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Abstract

The geochemical behavior ofckel, an essentiatrace metal elemenstrongly
depend®n its interactions with Mn oxidemteractions between the phyllomanganate
birnessite and sorbed or structurally incorporated Ni have been extensively
documented together with the fate of Ni along the transformation of these layered
species to tunnel Mn oxides (tectomanganates). By contrateractions of
phyllomanganates with weakly bound Ni species (hydrated Nihydr)oxides), that
possibly prevail in natural Nich (>10% NiO) manganatagceived little attention
and the influence of these Ni species on the phyllomangémétetonanganate
transformation remains essentially unknowwithin this framework a set of
phyllomanganate precursors with contrasting contents of Ni were prepared and
subjected to a reflux process mimicking the natural
phyllomanganat¢o-tectomangarta converson. Layered precursors and reflux
products werecharacterizedvith a combination ofdiffractometric, spectroscopic,
therma) and chemical methodbli is essentially present &ydrated Ni(ll) and Ni(ll)
(hydr)oxidesin layered precursonsith no detectable Ni sorbed at layer vacancy sites
or structurally incorporatedespite the high content (~1/3) of JaFeiller distorted
Mn(IIl) octahedra in these layered precursors, which is known tavmgableto their
conversion to tectomanganategolymerization of Ni(OH) in phyllomanganate
interlayersis kinetically favored during reflux procesasbolane a phyllomanganate
with an incompletetislandlike +octahedral layer of metal (hydr)oxides thus
formed rather than todorokite,cemmontectomanganate with uniform 3x3 tunnel
structure A nitric acidtreatment, aiming at the dissolution of the iskikd interlayer
Ni(OH), layer,allows an easy and unambiguous differentintbetweerasbolaneand
todorokite which is unaffected by the treatmerf@oth compounds exhibindeed
similar periodicities and can be confusedien usingX-ray diffraction, despite
contrasting intensity ratiosNi(OH), polymerization hampersthe formation of

tectomanganates and likelyrtabutes to the prevalence of phyllomanganates over
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tectomanganates in natural environments. Most Ni is retained during the reflux
process, part of Ni (~20%) being likely structurally incorporated in the reaction

products thusenhancing the sequestrationNi in Mn oxides

Keywords:nickel, buserite asbolangtodorokite; Mn oxides
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1. INTRODUCTION

Phyllomanganateand tectomanganatese the twomineralfamilies accounting
for most of Mn oxides found interrestrial and aquatic environmer{iost, 1999;
Peacock and Sherman, 2007l the former, edgesharing Mn@ octahedra form
layers whose symmetry depends on the abundance and distribution of Mn(lll)
octahedra, whereas in thater,chains ofedgesharing MrflV)Os octahedra fornthe
walls or floor/ceiling of tunnelsBirnessite is, together with its disordered structural
analogue vernadite, the most comnpiryllomarganateand consists ad MnQ; layer,
whose layer charge deficit is compensated for by the presenzations sorbed at
layer vacarty sites orpresent as interlayer hydrated spe¢ie-7.2 A layer-to-layer
distance) Heterovalent Mn cations and/or foreigransition metalcations ca be
hosted in both families, either structurally substituted for Mn(lV) or as charge
compensating cations located in phyllomanganate interlayers or in tectomanganate
tunnels (Post, 1999) The occurrence of naturgdhyllomanganatesas micre to
nanagsized cryptocrystallinemineralsusually enhances their surface reactiitgat
originates fromtheir high negative layer charge andfrom the coexistence of
heterovalentMn cations in these structures. As the result, natural phyllomanganates
are highly reactive withrespect taboth organic(Remucal and Gindevogel, 2014)
and inorganic compounds. Specfically, natural phyllomanganatesire readily
associated with transition metals suak Co, Cu, Zn, or Ni (Chukhrov, 1982;
Manceau et al., 1987, 1988, 2002 2007gb, 2014;Marcus et al., 2004; Boder et al.,
2007; Peacock and Sherman, 2007a; Lanson et al., 2008; Spinks et al., 2017;
Zawadzki et al.,2018) rare earth(Kasten et al., 1998; Ohta and Kawabe, 2001;
Ohnuki et al., 2015; Zawadzki et al., 20,1l@hd radioactive element®uff et al.,
1999 Post, 1999)

In an effort to disentangle thmobility, (bio)availability, and fate of these
elements in different geological settings, structunéractios of phyllomanganates

with such foreign elementsnd more especially withtransition metalshave thus
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attracted the attention of the scientific commuwoir the last few decadéslanceau

et al., 19972002, 20140hta and Kawabe, 2001; Lanson et al., 2D02arcus et al.,
2004; Toner et al., 2006; Peacock and Sherman, 280Faacock, 2009; Pefiaadt,
2010; RoqueRosell et al.,, 2010; Sherman and Peacock, 2010; Yin et al., ,B011a
Kwon et al., 2013; Yu et al., 2013; Burlet and Vanbrabant, 2015; Simanova et al.,
2015) In most studies, foreign elements were structurally substituted for Mn(IV) in
the MnQ octahedra or sorbeak innersphere complexes eithet vacant layer sites
and/or at particle edgéblanceau et al., 1997; Yin et al., 2012815 Yu et al., 2013;
Ohnuki et al., 2015; Simanova and Pena, 2015; Qin et al., 28irfilar to other
transition metals, presence of Ni(ll) formingnersphere complexespeies at
vacancy or edge sites dodstructurally incorporateth phyllomanganate layers has
beenextensivelydocumentedManceau et al., 2002, 20Q0BaPeacock and Sherman,
2007ab; Grangeon et al., 2008; Pefia et al., 2010; Yin et al.,, Z2t Kwon et al.,
2013; Simanova et al., 2013)nder low pH conditions Ni(ll) occurs mainly as
triple- or doublecorner sharingTCS andDCS respectively innerspherecomplex
above/below vacancy at edge siteof the phyllomanganate layer§?eacock and
Sherman, 2007b; Grangeon et al., 2008; Peacock, 2009; Pefa et al., 2010; Simanova
et al., 2015)Migration from TCS/DCS sites to octahedral layer sites is favored by
increasing contacttime and increasing pH (Peacock, 2009) this structural
incorporation within the octaldeal MnG;, layer beingeversible(Peacock, 2009; Pefa

et al., 2010and essentially restricted to low Ni contefitsanceau et al., 2002; Bodel
et al., 2007; Peacock and Sherman, 2007a,b; Kwon et al., 3bd&8nova et al., 2015;
Atkins et al., 2016) consistent with rtaral occurrencegManceau et al., 2002
2007a,b Bodei et al., 2007; Peacock and Sherman, 2007a)

