept, Environmental Science & Technology, vol.50, issue.2, pp.872-880, 2015.

Y. Wei, S. Wu, C. Chou, C. Che, S. Tsai et al., Influence of nanoscale zero-valent iron on geochemical properties of groundwater and vinyl chloride degradation: A field case study, Water Research, vol.44, issue.1, pp.131-140, 2010.

C. Su, R. W. Puls, T. A. Krug, M. T. Watling, S. K. O'hara et al., Travel distance and transformation of injected emulsified zerovalent iron nanoparticles in the subsurface during two and half years, Water Research, vol.47, issue.12, pp.4095-4106, 2013.

W. X. Zhang, Nanoscale Iron Particles for Environmental Remediation: An Overview, J. Nanopart. Res, vol.5, pp.323-332, 2003.

B. C. Reinsch, B. Forsberg, R. L. Penn, C. S. Kim, and G. V. Lowry, Chemical Transformations during Aging of Zerovalent Iron Nanoparticles in the Presence of Common Groundwater Dissolved Constituents, Environmental Science & Technology, vol.44, issue.9, pp.3455-3461, 2010.

J. Ahn, C. Kim, H. Kim, K. Hwang, and I. Hwang, Effects of oxidants on in situ treatment of a DNAPL source by nanoscale zero-valent iron: A field study, Water Research, vol.107, pp.57-65, 2016.

J. Chen, Z. Xiu, G. V. Lowry, and P. J. Alvarez, Effect of natural organic matter on toxicity and reactivity of nano-scale zero-valent iron, Water Research, vol.45, issue.5, pp.1995-2001, 2011.

H. Pullin, R. A. Crane, D. J. Morgan, and T. B. Scott, The effect of common groundwater anions on the aqueous corrosion of zero-valent iron nanoparticles and associated removal of aqueous copper and zinc, Journal of Environmental Chemical Engineering, vol.5, issue.1, pp.1166-1173, 2017.

A. Liu, J. Liu, J. Han, and W. Zhang, Evolution of nanoscale zero-valent iron (nZVI) in water: Microscopic and spectroscopic evidence on the formation of nano- and micro-structured iron oxides, Journal of Hazardous Materials, vol.322, pp.129-135, 2017.

C. Poppe, M. Ayroud, G. Ollis, M. Chirino-trejo, N. Smart et al., Trends in Antimicrobial Resistance ofSalmonellaIsolated from Animals, Foods of Animal Origin, and the Environment of Animal Production in Canada, 1994-1997, Microbial Drug Resistance, vol.7, issue.2, pp.197-212, 2001.

F. Campioni, R. A. Souza, V. V. Martins, E. G. Stehling, A. M. Bergamini et al., Prevalence ofgyrAMutations in Nalidixic Acid-Resistant Strains ofSalmonellaEnteritidis Isolated from Humans, Food, Chickens, and the Farm Environment in Brazil, Microbial Drug Resistance, vol.23, issue.4, pp.421-428, 2017.

U. Schwertmann and R. M. Cornell, Iron Oxides in the Laboratory: Preparation and Characterization, 2000.

S. Bae, S. Gim, H. Kim, and K. Hanna, Effect of NaBH 4 on properties of nanoscale zero-valent iron and its catalytic activity for reduction of p -nitrophenol, Applied Catalysis B: Environmental, vol.182, pp.541-549, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01216302

S. Bae and W. Lee, Influence of Riboflavin on Nanoscale Zero-Valent Iron Reactivity during the Degradation of Carbon Tetrachloride, Environmental Science & Technology, vol.48, issue.4, pp.2368-2376, 2014.

J. Xu, R. Marsac, C. Wei, F. Wu, J. F. Boily et al., Cobinding of Pharmaceutical Compounds at Mineral Surfaces: Mechanistic Modeling of Binding and Cobinding of Nalidixic Acid and Niflumic Acid at Goethite Surfaces, Environmental Science & Technology, vol.51, issue.20, pp.11617-11624, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01588238

A. Buchholz, C. Laskov, and S. B. Haderlein, Effects of Zwitterionic Buffers on Sorption of Ferrous Iron at Goethite and Its Oxidation by CCl4, Environmental Science & Technology, vol.45, issue.8, pp.3355-3360, 2011.

