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Abstract. Recent measurements of quiet Sun heating events by Krucker & Benz (1998) give strong support
to Parker's (1988) hypothesis that small-scale dissipative events make the main contribution to quiet heating.
Moreover, combining their observations with the analysis by Priest et al. (2000), it can be concluded that the
sources driving these dissipative events are also small-scale sources, typically of the order of (or smaller than)
2000 km and below the resolution of modern instruments. Thus the question arises of how these small scale events
participate in the larger-scale observable phenomena, and how the information about small scales can be extracted
from observations. This problem is treated in the framework of a simple phenomenological model introduced in
Krasnoselskikh et al. (2002), which allows one to switch between various small-scale sources and dissipative
processes. The large-scale structure of the magnetic �eld is studied by means of Singular Value Decomposition
(SVD) and a derived entropy, techniques which are readily applicable to experimental data.
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1. Why small-scale sources?

The anomalously high temperature of the solar corona
is still a puzzling problem of solar physics, in spite of
the considerable theoretical and experimental e�orts in-
volved for a long time (e.g. Priest et al. 2000; Einaudi &
Velli 1994). Since the energy release in the largest heat-
ing events (
ares and micro
ares) does not supply enough
power to heat the corona, the statistical behavior of the
smaller-scale and less energetic but much more frequent
events may be the key to the problem, as was conjectured
some time ago by Parker (1988).

Recently, Krucker & Benz (1998) reported an im-
portant result that supports Parker's hypothesis. Using
Yohkoh/SXT observations, and assuming that the 
aring
region has a constant height, they found that in the en-
ergy range 1024{1026 ergs, the energy probability density
follows a power law with an exponent of about � 2:59.
Such an exponent below� 2 suggests that heating takes
place on small scales, whereas an exponent greater than
� 2 would suggest a prevalent role played by large-scale
phenomena. The conclusion of Krucker & Benz was con-
�rmed by Parnell & Jupp (2000), who estimated the expo-
nent to be between� 2 and � 2:1 by making use of TRACE
data and by supposing that the height is proportional to
the square root of the area. Mitra & Benz (2000) discussed
the same observations as Krucker & Benz by supposing a
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height variation similar to that used by Parnell & Jupp,
and showed that the exponent, although larger, is still be-
low � 2.

Making use of multi-wavelength analysis, Benz &
Krucker (1999) also showed that energy release mecha-
nisms are similar in large scale loops and in the faintest
observable events. They further noticed that the heating
events occur not only on the boundaries of the magnetic
network but within the cells too. Priest et al. (1998), by
comparing observations with model predictions for plasma
heating in the magnetic loop with distributed energy
sources, have found that the thermoconductivity along the
magnetic �eld lines due to electrons is high enough and
concluded that the heating is quasi-homogeneous along
the magnetic loop. These results support the hypothesis
that the heating mechanism that is not located in the
vicinity of the footpoints but is instead spread over the arc.
It then follows that the characteristic spatial scale of the
magnetic �eld loops that supply the dissipated magnetic
�eld may be of the same order of magnitude as the charac-
teristic dissipation scale. We may thus conclude that not
only the dissipative process, but also the energy sources
have small characteristic length.

However, Aschwanden with co-authors (2000) ana-
lyzed TRACE observations of the nano-
ares in the energy
range from 1024 to 1026 ergs in two wavelengths 171�A and
195�A. They have shown that \EUV nano-
ares represent
miniature versions of larger 
ares observedon soft X-rays
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(SXR) and hard X-rays (HXR) scaled to lower temper-
atures (Te < 2 MK), lower densities (ne < 109 cm� 3)
and somewhat smaller spatial scales (l � 2� 20 Mm)."
They showed that the cooling time is de�ned by the ra-
diative cooling, but the conductive cooling timescale is
about an order of magnitude shorter suggesting repetitive
heating cycles. They suggested that the heating mainly
takes place around the footpoints, implicitly suggesting
that the scale of sources can be even smaller than the
scale of dissipation sites. They presented the spatial distri-
bution of nano-
ares that seem to be quite homogeneous
(see Fig. 1 of their paper). They suggest that the heating
takes place on even smaller scales than nano
ares. We use
in our model the quite similar idea that the sources should
be distributed homogeneously in space.