In addition, hydrated Ni(ll) orNi forming outersphere complexe&lurner and
Buseck, 1981; Peacock and Sherman, 20amdNi(ll) (hydrjoxides(Chukhrov et al.,
1987; Maneau et al., 1987, 198®) may also be associated with Mn oxidBgspite
theirwidespreadatural occurrencdsr high NicontentgNiO ~10-20 wt.%, +Llorca,
1988; RoqueRosell et al., 2010; Ploquin et al., 20,1thlese weaker associations have

received little attentioncompared to structurally incorporated Ni or to Ni insphere
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complexes The presence diydrated Ni(ll) species iphyllomanganatenterlayes

leads to the presence of two planes of interlayer water moletlissincreasing the
layerto-layer distance from ~7 & (birnessite or vernadite) to ~91®.2A (buserite +

Burns et al., 1983; Chukhrov et al., 1987; Golden et al., 1987; Manceau et al., 1997
2014 Bodei et al., 2007; Wegorzewski et al., 201Such increasethydration of
Ni-rich phylomanganates has for example been reported by Manceau(2b@ib)

The presence of hydratéi(ll) in phyllomanganatenterlayes has been described
also as favorable to the transformation of phyllomanganate to tectomanganates upon
hydrothermaltreatment(Ching et al., 1999; Luo et al.,, 1999; Onda et al., 2007)
similar to Mg(ll) (Golden et al., 1986, 1987ln addition, Ni(ll) (hydr)oxides may
polymerize in phyllomanganate interlayers either as a complets anincomplete
brucitelike octahedral layerleading to litiophorite or asbolandike species,
respectivelyboth having a layeto-layer distance of 9-8.8 A (Chukhrov et al., 1987;
Manceau et al., 1987, 1988; Feng et al., 2001)

The present article thus focuses on the association of these voeaikigiNi(11)
species witlphyllomanganatesSynthetic samples with contrasting Ni contents were
prepared andcharacterized byX-ray diffraction, Fourier transform infrared
spectroscopy, thermogravimetric analysis,-ray photoelectron spectroscopy,
extended Xray absorption fine structure spectroscopy (kimd Ni K-edges). In
addition,phyllomanganateamples were hydrothermally#atedand reaction products
characterized to investigate the effect of Ni on the
phyllomanganat¢o-tectomanganate transformatig@olden et al., 1986; Shen et al.,
1993; Feng et al., 2004, 2010; Atkins et al., 2014; Grangeon et al., 2014, 2015; Zhao
et al.,, 2015)and the fate of weakly associated Ni(ll) species during this
transformation. The negative impact Nf, when present at high content, on this
transformation is contrasted with that of Guserite, litiophorite-, and asbolankke
phyllomanganates all have interplanar periodicities similar to those of todorokite, a
common tectomanganate wighuniform3x3 tunnel structuré”ost and Bish, 1988)
however,leading to their frequent confusigBurns et al., 1983)Special care was

thus paid to allow differentiating these species using nitric acid treatmenet al.,
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2019) Fourier transform infrared spectroscopy and anomalctey>tiffraction. An

optimum procedure allowing thdifferentiation is proposed.

2. MATERIALS AND METHOD S

2.1 Synthesis of layered precursors and reflux products

Both initial layered precursors and reflux products described in the present study
were prepared as in our previous work on their @dalogues\Wu et al., 2019)
Briefly, layered precursors were prepared affeng et al.(2004) and Song et al.
(2010) by addinga concentrated NaOH solution into a Ni(ll) + Mn(ll) solution,
prepared from their chloride salts. The resulting solution was then mixed and bubbled
with oxygen gas for . Resulting black precipitates were washed and one half was
dried for subsequent dgaes. Initial Ni / (Ni + Mn) ratios were 0.00, 0.01, 0.05, 0.10,
0.15, and 0.20. Accordingly, initial layered samples were named Bir, NiB1, NiB5,
NiB10, NiB15 and NiB2Qandthose Nicontaining sampleare collectively referred
to as NiB. The other halffdhe precipitates was used to prepare todorokite through a
reflux process following the protocol &eng et al(2004) Wet precipitates were thus
exchanged with M, rinsed, resuspended in deionized water, and finally refluxed at
100°C for 24 h. Reflux products were finally filtered, washed, and dried.
Transformation products dir, NiB1, NiB5, NiB10, NiB15 and NiB20 are named
Tod, NiT1, NiT5, NiT10, NiT15 and NiT20, respectively; they are collectively
referred to as Nilexcept for TodBoth layered precursors and reflux products were

dried at 60°C for three days androundinto fine powdes.

2.2 Characterization of layered precursors and reflux products

The elemental composition of all samples was determined in triplicate using

atomic absorption spectrometry (Varian AAS 240FS) from 0.1000 g of sample
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dissolved in 25 misolution of 0.25 mol [* NH,OH-HCI and 5 mLof 1 mol L™
H,SQO,. In addition, the specific surface aré8SA) of the reflux products was
determined with the Brunaugmmettdeller (BET) method and a standard
adsorption analyzer (Quantachrome Autosbrb JEOL-6390/LV). Finally, a
nonreducing nitric acid treatmerit\Vu et al., 2019was performed to differentiate
tectomanganates (torbkite) from phyllomanganate&userite, lithiophorite, or
asbolandike phasestWu et al., 2019)Briefly, 0.1 g sample was put in 250 mL of a
1 M HNGO; solution with soft stirring at ambient temperature {€). At different
time intervals, 5 mL of the suspensiamas collected andeadily filtered through a
0.22 um membrane to determine Mn, Ni, and Mg release. After 1 week of this HNO
treatment, residual samples were dried at®@0dor 3 days and analyzed with-rdy
diffraction (XRD)at a scan speed Iff° 2 Z-min™.