R. Marsac, M. Pasturel, and K. Hanna, Reduction Kinetics of Nitroaromatic Compounds by Titanium-Substituted Magnetite, The Journal of Physical Chemistry C, vol.121, issue.21, pp.11399-11406, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01559202

D. L. Parkhurst and C. A. Appelo, User's guide to PHREEQC (Version 2): A computer program for speciation, batch-reaction, one-dimensional transport, and inverse geochemical calculations, Water Resources Investigations Report, pp.99-4259, 1999.

W. R. Vincent, S. G. Schulman, J. M. Midgley, W. J. Van-oort, and R. H. Sorel, Prototropic and metal complexation equilibria of nalidixic acid in the physiological pH region, International Journal of Pharmaceutics, vol.9, issue.3, pp.191-198, 1981.

R. Jolsterå, L. Gunneriusson, and A. Holmgren, Surface complexation modeling of Fe3O4?H+ and Mg(II) sorption onto maghemite and magnetite, Journal of Colloid and Interface Science, vol.386, issue.1, pp.260-267, 2012.

W. Cheng, R. Marsac, and K. Hanna, Influence of Magnetite Stoichiometry on the Binding of Emerging Organic Contaminants, Environmental Science & Technology, vol.52, issue.2, pp.467-473, 2017.
URL : https://hal.archives-ouvertes.fr/insu-01662350

S. Bae and K. Hanna, Reactivity of Nanoscale Zero-Valent Iron in Unbuffered Systems: Effect of pH and Fe(II) Dissolution, Environmental Science & Technology, vol.49, issue.17, pp.10536-10543, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01188220

Y. Bai, Y. Du, J. Xu, and H. Chen, Choline biosensors based on a bi-electrocatalytic property of MnO2 nanoparticles modified electrodes to H2O2, Electrochemistry Communications, vol.9, issue.10, pp.2611-2616, 2007.

T. A. Kurniawan and W. Lo, Removal of refractory compounds from stabilized landfill leachate using an integrated H2O2 oxidation and granular activated carbon (GAC) adsorption treatment, Water Research, vol.43, issue.16, pp.4079-4091, 2009.

N. V. Klassen, D. Marchington, and H. C. Mcgowan, H2O2 Determination by the I3- Method and by KMnO4 Titration, Analytical Chemistry, vol.66, issue.18, pp.2921-2925, 1994.

Y. Segura, F. Martínez, J. A. Melero, and J. L. Fierro, Zero valent iron (ZVI) mediated Fenton degradation of industrial wastewater: Treatment performance and characterization of final composites, Chemical Engineering Journal, vol.269, pp.298-305, 2015.

W. Zhang, H. Gao, J. He, P. Yang, D. Wang et al., Removal of norfloxacin using coupled synthesized nanoscale zero-valent iron (nZVI) with H2O2 system: Optimization of operating conditions and degradation pathway, Separation and Purification Technology, vol.172, pp.158-167, 2017.

W. Cheng, E. L. Kalahroodi, R. Marsac, and K. Hanna, Adsorption of Quinolone Antibiotics to Goethite under Seawater Conditions: Application of a Surface Complexation Model, Environmental Science & Technology, vol.53, issue.3, pp.1130-1138, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01964933

Q. Du, G. Li, S. Zhang, J. Song, Y. Zhao et al., High-dispersion zero-valent iron particles stabilized by artificial humic acid for lead ion removal, Journal of Hazardous Materials, vol.383, p.121170, 2020.

H. M. Ibrahim, M. Awad, A. S. Al-farraj, and A. M. Al-turki, Stability and Dynamic Aggregation of Bare and Stabilized Zero-Valent Iron Nanoparticles under Variable Solution Chemistry, Nanomaterials, vol.10, issue.2, p.192, 2020.

H. Dong and I. M. Lo, Influence of humic acid on the colloidal stability of surface-modified nano zero-valent iron, Water Research, vol.47, issue.1, pp.419-427, 2013.