It is therefore important to discuss the role and the
properties of sources and dissipative processes in the
framework of simpli�ed models. Such an approach allows
us to study the correspondence between large-scale mag-
netic �eld properties and the characteristics of the small-
scale (eventually smaller than the experimental resolu-
tion) sources and dissipative events. In this work we shall
investigate the possibility of getting information about
small-scale magnetic energy sources by making use only
of the large-scale magnetic �eld, as would be the case
with experimental data. To do so, we shall consider a phe-
nomenological model and apply to it di�erent statistical
tests.

A phenomenological model allowing for di�erent types
of sources and physical dissipation mechanisms was re-
cently proposed in Krasnoselskikh et al. (2002). The re-
sults concerning the temporal statistics of the total dissi-
pated energy are brie
y recalled in the next section. To
investigate the spatial properties of the magnetic �elds
and the dissipative events, statistical tests are needed,
which can be applied both to simulation and to exper-
imental data. Tools such as the magnetic �eld entropy
and extraction of the most energetic and large-scale spa-
tial/temporal eigenmodes by means of Singular Value
Decomposition (SVD) are described in Sect. 3. Their ap-
plication to our model and their ability to discriminate
between various sources and dissipative mechanisms are
discussed in Sect. 4, and the �nal section proposes a re-
view and a critical discussion of the results.

2. Small-scale driving and dissipation

Various phenomenological models of 
are-like events and
cooperative phenomena in the corona have been consid-
ered in the literature (e.g. Lu & Hamilton 1991; Vlahos
et al. 1995; Georgoulis et al. 2001), mostly relying on the
notion of Self-Organized Criticality (Jensen 1998). Such
models usually exhibit in�nite-range spatial correlations,
and due to the tenuosity and localization of the driving
do not provide an appropriate framework for our purpose.

Instead, we shall use the model introduced in
Krasnoselskikh et al. (2002) and Podladchikova et al.
(1999) which allows for a driving more distributed in space

and dissipative processes relevant to heating studies. As
usual, the model represents a simpli�cation of the magne-
tohydrodynamic induction equation

@B
@t

= r � (u � B ) + dissipative term : (1)

The turbulent photospheric convection in some sense ran-
domizes the �rst term on the right hand side, which can
be replaced by various source terms with speci�ed sta-
tistical properties. The dissipative terms may take into
account di�erent e�ects such as normal and anomalous
resistivity or magnetic reconnection, which in general de-
pend on the current density and magnetic �eld con�gura-
tion. Their meaning and the di�erences between the two
in this context are discussed at length in Krasnoselskikh
et al. (2002).

A cellular automata model combining the direct solu-
tion of the MHD equations in a 3D geometry with the
local magnetic �eld dissipation using large-scale energy
sources associated with the vector potentialA was stud-
ied by Isliker et al. (2000, 2001). The authors have shown
that large scale variations of the vector potential in the
framework of their model can give rise to the formation of
the smaller-scale currents. The dissipation in their model
is similar to \anomalous resistivity dissipation" that we
study here.

The model is two-dimensional, the magnetic �eld being
perpendicular to the grid, with periodic boundary condi-
tions. A discrete description of the magnetic �eld in terms
of cells is proposed, while the currents are computed from
�

j x

j y

�
=

1
�

�
B (x; y) � B (x; y + � )
B (x + �; y ) � B (x; y) ;

�

where� is cell length (� = 1 in the following). The currents
can be considered as propagating on the border between
the cells, and satis�es Kircho�'s law at each node.

As discussed in the introduction, one may suppose
that the source terms that represent the magnetic energy
injection and the dissipative processes have comparable
spatial scales. Therefore, the source terms that mimic the
magnetic energy injection from the turbulent photosphere
are assumed to have a vanishing time average; they act in-
dependently on each cell, at each time step. Three types of
sources with di�erent statistical properties are considered:

{ Random sources. The simplest source consists of
random variables �B from the set f� 1; 0; 1g, which
act individually on each cell. This source can be made
dipolar by dividing the grid into two parts: random
numbers from the same set, but with opposite signs
are fed into each pair of cells.