Mineralogy of all samples was determined from powder XRD analysis using a
%UXNHU ' $GYDQFH GLIIUDFWRPHWHW>HIMLESHG ZLWK &
and operated at 40/ and 40mA. XRD patterns were collected at 0.®7intervals
using a continuous scan mode. XRD datas collected onfresh samplegdried at
60 °C for three daykat a scan speed 3 ° 2 7.min™. To assesthe stability of their
hydration XRD datawas collectedn fresh sampleafter heating td40°C. Finally,

XRD patterns wereollectedat |° 2 7.min™ for agedsamplesthat were kept dry in

the darkfor three monthsSynchrotron XRD patterns were also collected on selected
reflux products on beamline BL14B1 at the Shanghai Synchrotron RadiatidityFaci
(SSRF) and on beamline 4B9A at the Beijing Synchrotron Radiation Facility (BSRF).
At BSRF, XRD data was collectedtae Mn K-edge (6.5 keV), Ni Kedge (8.3 keV),
and 12 keV with a typical beam size »fx 1 mnf, whereas the 18eV data was
collectedat SSRF with a typical beam size of ~0.2 x 0.3%mim both cases, Xays
were monochromatized with a dowdeystal Si (111) monochromator. Finally
high-energy Xray scattering data was collectedtransmission mode on beamline
11-1D-B at the Advancedtdton Source (Argonne National Laboratory, Argonne, IL)
using a y90keV X-ray energy Pair distribution functions (PDF) and differential
PDFs were daulated as described elsewhéreet al., 2011; Wang et al., 2013)
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Infrared spectra were collected for both layered precursors and reflux products
using a Bruker VERTEX 70. For each sample, 64 spectra were collected and summed
over the 4008400 cm' range with a 4 crit resolution (Zhao et al.,, 2015)
Micromorphology of the reflux products and lattice periodicities were observed a Jeol
JEM2100F transmission electron microscope (TEM) operated at 200&A.was
performedon aNETZSCH TG 209nstrumentwith a heating ratef 10 °C min™ and
a N flow of 20 mL min'. Finally, X-ray photoelectron Ols spectra wewleced
with a VG Multilab2000 X-ray photoelectron spectroscopy (XPS) measurements
used amAl K DX-ray source (1486.6 eV) at a chamber base pressure of 5 ¥at
(Yin et al., 2011a)The O1s spectrawere collected with a 28V pass energy and
0.1eV energy steps, and analyzed with the Avantage software. All samples were
chargecorrected to s with a binding energyof 284.80 eVcollected from the
surface adventitious carbofyvang et al., 2010)A Shirley-type background was
subtracted before deconvihln and fitting. A LorentziarGaussian ratio of 30:70 was
used for all the fittings.

Finally, X-ray absorption spectra were collected at theavidNi K-edges on the
1W1B beamline of BSRF to determine the relative proportions of Mn(ll), Mn(ll
and Mn(lV) species and the local environnsenf Mn and Niin both layered
precursors and reflux products. Dataasvrecorded at room temperature in
transmissior(Mn) andfluorescence (Nijmodes, and the energy was calibrated using
metallic M/Ni foil s as reference Extended Xray absorption fine structure (EXAFS)
spectra were processed using Athena and Artérasel and Newville, 2005X-ray
absorption neaedge structure (XANES) spectra of both layered precursors and reflux
products were used to determine Mn average oxidation state (AOS) with a specific
linear combination fitting method (the -salled Canbo method). Mn(Il), Mn(lll),
and Mn (IV) reference compounds were those of the original stlidyle 1 in

Manceau et al., 2012)
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3. RESULTS

3.1 Elemental composition

With increasing Ni content, the Mrontent decreases from ~55.4 to ~44.8 wt.%
for layered precursors and from ~54.4 to ~49.2 wt. % for reflux prodiiatde( 1.
The Ni/(Mn+Ni) molar ratios are essentially similar in layered precursors and their
respective reflux produstwith only a verylimited fraction of Ni being lost either
during the Mgfor-(Na,Ni) exchange or during the subsequent transformation process.
In addition, the Mg wt.% in the reflux products significantly decreases from ~3.95 wt.%
in the Nifree Tod sample to ~2.11 wt.% MiT20, thus suggesting a competition
between Mg and Ni for interlayer and/or tunnel sites of layered precursors and/or of
reflux products. Specific surface area (SSA) of NiT samples, as measured with the
BET method, is systematically higher than that offfde Tod but no systematic

evolutionof SSAis observed witlthe increase dfli content

3.2 Powder X-ray diffraction

X-ray diffraction (XRD) patterns collected on fresh Bifnot shown) are
essentially similar to those recorded after a few months of aging and display
reflections at 7.2, 3.6, ~2.45, and.42A, typical for birnessitgDrits et al., 1997;
Lanson et al., 200f. Similar reflections are observed for fresh NiB5 and NiB10
samplegFig. S, in addition to a broad maximum peaking at ~4.@he intensity of
this maximum increases with increasing Ni concaran in the initial solution and is
thus likely related to the presence of Ni (hydr)oxid€EOD #13-0229), whose
formation waseportedunder gmilar experimental condition&xidation of a Nirich
alkaline solution + Feitknecht et al., 1956)Consistently, the intensity of this
maximum is increased further for NiB15 and NiB20. These two samples exhibit also

reflections at ~2.45, and ~1.42 typical for layered manganates, the basal reflections
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of which indicate a 9440.0A layerto-layer distance Rig. SJ). Upon moderate
heating (140C), these reflections shift to indicate a A dayerto-layer distance
typical for birnessite, as the resolt interlayer cation partial dehydratidg®olden et
al., 1986; Manceau et al., 1987; Drits et al., 19Fhg initial presence of two planes
of interlayer HO molecules in NiB15 and NiB20 (buserite) is most likely indicative
of the presence of interlayer hydratedINications, whose hydration is reduced upon
heating. Samip heating also results in a decrease of the intensity of theA~4.6
maximum.

After agingfor about three monthsll layered precursors but NiB20 display over
the lowangle region (80 °2 T strong basal reflections at ~7.2 and ~8.6pical for
birnessite and indicative of the spontaneous dehydration of NiB15 interl&ygrd)(

Two planes of HO molecules are still present in most NiB20 interlayers (buserite),
however. Splitting of reflections at ~2.45 and ~1M2and more generally positions

of the reflections over the higgngle region (3@5°2 T +Fig. 1), unambiguously
indicate that initial Bir is a triclinic birnessitéGDD #43-1456), consistent with the
synthesis protoco(Lanson et al., 2008. With increasing Ni content, higangle
reflections broaden significantly thus indicating a decrease iodherent scattering
domain size. In addition, the resolution of these reflections decreases also with
increasing Ni content, suggesting a minor increase of layer symmetry from orthogonal
(@a>b¥ =90° to hexagonala = b¥ = 90° +Yin et al., 2015) Positions of
birnessitehkl reflections remain essentially unchanged, however, indicative of the
persistence of the orthogonal layer symmetry ifrith layered precursors. The broad
maximum at ~4.& is present also in aged samples.