E. S. Krystofiak, E. C. Mattson, P. M. Voyles, C. J. Hirschmugl, R. M. Albrecht et al., Multiple Morphologies of Gold?Magnetite Heterostructure Nanoparticles are Effectively Functionalized with Protein for Cell Targeting, Microscopy and Microanalysis, vol.19, issue.4, pp.821-834, 2013.

A. Liu, J. Liu, B. Pan, and W. Zhang, Formation of lepidocrocite (?-FeOOH) from oxidation of nanoscale zero-valent iron (nZVI) in oxygenated water, RSC Adv., vol.4, issue.101, pp.57377-57382, 2014.

R. P. Araújo-neto, E. L. Silva-freitas, J. F. Carvalho, T. R. Pontes, K. L. Silva et al., Monodisperse sodium oleate coated magnetite high susceptibility nanoparticles for hyperthermia applications, Journal of Magnetism and Magnetic Materials, vol.364, pp.72-79, 2014.

Y. Lalatonne, J. Richardi, and M. P. Pileni, Van der Waals versus dipolar forces controlling mesoscopic organizations of magnetic nanocrystals, Nature Materials, vol.3, issue.2, pp.121-125, 2004.

M. I. Dar and S. A. Shivashankar, Single crystalline magnetite, maghemite, and hematite nanoparticles with rich coercivity, RSC Adv., vol.4, issue.8, pp.4105-4113, 2014.

S. Bae, R. N. Collins, T. D. Waite, and K. Hanna, Advances in Surface Passivation of Nanoscale Zerovalent Iron: A Critical Review, Environmental Science & Technology, vol.52, issue.21, pp.12010-12025, 2018.
URL : https://hal.archives-ouvertes.fr/hal-01939031

Y. Liu and G. V. Lowry, Effect of Particle Age (Fe0Content) and Solution pH On NZVI Reactivity: H2Evolution and TCE Dechlorination, Environmental Science & Technology, vol.40, issue.19, pp.6085-6090, 2006.

M. A. Kumar, S. Bae, S. Han, Y. Chang, and W. Lee, Reductive dechlorination of trichloroethylene by polyvinylpyrrolidone stabilized nanoscale zerovalent iron particles with Ni, Journal of Hazardous Materials, vol.340, pp.399-406, 2017.

S. Luo, T. Lu, L. Peng, J. Shao, Q. Zeng et al., Synthesis of nanoscale zero-valent iron immobilized in alginate microcapsules for removal of Pb(ii) from aqueous solution, Journal of Materials Chemistry A, vol.2, issue.37, p.15463, 2014.

T. Yamashita and P. Hayes, Erratum to ?Analysis of XPS spectra of Fe2+ and Fe3+ ions in oxide materials? [Appl. Surf. Sci. 254 (2008) 2441?2449], Applied Surface Science, vol.255, issue.18, p.8194, 2009.

T. Radu, C. Iacovita, D. Benea, and R. Turcu, X-Ray Photoelectron Spectroscopic Characterization of Iron Oxide Nanoparticles, Applied Surface Science, vol.405, pp.337-343, 2017.

F. Kraushofer, Z. Jakub, M. Bichler, J. Hulva, P. Drmota et al., Atomic-Scale Structure of the Hematite ?-Fe2O3(11?02) ?R-Cut? Surface, The Journal of Physical Chemistry C, vol.122, issue.3, pp.1657-1669, 2018.

M. Usman, M. Abdelmoula, K. Hanna, B. Grégoire, P. Faure et al., FeII induced mineralogical transformations of ferric oxyhydroxides into magnetite of variable stoichiometry and morphology, Journal of Solid State Chemistry, vol.194, pp.328-335, 2012.
URL : https://hal.archives-ouvertes.fr/hal-00845705

J. P. Jolivet and E. Tronc, Interfacial electron transfer in colloidal spinel iron oxide. Conversion of Fe3O4-?Fe2O3 in aqueous medium, Journal of Colloid and Interface Science, vol.125, issue.2, pp.688-701, 1988.

C. He, D. He, R. N. Collins, S. Garg, Y. Mu et al., Effects of Good?s Buffers and pH on the Structural Transformation of Zero Valent Iron and the Oxidative Degradation of Contaminants, Environmental Science & Technology, vol.52, issue.3, pp.1393-1403, 2018.