{ A chaotic source. Turbulence is certainly not a com-
pletely stochastic process, and some of its aspects are
enlightened by deterministic models. In each cell the
source evolves according to

�B n +1 = 1 � 2(�B n )2;
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Fig. 1. Graphical representation of the Geisel map (solid line).
The �xed points of the map correspond to the intersections of
the graph with the straight line Bn +1 = Bn (dashed line).

where �B 2 [� 1; 1] and the subscript n denotes the
time step. This so-called Ulam map is closely related to
the logistic map. Both are well known for their chaotic
dynamics.

{ Geisel map source. The map introduced by Geisel &
Thomae (1984), hereafter called a Geisel map, provides
another example of a source with chaotic dynamics

Bn +1 = f (Bn ):

Because of its marginally stable �xed points, this map
may generate anomalous subdi�usion, since

hB 2i / t � ; � < 1:

It is generally expected that magnetic �eld lines in
a turbulent plasma exhibit a subdi�usive behavior,
which is, however, more complex than described above.

We stress again that the sources act independently on each
cell, and are updated at each time step. Dissipation is
therefore the only mechanism by which neighboring cells
can interact.

Dissipation allows for the conversion of magnetic en-
ergy into particle acceleration and thermal energy, and
in our model provides the coupling between the magnetic
�eld elements. Dissipative processes are most important
where a current sheet carrying strong current density has
formed. Neglecting resistivity, which is small in the corona,
one is left with various instabilities of magnetic �eld con-
�gurations that can cause dissipation. We consider two of
them:

{ Anomalous resistivity , which arises from the de-
velopment of certain instabilities such as modi�ed
Buneman instability when the electric current exceeds
a certain threshold in collisionless plasma. In our model
the currents are simply annihilated whenever they ex-
ceed a certain threshold,

jj j � j max :

{ Reconnection , for which we require in addition
the magnetic �eld to have an X -point con�guration.
Hence, the following two conditions should be satis�ed
simultaneously:

jj j = jB � B 0j � j max ;

B � B 0 < 0: (2)

Because of this new condition, currents may exist that
largely exceed the thresholdj max .

The main di�erence between these two processes is that
reconnection represents a change in equilibrium, from one
topology (here aX -point) to another, whereas anomalous
resistivity does not require any particular topology and
thus may also act on the interior of cells and not only at
boundaries. Another important di�erence is that anoma-
lous resistivity provides Joule-like heating, while recon-
nection yields accelerated outgoing 
ows and thus may be
associated with non-thermal radiation.

When the current is annihilated, the values B and B 0

of the magnetic �eld in neighboring cells are replaced by
1=2(B + B 0), so the magnetic energy that is dissipated in
a single event becomes (with� 0 = 1)

� E =
1
4

(B � B 0)2 =
1
4

j 2 &
1
4

j 2
max :

The procedure for modeling the current dissipation is the
same regardless of the dissipation mechanism. At each
time step, the currents satisfying the dissipation criterion
are dissipated until all of them are subcritical (or have the
same sign in the case of reconnection). Then, we proceed
to the next time step and switch on the source. Indeed,
dissipative processes are supposed to be faster than the
driving terms. The total dissipated energy is calculated as
the sum over all the dissipated currents for the considered
time step.