Reflux products systematically show reflections ~®.6A, ~4.8A, ~3.2A,
~2.46A, ~2.39A, ~2.22A, ~1.95A, ~1.73A, ~1.52A, and ~1.421.41A, that are
typical of todorokite(ICDD #380475 +Atkins et al., 2014, 2016For the Nifree
Tod, relative intensity of the three leangle reflections (at ~9.6, ~4.8, and ~&)2
decreases in the orddss > lag >> I3, consistent withrelative intensities of
todorokite001/10Q 002/20Q and003/300reflections(Post et al., 2003yespectively

With increasing Ni content, the positions of both ~9.6 and A4t&flections shift



290 towards higher angles for NL5 and Ni20, compared to Niree Tod Fig. S2 and
291 the ~4.8A reflection becomes predondnt, consistent with previous reports of
292 todorokite prepared in the presence ofmas divalent metalsShen et al.1993, 1994;
293 Ching et al.,, 1999; Nicolasolentino et al.,, 1999; Fuertes et al., 20lahd
294 asymmetric Although not described as such in these references rtansity ratio
295 modification is consistent with the presence of asbolane, a phyllomanganate with an
296 incomplete tislandlike +octahedral layer of metal (hydr)oxides in the interlayer
297 (Chukhrov et al., 1987; Golden et al., 1987; Fan and Gerson,.Zlli& presence of
298 these incomplete brucHé&e octahedral layers between My@yers precludes the
299 collapse of théayerto-layer distancéo ~7.2 A upon heatingKig. S3

300

301 3.3 Anomalous XRD patterns

302

303 To investigate further the possible origin of tbbservedcontrasting 4¢lg6
304 intensity ratios, XRD patterns of Tod, NiT15, and NiT20 were recorded at different
305 energies, including Mn and Ni-edges to modify the contribution of these elements
306 to the stucture factor (F«). These XRD patterns logically exhibit reflections at
307 similar dvalues Fig. 2ad). Except for the pattern recorded at the Khedge all Tod
308 patterns also display similar low dlg¢ intensity ratios Fig. $4), consistent with
309 previous reportsShen et al., 2011)Contrastingly,the 144/l intensity ratio is

310 significantly higher for NiT15 and NiT20 compared to Tedid varies significantly
311 for these two sampless a function of the energy used for data collectEpecifically,
312 NiT15 and NiT20 display highesi ¢/lg gintensityratios atthe Mn K-edgeandlowest

313 ratios atheNi K-edge whereassimilar ratiosare obtained for XRD patterns recorded
314 at energies different from the two absorption ed@egs. 2ad; $4). Both features
315 indicake contrasting structures ofod and Nirich NiT products depending on the
316 initial Ni content.

317 As reported in the early descriptions of asbolahes compound exhibitiigh

318 values of thegdlg¢ intensity ratio(Chukhrov, 1982; Llorca, 1988; Fan and Gerson,

319 2015) consistent with XRD patterns calculated for such a strectiosting an
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incomplete Ni(OH) layer sandwiched in between two Ma@yers Fig. 26. In
addition, for a given compositionthis ratio increases when the contribution of Mn
atoms to the structure factor is reduced (X&&darecorded at the MK-edge £Fig.

23 and decreases when the contribution of Ni atoms to the structure factor is reduced
(XRD datarecorded at the NK-edge £Fig. 2b), consistent with the datin addition

this ratio increases with the completeness of interlayer gkige 2. Together with

the collapse of layeto-layer distance upon acdissolution of the incomplete
Ni(OH), layer (see below), these variations of theg/lys intensity ratiocan be

ascribed to the presenceasbolane, rather than todorokitethe refluxproducts.

3.4 FTIR

FTIR spectra of todorokite and of other 3xn tectomanganates display a band at
~760 cmt, typical for the cornesharing linkage in their structurésig. 3 +Golden et
al., 1986; Feng et al., 2004; Julien et al., 2004; Atkins et al., 2014; Zhao etl8)., 20
This band is clearly visible in Tod FTIR spectrum but steadily decreases in intensity
with increasing Nicontent, most likely as the result of the decreasing proportion of
3xn tectomanganates in -Nch reflux products. Consistent with their layered
structure, this band is absent in FTIR spectra of layered precursors. Rather, two lines
at ~820 and ~950 cmare visible in the FTIR spectra of Nbntaining layered
precursors. These two lines are visible also in the spectra of related reflux products,
although their intensity is reduced after the reflux treatment. The peak at ~820 cm
visible in NiB and NiT wasidentified as a combination lattice mode bandNn

(hydr)oxides(Hall et al., 2015)which is consistent with the XRD analysis
3.5.HRTEM
Consistent with previous studiésurner and Buseck, 1981; Golden et al., 1986;

Shen et al., 1993; Feng et al., 2004; Wu et al., 20aystals with fibrous and

platelike morphologiesare systematically present in the reflux produBig.(4), the



350 former dominating in Tod and NIiTIFigs. 4ac), whereas platy crystals dominate
351 sampleshaving higher Nicontents (NiT5 and NiT15Figs. 4f i). Fibershaped

352 crystals Figs.4 e, g, h often display lattice fringes with a typical ~1 nm periodicity,
353 corresponding to the 3x3 todorokite tunnel struct@elden et al., 1986; Feng et al.,
354 2004) As it is common in todorokite, fibers are often aligned at +120° with respect to
355 each other, thus forming trilling patterfisegel and Turner, 1983; Golden et al., 1986;
356 Feng et al., 2004; Bodei et al., 2007; Xu et al., 2010; Atkins et al., .20ishle

357 lattice fringes in th@latesare commonly more diverse than in the fibérg$. 4 b, d

358 and ), typical fora-disordered todorate (Xu et al., 2010; Wu et al., 201.9attice

359 fringes are also visible in short rods and small plates, indicating the initial
360 development of tunnel structutieerein(Figs. 4 g, h+Golden et al., 1986 Finally,

361 smooth surfaces without visible fringes, that are most likely typical for
362 phyllomarganate crystal§Golden et al., 1986, 1987; Wu et al., 2Q%#e also visible

363 (Figs. 4 g xzone 4,4i, | tzone 1,4k *zone 5. Interestingly, some platy particles
364  exhibit lattice fringes over specific zones with smooth surfdégs.(4g, ). This dual

365 character ipossiblyrelated to the initial developmeof tunnel structures in specific
366 zones of the particles whereas other zones maintain their initial planar structure
367 (Golden et al., 1987; Wu et al., 2019)

368

369 3.6. Nitric acid treatment

370

371 Upon equilibration in nitric acid, Mn release from layered precursors reaches
372 equilibrium within 12 hrs, the proportion of Mn releagesm NiB is higher than that

373 releasedrom Bir, (Fig. 59, possiblyas an effecbf reduced crystal size. For reflux
374 products,the release oMn is slower, reaching equilibrium after ~48 hrs, and is
375 essentially the same for all NiT samplégy( 5b, exceptfor NiT5. Ni release is much

376 slower than that of Mn, reaching a plateau aft&#88 hrs in both layered precursors
377 (Fig. 59 and reflux productg§Fig. 5d). The proportion of Ni released differs however
378 in the two series of samples as essentially all Ni is released from layered precursors

379 whereas ~20% of Ni remains in the reflux proy possibly indicative of Ni
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structural incorporation. Finally, Mg is systematically totally released from reflux
products, possibly at a slower rate with increasing Ni conkegt 5f).

After acid treatmenthe XRD pattern of Tods essentially alikehatof the initial
reflux productand typical for todorokiteHig. 58. On the other hand, XRD patterns
recorded on NiT15 and NiT20 after acid treatment exhibit, over thefwle region,
peaks at ~7.2 and ~3%§ typical for the phyllomanganate birndssirather than
peaks at ~9.6, ~4.8, and ~R2as expected for todorokit€ify. 58. These two XRD
patterns are actually similar to the one recorded on Bir after acid treatment and match
XRD pattern of hexagonal birnesst€DD #23-1239), which was obiiaed from the
low-pH equilibration of an initial triclinic birnessitéLanson et al., 2000)The
evolution of XRD patterns recorded from reflux products upon acid treatment is
consistent with that observed for an asbolikes phyllomanganaté/Vu et al., 2019)

The structure of these ~96phyllomanganates consists of an octahedral Ma@er
similar to that of birnessite, with an incomplete octahedral MefOM&OOH, or
MeO, sheet, possibly incommensurate with the Mnlyer, in the interlayer
(Chukhrov, 1982; Manceau et al., 1987; Fan and Gerson, 200hkis incomplete
interlayer octahedral sheet is solubilized by the acidrresat leading to the observed
7.2 A layerto-layer distancé\Wu et al., 2019)Such a peak at ~7&is visible in the
XRD pattern of acidreated NiT5 andNiT10, andits intensity increases with
increasing Ni content, becoming the sole visible diffraction signature intreeited

NiT15 and NiT20 Fig. 58.

3.7. Thermogravimetric analysis

Thermogravimetric analyses of layered precursors systematically show a
significant weight loss at 14050°C corresponding to the dehydration of interlayer
Na" and NF* cations, this weight loss decreasing with increasing Ni confége @a,

c; Table2). A minor weight loss (2-£2.9% in Bir, NiB5, NiB10, and NiB15) is also
observed for these samples below 1G0Q which is most likely related to the

departure of adsorbed watésaillot et al., 2003)This low-temperature weight loss is
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significantly increased for NiB20 (85%), however, most likely as the result of a
low-temperature busert®-birnessite transition associated with the loss of one plane
of interlayer HO molecules as observed during moderate heating of fresh NiB
samples Fig. SJ. A significant weight los$4.10 and 6.72% for NiB5 and NiB20,
respectively) is observed also for NiB samples over the4DDOC range. This
weight loss is essentially absent in the TGA curve of Bir (1.78%) and increases with
Ni content. It is likely related to the presence of kh€hydr)oxide responsible for the
broad XRD maximum peaking at ~486(Fig. 1). Finally, a weight loss is observed at
~550°C for all layered precursors, with no significant influence of the Ni content
probably indicating the reduction of Ma@ Mn,O3 (Bish and Post, 1989)

TGA curves recorded for reflux products significantly differ from those of their
layered precursors, with weight losses at ~15@5;-2-440, and ~54%C for Tod
(Figs. 6b, d. The weight loss observémbm ~110240 °C is most likely related to the
loss of the HO molecules hydrating cations present in todorokite tunfietsh and
Post, 1989)With increasing Ni content, this weight loss decreases (from 8.05 to 6.12%
in Tod and NT20, respectively) and shifts towards lower temperatures, most likely
indicative of the mineralogical euation evidenced byXRD data recorded on
acidtreated reflux productsF{g. 5¢). For NiT10, this lowtemperature weight loss
splits in a doublet owing to the coexistence of todorokite and asbdtanex). The
weight loss occurring at ~28% is also ascribed to the departure of tunnel water
(Bish and Post, 1989)TGA curves obtained for Tod and NiT20 also differ
significantly over this range, with ahift of the weight loss towards higher
temperatures in NiT20 compared to Tod. Evolution with increasing Ni content, is not
as systematic as that observed for thefemperature weight loss, howevéid. 6d).
The third weight loss occurring at ~440 appears as a distinct signature for the
presence of todorokite, as its intensity decreases with increasing Ni content to vanish
for NiT15 and NiT20 which essentially contain asboldrig.(5). A last weight loss
occurs at 52650°C, a temperature similar to that reported for layered precuasors

~550 °C (Figs. 6D, d).
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3.8 O1s X-ray photoelectron spectroscopy

Consistent with the systematic prevalence of [Mnauilding octahedral in both
phyllomanganates and tectomanganates, all O1s XPS spectra are dominated by a peak
at ~529.6 eV Fig. 7), typical for oxygen (®) in metal oxides. This main peak is
asymmetricanddisplays a tail on its higkenergy side for both layered precursors and
reflux products. This tail at ~53335 eV can be decomposed into the contributions of
oxygen atoms from hydroxyl groups (OQH530.9531.6eV) and from water
molecules (532:533.4eV). For layred precursors, the intensity of this tail, and
more especially that of the OEbntribution, increases with increasing Ni contéfg (