In Podladchikova et al. (1999) and Krasnoselskikh
et al. (2002), the in
uence of the dissipative processes and
source terms on the statistical properties of the dissipated
energy were studied. The dissipation was found to have
a signi�cant in
uence on the statistics of dissipated en-
ergy. Indeed the reconnection mechanism was shown to
yield the strongest deviation from a Gaussian distribution
in the large energies. However, the probability density of
the dissipated energy was shown to be rather insensitive
to the nature of the magnetic �eld sources. In the present
paper, we would like to further explore the dependence of
the statistical properties of the large-scale magnetic �eld
upon the physical characteristics of the source and dissi-
pation processes. This will be done in the framework of
our model. Our objective therefore is to study an inverse
problem: how do the large-scale properties of the magnetic
�eld allow us to characterize the sources and the dissipa-
tive processes? To do so, we shall use various measures of
spatial complexity.
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3. Characterization of spatial complexity

Spatial complexity can be characterized in many di�erent
ways (e.g. Grassberger 1986). Linear properties are tradi-
tionally studied by considering the time averaged spatial
correlation function

C(r ) = hB(x ; t) B (x + r ; t)i x ;t =hB (x ; t)2i x ;t ; (3)

where the average is carried out over di�erent positions
and times (or events). We have computed the character-
istic decay length of this correlation function for various
sources, dissipation mechanisms, and thresholds.

A di�erent approach, which is commonly used in image
processing, is based on the Singular Value Decomposition
(SVD) or Karhunen-Lo�eve Transform, see Golub &
van Loan (1996). For each time step, the bivariate mag-
netic �eld intensity B (x; y) can be viewed as 2D image.
We decompose this image into a set of separable spatial
modes

B(x; y) =
NX

k=1

� k f k (x) g�
k (y): (4)

By making these modes orthogonalhf k f �
l i = hgk g�

l i =
� k;l , the decomposition becomes unique. The weights� k of
these modes, also called singular values, are conventionally
sorted in decreasing order, and are invariant with respect
to all orthogonal transformations of the matrix B (x; y). In
our case, the numberN of modes is equal to the spatial
grid size.

A key property of the SVD is that it captures large-
scale structures in heavily weighted modes, whereas pat-
terns that are little correlated in space are deferred to
modes with small weights. The distribution of the singular
values is therefore indicative of the spatial disorder: a 
at
distribution means that there is no characteristic spatial
scale and hence, the magnetic �eld should not show large-
scale patterns. Conversely, a peaked distribution suggests
that there are coherent structures (Dudok de Wit 1995).
It must be stressed that this approach is, like the previous
one, based on second order moments only, since the spatial
modes and their singular values issue from the eigenstruc-
ture of the spatial correlation matrix of the magnetic �eld.

From the SVD modes of the 2D magnetic �eld, one can
de�ne a measure of spatial complexity, which is called the
SVD entropy (Aubry et al. 1991). Let Ek = � 2

k =
P

i � 2
i be

the fractional amount of energy which is contained in the
kth mode. The SVD entropy can then be de�ned as the
limit

H = � lim
N !1

1
logN

NX

k=1

Ek logEk : (5)

The maximum value H = 1 is reached when spatial disor-
der is maximum, that is when Ek = 1 =N for all k. H = 0
means that all the variance is contained in a single mode.
Note that Aubry et al. (1991) also introduced a purely
temporal and a spatio-temporal entropy, but in this pa-
per we shall focus on the spatial entropy only.

Fig. 2. Dependence of the correlation length on the threshold
of dissipation, for both dissipation rules. Anomalous resistivity
is marked by triangles, reconnection by squares.

In practice, it is rarely necessary to take the limit
N ! 1 in Eq. (5). Let HM be the SVD entropy as com-
puted from a subset of �nite size M � M (with M � N )

HM = �
1

logM

MX

k=1

Ek logEk : (6)

This quantity shall converge fast enough toward its
asymptotic value. For large enoughM , HM is thus an
intensive quantity (independent of the subsystem sizeM )
and thus should rather be called an entropy-per-cell.

The SVD can also be used as a linear �lter to extract
large scale patterns from a background with small-scale

uctuations. To do so, one should perform the SVD and
then in Eq. (4) sum over the strongest modes only, to
obtain a �ltered magnetic �eld. There is obviously some
arbitrariness involved in the identi�cation of what we call
strong modes, but the process can be automated by using
robust selection criteria, see for example Dudok de Wit
(1995).

Notice that in contrast to several other studies, we
shall not use the fractal dimension (more exactly, the
Haussdorf-Besicovitch dimension) of the magnetic �eld as
an additional measure of spatial complexity. Indeed, we
found that in most cases, the di�erences observed between
the di�erent sources and/or dissipation mechanisms was
too small relative to the numerous uncertainties that are
inherent to the estimation of such a quantity. We note,
though, that the 2D magnetic �eld was generally found to
have fractal properties, with a dimension D = 1 :5� 1:7.

4. Spatial complexity and properties of the source
and dissipation

4.1. Spatial correlations

The di�erent measures of spatial complexity described
above were applied to the 2D magnetic �eld, after
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Fig. 3. Averaged spatial correlation coe�cient of the mag-
netic �eld, with semilogarithmic axes (solid lines). Dotted lines
represent the best �t by an exponential function. The re-
sults are obtained for random and subdi�usive sources with
a 200 � 200 grid size and a dissipation threshold j max = 1.
a) Random source, anomalous resistivity dissipation, corre-
lation length L � 17; b) random source, reconnection dis-
sipation, correlation length L � 19; c) subdi�usive source,
anomalous resistivity dissipation, correlation length L � 23;
d) subdi�usive source, reconnection dissipation.

initial transients had died out. In the following, we con-
sider time averages.

The spatial correlation function was estimated using
Eq. (3). For the small grid sizes, of the order of 30� 30,
the correlation function decays as a power-law. As shown
in Krasnoselskikh et al. (2002), the probability density
of the total dissipated energy in this case also decays as
a power-law. This apparent indication for self-organized
critical behavior, however, is a mere artifact of the small
grid size, since it disappears with larger grids. Indeed, for
grid sizes of about 100� 100 and beyond, the correlation
functions decay almost exponentially, while the dissipated
energy exhibits a quasi-Gaussian distribution.

From the exponentially decaying correlation functions,
we de�ne the correlation length L as

C(r ) = exp( � r=L ):

We found L to remain almost constant as soon as the
grid size exceeds about 200� 200. In that case,L is much
smaller than the grid size. It is therefore legitimate to
expect the results not to depend signi�cantly on the grid
size or on the boundary conditions. In the remainder of
this paper, we shall only present results for 400� 400 grids.
A small threshold (j max = 1) will be used, which is of the
order of

p
h�B 2i .

As shown in Fig. 2, for a random magnetic �eld source
the average correlation length L is larger for reconnec-
tion type dissipation than for anomalous resistivity. This
may be explained by the presence of supercritical currents
j > j max . Moreover, in both cases the correlation lengths
are decreasing functions ofj max (see Fig. 2). We do not
�nd signi�cant di�erences in the functional dependence of
the correlation function or in the correlation length when
changing the processes. The single exception is the Geisel
map source with reconnection, for which the correlation
function decays neither exponentially nor as a power-law,
see Fig. 3d. No accurate correlation length can be inferred
in that case.

The main result here is that we cannot distinguish be-
tween di�erent processes solely on the basis of the cor-
relation length. This is in contrast with the marked dif-
ferences one observes when visualizing the magnetic �elds
with di�erent sources, see for example Figs. 4b and 5b.
Thus, alternative indicators are needed.

4.2. Singular values and coherent spatial modes

As discussed in the previous section, the Singular Value
Decomposition provides an orthogonal decomposition
which allows us to extract coherent patterns that may
possibly exist in the bivariate magnetic �eld.

The distribution of singular values generally reveals a
few large-amplitude modes, followed by a long tail of weak
modes, see Fig. 6. Such a distribution suggests that the
salient features of the bi-dimensional wave�eld are cap-
tured by a few modes only. Indeed, a long tail is indica-
tive of 
uctuations that are randomly distributed in space.
For instance, the most energetic mode (f 1(x) in the no-
tation of Eq. (4)) for a Geisel source with dissipation by
reconnection, clearly reveals a large-scale coherent struc-
ture (Fig. 7).