7; Table S}, whereas the ¥ contribution is about constant for all NiB samples but
NiB20 that shows aslightly higha proportion of O atomg$rom H,O molecules
consistent with TGA datdn reflux products the contribution of O atoms in hydroxyl
groups is significantly higher in NiT samples compared to Todsistent with the
presence of asbolattike phyllomanganate iNi-rich reaction products. On the other
hand,the HO contribution shows no systematic evolution with Ni cont&g.(7;
Table S). Finally, relative intensities of peaks corresponding to” @kd H,O
contributions are significantly increased in NiT saesplcompared to their
corresponding layered precursorat least under the deep vacuum conditions

prevailing during the XPS measurements

3.9. X-ray absorption spectroscopy

3.9.1.Mn K-edge XANES

Relative proportions of Mn(ll), Mn(lll), and Mn(IV) speciesxd Mn average
oxidation state (AOShave been detmined using the Combo meth¢@able 3 +
Manceau et al., 2012Results consistently indicate high (~1/3) relative proportions of
Mn(IIl) in both layered precursors and reflux products, which is considelesy a
condition for the phyllomagarete-to-tectomanganate conversiggui et al., 2008;

Atkins et al., 20142016;Grangeon et al., 2014, 2015; Zhao et a015; Li et al.,
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2016) The measured proportion of Mn(lll) is slightlywer in Nifree samples
compared to the Nbearing onesTable 3 and no significant difference is observed
between layered precursors and their reflux products. In all cases, the Mn(ll) content

is null within the experimental error.

3.9.2.Mn K-edge EXAFS

EXAFS spectra of both layered precursors and of reflux products show
significant evolutions with increasing Ni content, thus indicating that the presence of
Ni affects the local structure of manganates in the two series of samjge8)( The
EXAFS spetrum collected for Nifree layered precursor (Bir) is typical for triclinic
birnessite over both the staircase and the indicator regi6ris6.0A™ and
7.510.0A™, respectively + Marcus et al., 2004)In particular, the splitting of the
features at ~7.8" and ~9.0 A' (arrows in Fig. 8pare indicative of a high Mn(lll)
content, of the systematic elongation of Mn(lll) octahedra alongathgis, and of
their ordered distribution in rows parallel to thexis (Marcus et al., 2004; Gaillot et
al., 2007)typical featuredor triclinic birnessitg\Webb, 2005; Atkins et al., 2014; Yin
et al., 2014) With increasing Ni content, the ~78' feature becomes less
pronounced even though its position remains unchanged, consistent wsimilae
Mn(lll) contents of all layered precursorsTg@ble 3 and with the similar overall
frequency of the EXAFS spectra of these samflasllot et al., 2007)The steady
lowering of the ~7.8\* feature resolution is thus most likely related either to disorder
in the distribution of elongated Mn(lll) octahedral or to some randomness in the
direction of the elongation, consistent with the evolution of XRD patterns with
increasing Nicontent The split ~9.08* feature observed for Bir and NiB1 also turns
into a broad and more symmetrical feature with increasing Ni content and the induced
vanishing of the sharp higflnequency contribution.

In k-space Mn Kedge EXAFS spectra of Tod and NiT1 exhibit sharp featate
~8.0 and ~9.A that are typical for todorokité/\ebb, 2005; Bodei et al., 2007: Feng
et al., 2010; Atkins et al., 2014These two featuresssentiallydecrease in intensigt

higher Ni content. In additigrthe ~9.2A™ feature shiftso lower wave numbsrin
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NIiT samples compared to Tod and NifAig. 8&). EXAFS spectra of Nrich NiT
samples and their Fourier transfornf6Ts) are actually alike those of their
corresponding layered precursoFsgs. 9ab), consistent with the similar structure of

the MnQ layer in both birnessite and asbolane. On the contrary, spectra obtained for
Ni-free Bir and Tod differ significantly, as expected for layered and tunnel manganese
oxides Fig. 99. In particular, thé=Ts of these spectra show a clear shortening of the
average MrMeg distance in Tod compared to Bir, as shown by the shift of the
imaginary part of the FTHg. 9d arrow). In addition, TodFT shows a clear
maximum atR + ‘R ~ 3.0A, typical of Mn-Mec pairs, which is not observed for its

Bir precursor. For both Niree andNi-rich samples, M¥O distances are similar in
both layered precursors and corresponding reflux products, consistent with their

similarMn AOS.

3.9.3.Ni K-edge EXAFS

EXAFS spectra collected at théi K-edgeare similar for botiNiB samples, on
the one handand NiT on the other handFig. 10, thus implying similar Ni
speciation in each of the two sample groups. Although it was not possible to obtain a
decent fit to this data using a lexecombination fitting and available Ni ret:nce
spectra, similarity of the hydrated Ni(ll) spectrum with collected spectra suggests that
this species possibly prevaits all samplesin addition, he evolution of Ni speciation
during the reflux process was assessefittiygg EXAFS spectra of rdfix products as
a linear combination of their respective NiB precursors and of Ni reference spectra
(Fig. S4. For all NiT samples, a good fit was obtained with ~15% of a NifOH)
contribution in addition to the layered precursdalfle S2, consistent withthe
polymerization of a partial Ni(OH)layer in birnessite interlayers to form an

asbolandike structure.