The fact that the most heavily weighted modes cor-
respond to large-scale magnetic �eld structures, can also
be seen by comparing Figs. 4 and 5. In both �gures, the
sub�gures b) and c) compare the original magnetic �eld,
and the �eld that has been reconstructed using 20 only of
the strongest modes. It appears that the strongest modes
capture the large-scale coherent structure of the magnetic
�eld.

This analysis, however, only provides a decomposition
of the magnetic �eld at a given time. No information is
obtained about the lifetime of these structures, which is
a crucial quantity. It appears, however, that the heavily
weighted modes persist for long times, as compared to the
original magnetic �eld. This can be seen by comparing
the �ltered magnetic �eld at two instants separated by
2000 time steps (Figs. 5c and d). One can actually see
in Figs. 5a{c how these structures grow from an initially
disordered state.

Thus the coherent structures extracted by SVD have
a long lifetime and produce a slow decay of the tempo-
ral autocorrelation function. While small-scale structures
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Fig. 4. Excerpt of the magnetic �eld obtained for a random source with reconnection, with j max = 1. a) Magnetic �eld at
t = 1000; b) zoom of the preceding image;c) same zoom as inb) , but with the wave�eld reconstructed using 20 only of the
strongest SVD modes, out of 400; d) same zoom asc) , but at a later time t = 2000. The SVD entropies at t = 1000 and
t = 2000 are respectively H = 0 :79 and H = 0 :81.

rapidly appear and disappear, the large-scale ones evolve
slowly. In that sense, they are truly coherent structures.

4.3. Magnetic �eld entropy

Quantitatively, the degree of coherence of the magnetic
�eld can be measured by the spatial entropy (or more ex-
actly entropy-per-cell) de�ned by Eq. (5) from the singu-
lar values. This de�nition involves a limit N ! 1 , but in
practice, for large enough grid sizes, it can be checked that

the quantity de�ned in Eq. (6), computed for a M � M
subset of B , converges toward a well-de�ned limit as M
increases. Computing this entropyHM for increasing M ,
we obtain the curves displayed in Fig. 9, which show that
the entropy already converges for matrix sizes of about
100� 100. It seems that the convergence is even faster
for the subdi�usive source than for the random source.
Typically, HM converges when the subsystem size approx-
imately reaches the size of coherent structures. We may
thus conclude that the entropy H is fairly independent of
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Fig. 5. Excerpt of the magnetic �eld obtained for a subdi�usive source with reconnection, with j max = 1. a) Magnetic �eld in
a transient state, at t = 100; b) magnetic �eld in a stationary state, at t = 20 000; c) same as inb) , but with the wave�eld
reconstructed using 20 only of the strongest SVD modes, out of 400; d) magnetic �eld at a later time, t = 30 000. The SVD
entropies at t = 100 and t = 20 000 and t = 30 000 are respectively H = 0 :73, H = 0 :51 and H = 0 :53.

Table 1. Variation of the entropy in time, for the subdi�usive
source and reconnection (see also Fig. 5).

t 100 500 20 000 30 000
H 0.73 0.69 0.51 0.527

the grid size, provided that the grid size exceeds a thresh-
old value of about 100� 100.

The entropy has a monotonous decay in time and
converges toward a �nite value in the steady state (see
Table 1), indicating the simultaneous decrease of spatial
complexity and the formation of slowly evolving large-
scale magnetic �eld structures.

Table 2. Entropy in the steady state for various source types,
and dissipation by reconnection.

source type H
random 0.8
Ulam 0.78
Geisel 0.53

The major result here is that the value toward which
the entropy converges in time exhibits signi�cant di�er-
ences when the di�erent sources are used, as summarized
in Table 2.
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Fig. 6. Distribution of the singular values associated with a
400� 400 magnetic �eld matrix. Only the 100 �rst singular val-
ues are shown. This case corresponds to a subdi�usive source
with reconnection dissipation.

Fig. 7. Spatial pro�le of the most energetic spatial mode f 1(x)
obtained by the same Singular Value Decomposition. The data
set is the same as in Fig. 6.

5. Conclusion and discussion

To study coronal heating due to dissipation of small-
scale current layers, we have performed a statistical anal-
ysis of a simple model. The model was introduced in
Krasnoselskikh et al. (2002), and its principal di�erence to
previous ones is that the system is driven by small-scale
homogeneously distributed sources acting on the entire
grid for each time step. The idea to consider small-scale
sources is motivated by observations by Benz & Krucker
(1998, 1999) that heating occurs on the level of the chro-
mosphere, thus, the magnetic �eld structures, dissipation
of which supplies the energy for the heating, are also of a
small scale.

The question addressed in this paper is the following: if
the actual measurements cannot resolve the characteristic
scale of the heating, in what sense are the \macroscopic"
observable properties in
uenced by the properties of the
smaller-scale sources?

To answer this question we have carried out a com-
parative analysis of statistical estimations of the large-
scale spatial characteristics of the magnetic �eld such as
the correlation length, entropy and most energetic eigen-
modes for the di�erent source types that were used in the
model (random, chaotic and intermittent with anomalous
temporal di�usion).

The \noisy" small scales were �ltered out in order
to study the large-scale characteristics of the magnetic
�eld. For this purpose we have reconstructed the magnetic

Fig. 8. Averaged temporal correlation function of the mag-
netic �eld (solid lines) in log-linear plot calculated from 4 � 104

times steps. Dotted lines represent the best �ts by an exponen-
tial function. The results are obtained for random and sub-
di�usive sources, reconnection dissipation, with a threshold
of dissipation j max = 1. a) Random source, correlation time
� � 202; b) the same as previous, but only for the �rst 20
modes, � � 220; c) subdi�usive source, � � 1435; d) the same
as c) , but only for �rst 20 modes, � � 2958.

Fig. 9. Partial entropies H M as a function of the grid size
M . The continuous line is for the subdi�usive source, and the
dashed one for the random source. This entropy is normalized
so that H = 1 corresponds to maximum disorder.

�eld from eigenmodes given by SVD that corresponds to
the most energetic coherent structures. The less energetic
modes that correspond to the noise level were truncated.
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The results can be summarized as follows:
The large-scale spatial characteristics of the magnetic

�eld such as the correlation length, entropy and most en-
ergetic eigenmodes depend signi�cantly on both the sta-
tistical properties of small-scale magnetic �eld sources and
the dissipation mechanisms.

{ It was found that the temporal average of the correla-
tion function is exponential, i.e. the correlation length
is �nite and not in�nite, as supposed in SOC sys-
tems. This length is a little bit larger for the reconnec-
tion dissipation and also it depends on the dissipation
threshold.

{ With the subdi�usive (Geisel) source and reconnection
dissipation, the correlation signi�cantly departs from
the exponential.

{ The Singular Value Decomposition (SVD) allows us to
extract the most energetic magnetic �eld structures,
which are essentially larger than the source size and
persist for long times, supporting the idea that the
plasma can organize on large scales while being driven
by small-scale sources.

{ Moreover, the entropy computed from the singular val-
ues of the magnetic �eld generated by intermittent
sources was found to be much smaller (about 20{30%)
for the subdi�usive source than for other sources. The
most intensive in space and long-lived structures are
essentially larger in this case also. This indicates a
higher level of organization in the system than in the
random source case.

The clear di�erence of the characteristics of spatial com-
plexity in the case of Geisel map sources can be explained
in the following way. This deterministic map produces in
each cell a random-like di�usion slower than usual (sub-
di�usion) of magnetic �eld intensity. On the other hand,
the dissipation produces a normal di�usion of the �eld,
i.e. faster magnetic �eld relaxation along the spatial grid
(on average), and relates the temporal properties of the
source to spatial properties. This explains why sources
with slower di�usion (Geisel) tend to form larger-scale and
longer-lived structures than sources with normal di�usion
(random, Ulam).

Thus we have shown in the framework of our model
that the large-scale spatial structure of the magnetic �eld
in the solar atmosphere also contains important statistical
information about the mechanisms of the coronal heating.

Such information can be extracted by SVD-based tech-
niques, which are readily applicable to experimental data
and can be used as a complement to the usual analysis of
radiated energy.
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