3.1Q Pair distribution functions (G(r))

Atomic PDFs computed from Tod, NiT10, and NiT20 h@ergy Xray



530 scattering patterns show similar pgadsitions Fig. 11), indicative of similar local

531 structuregZhu et al., 2012as expected from the major contribution of layers/ribbons
532 of edgesharing MnQ@Q octahedra in both layered precursors and reflux products.
533  Consistently, the maxima at ~1.80~2.90A, and ~3.508 essentiallycorrespond to

534 the first neighbor MfO, to edgesharing MnMe, and to a combination of

535 cornersharing MaMe and of second neighbor M atomicpairs, respectivelyZhu

536 et al., 2012) The increased intensity of the ~3A0maximum and the decreased
537 intensity of theone at~5.00A in the PDF of Tod empared to NiT10 and NiT20 are
538 typical of the prealence of tunnel structures in the former sample and of layered
539 structures in the lattefGrangeon et al., 2015The ~5.00A maximum is mainly

540 related indeed to second neighbor-Mn pairs(Fig. $4 +Zhu et al., 2012)thatare

541 favored by the lateral extension of Mpfyers. Finally, the peak at ~4.80is most

542 likely related to MN2Mn2 and MNn40Q SDLUV DFURVYV 2KROHV™ LQ WXQQ
543 and ceilings Fig. S6), consistent with théncreased intensity of this ~4.80 peak

544  with decreasing tunnel siZ€hu et al., 2012)

545 Differential PDF(d-PDF) can be calculated to assess more precisely the specific
546  modifications affecting the reflux products, and more especially the broadening of the
547 ~1.90 and 20A peaks towards high-dalueswith increasingNi content Fig. 11).

548 The dPDF curves obtained for NiT10 and NiT20, both show a first peak at A2.05
549 typical for NFO pairs(Manceau et al., 2007a,b; Peacock and Sherman, 2007a,b; Yin
550 et al., 2012; Kworet al., 2013; Simanova et al., 2015; Atkins et al., 20A&econd

551 peak, similar in both 4PDF curves, is visible at ~3.06 This second peak is
552 intermediate between those calculatedNNipairs in NiO and Ni(OHy) consistent

553  with the presence of bottompounds in the reflux products identified from XRD data
554  (Figs. 1, 2.

555

556 4. DISCUSSION

557

558 4.1 Structural transformation of layered precursors
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Addition of Ni during the synthesis of layered precursors does not impact
significantly their crystal structurenlparticular, the Mn(lll) content of layered
precursors remains about constant M#3{Table 3 whatever the initial Ni content.
Consistently, XRD resultd=(g. 1) show that layer symmetry remains orthogoiaat (

b ¥ IRU DOO SUHFXUYV RYystema&tiQ eldngadiand lofydistdréd \M{ IH)
octahedra along theeaxis and of their ordered distribution. FTs of the EXAFS spectra
consistently show similar MiMeg distances in all layered precursdreot shown)

Both XRD patterns and EXAFS spectra lafyered precursors are significantly
modified when increasing the Ni content, however. These changes reveal an increased
disorder in the ventation of Mn(lll) octahedrand/or in their distribution.

The increasing intensity of the ~436diffraction maxirmum with increasing Ni
contentindicates that part of Ni initially introduced in solution actually precipitates as
Ni (hydr)oxide. The presence of Ni in the interlayers of NiB15 and NiB20 is attested
by the presence of two planes of interlayer water moéscobnsistent with its more
negativehydration enthalpgompared tdNa" (Smith, 1977; Johnson and Post, 2006)
in thesefreshsamplesAll Ni speciesincluding the two mentioned abowae readily
mobilized by the acid treatmerfif. 59, and it is thus reasonable to hypothesize that
no Ni(ll) cations areincorporated in the octahedral layer. Similarly, the orthogonal
layer symmetry is typical of octahedral layers containing few vacant laye([Siies
et al.,, 1998; Lanson et akp00) if any, and the presence of Ni(ll) cations sorbed
above or below such vacant sites is thus unlikely.

Although weakly bound to the layered precursors, the presence of Ni(ll)
significantly impacts their transformation during the reflux process. 8itypical
triclinic birnessite, converts readily and completely taatisorder todorokité\Wu et
al., 2019) With increasing Ni contdndisorder increases together with the proportion
of nontideal 3xn tunnel sizes forming trilling patterns. In addition, platy crystals are
visible in all reflux products, their relative abundance increasing with increasing Ni
content with only minimal frgments of tunnel oxides being detected in NiT15 and

NiT20 (Fig. 4). Platy crystad are most likely asbolane, as shown by the prevalence of
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this phyllomanganate hosting an incomplete octahedral layer of metal (hydr)oxides in
their interlayers in Nrich refux products. These incomplete bruditee octahedral
layers are dissolved by the acid treatment, leading to birndigsitstructures Kig.

5€). As reported in the early work of Chukhrov and coworkers on natural asbolane
(Chukhrov, 1982 Chukhrov et al., 1987XRD diffraction patterns of asbolane are
characterized by highy ¥l9¢ intensity ratios. Such high, 4196 intensity ratios are
FRPPRQO\ UHSRUWHG IRU S\ WRGRURNLWH" HVSHFLDOO\ Z
metallic elemats such as Co, Ni, Cu, Zn, Er, La, €&hen et al., 1994; Tian et al.,
1997; Ching et al., 1999; Luo et al., 199) the present study, the combined use of
XRD simulation, anomalous XRD, HRTEM, thermogravimetric analysis, and nitric
acid treatment allowed uncovering the actual nature of this seldom described
phyllomanganate, but its formation may be far more common than previously
reported in these experimental studies.

As shown inFig. 2e this Lglge intensity ratio strongly depends on the
completeness of the interlayer bruditee octahedral layer, and the ratio determined
for NiT15 and NiT20 corresponds to a ~50% completeness of the Ni(@kdhedral
layer. This interlayer occupancy is much higtlean possibly achieved with the sole
presence of Ni(ll) in these octahedral layers as Ni / (Ni+Mn) ratios-a898in these
samples, with part of the Ni present as Ni (hydr)oxide. It is thus likely that Mg cations
contribute to the electron density aé timterlayer migplane, in addition to Ni. As Mg
scattering factor is lower than that of Ni, the actual completeness of the interlayer

brucitelike layer is likely higher than 50%.

4.2 Differentiation of asbolane and todorokite.

Although the }d/lg 6 intensity ratio strongly depends on the completeness of the
interlayer brucitdike octahedral layer, a 48 peak stronger than its 9%
counterpart is a possible indication of the presence of the phyllomanganate asbolane,
rather than the tectomanganatddrokite, in reaction products, or in natural samples

Thetwo compoundsndeedshae these two interplanar distances. With its two planes
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of interlayer HO molecules, buserite also exh#bgimilar periodicity but a gentle
heating (to ~100°C) should le#&al the partial dehydration of interlayer cations and to
the ~7.2A periodicity typical of birnessiteFig. S1 +Johnson and Post, 2006)
Furthermore, buserite is unlikely to have a high enough content of interlayer cations
to induce a4gd/lgratio higher than 1.0.

Although values of this ratio higher than 1.0 are typically observed for asbolane,
the partial exchange of Mg present in todorokite tunnels by cations having a higher
electronic content (such as Ni and otheratknt metal cations) can also lead to such
high Lglge ratios Fig. 11), thus not allowing an unambiguous differentiation
between asbolane and todorokite. In $esarch foran umuestionablalifferentiation
between asbolane and todorokite, the nited @reatment proposed by/u et al.
(2019) thus appears as a simple and reliable method. In the case of asbolane,
dissolution of the interlayer brucitike layer induced by the treatment leads indeed to
a collapse of the layeo-layer distance to the ~72 periodicity. On the contrary,
periodigties are maintained for todorokite, the tectomanganate framework being

unaltered, and positions of XRD maxima are thus unchanged.

4.3 The role of Mn(lll) and interlayer species during the transformation

It is now accepted that the presence of a high(lincontent (>2530%) in
layered precursors is required for their conversion to tectomanganates. This pivotal
role is most likely related to the steric strains induced by the presence efelkdin
distorted Mn(lll) octahedra in the octahedral layerggrstion of these Mn(lll)
cations from layer to interlayerr dayer kinking at these structurally weak points
contribute to building tunnel wall&srangeon et al., 2002014 Atkins et al., 2014,
2016; Yang et al., 2018)n the present case, the ordered distribution of Mn(lll)
cations in rows parallel to thHeaxis and separated from each other alon@téves by
two rows of Mn(lV) creates a structurally weak point favorable to the formation of
tunnels walls(Atkins et al., 2014; Grangeon et al., 201€@pnsistently, the initial

Ni-free precursor Bir, a triclinic birnessite, was fully converted to todteoldimilar
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transformation of triclinic birnessite to tunnel structures was previously reported in
the literature although 3x3 tunnels were not systematically obtdiredy et al.,
2018) Furthemore, the actual distribution and orientation of Mn(lll) octahedra
present in the Mn® layer do not appear to be key factors for the
phyllomanganat¢o-tectomanganate conversion as tectomanganates were obtained
from hexagonal birnessite precursors in whidm(lll) octahedra are distributed
and/or oriented at randoK®rangeon et al.2008 2014 Atkins et al., 20142016
Zhao et al., 2015)The absence of transformation of NiB precursors to tunnel
structures thus does not appear to be related to their Mn(lll) content, which is similar
to or higher tharthat of the Nifree Bir.

As layers of all NiB precursors are essentially devoid of Ni, bothe octahedral
layer and sorbed above/below vacant layer sites, the absence of transformation of
these precursors to tunnel structures is thus likely due to kinetic effects favoring the
formation of asbolane. Specifically, polymerization of Ni as Nijoffhgments in the
interlayers of initial birnessite/buserit@=ig. S5, Table SRis favored over the
conversion to tectomanganates. In turn, the presence of interlayer Nif@gthents
likely impedes the migration of Mn(lll) from the layer to the indgdr thus
preventing the conversion to tectomanganates. Such competing effects are supported
also by the increase of (Mg + Ni)/Mn ratios with increasing Ni conf&alblé ) and
are likely to occur with a variety adther hydrolysable metal cations. Cortsistly,
3W R G R UcBritainifg-tlivalent metal catiors and displaying high ;. ¢/lgs ratios
possibly indica@ the presere of asbolandike structure.Such competing effects
might contributealsoto the prevalencef phyllomanganates over tectomanganates

natural environmest\Wu et al., 2019)

44. Negative influence of Ni and Co on the phylldo-tectomanganate

transformation: Contrasting mechanisms

Both in the present work investigating the possible transformation of

Ni-containing layered precursors to tectomanganates and in the related study
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investigating a similar process for €@ontaining layered precursors, tectomanganate
formation was inhibited, totally (Ni) or partially (Co) for M&h precursors. The
origin of these similar negative impacts diffdrowever for the two metals. In the
presentcase, layered precursors contain sufficient amounts of Mn(lll) (~1/3) to
trigger the transformation, as Ni(ll) is not structurally incorporated in the precursors.
As discussed above, polymerization of Ni(Qiffagments in birnessite interlayers is
kinetically favored over migration of Mn(lll) from the layer to the interlayer, or layer
kinking, however, leading to the formation of asbolane rather than tectomanganates.
In contrast and consistent with previous rep@rtanceau et al., 1997; Yu et al., 2012;
Kwon et al., 2013; Simanova and Pena, 201iB; et al., 2015) Co(ll) is readily
oxidized by birnessite during the formation of initial les@ precursors with Co(lll)
being structurally incorporated in these precursors owing to the similar ionic radii of
Co(ll) and Mn(IV) (Wu et al.,, 2019) The symmetry of layered precursors is
increased from orthogonal to hexagonal. As a consequence, the content of Mn(lll) in
Co-containing layered precursors is lowered and does not allow triggering the
transformation to tunnel structuréSrangeon et al., 2002014 Atkins et al., 2014,
2016) In both cases, little Me is released to solution during the reflux process and Me
cdions are structurally incorporated in the reflux products (~20% &0&o~for Ni

and Co, from the nitric acid experimerged EXAFS simulationrespectively thus

enhancing their sequestration in both teated phyllomanganates.

45. The fate of Nickelduring the transformation of layered precursors

Previous studies have consistently shown that Ni can be incorporated in the
birnessite structure, either within the octahedral layer or sorbed at vacant layers sites
(Peacock and Sherman, 2007b; Grangeon et al.,, 2008, Peacock, 2009; Pefia et
al., 2010; Yin et al., 2012; Kwon et al., 20M3n et al., 2014; Simanova et al., 2015;
Atkins et al., 2016; Lefkowitz and Elzinga, 20;Lépnsistent with natural ocaences
(Bodei et al., 2007; Maeau et al., 2007a,b; Peacock and Sherman, 200 #)eir

literature review,Grangeon et al(2017) showed that the fraction of Ni structurally



709 incorporated in birnessite octahedral layers may be higha ~50%) only for low Ni

710 content (~1%), as reported for natural samplesdei et al., 2007; Manceau et al.,

711  2007a,b; Peacock and Sherman, 200&tjuctural incorporation of Ni(ll) in the

712 octahedral layer appears to be enhanced by circumneutral pH conditions and time
713 (Manceau et al., 2007b; Peacock and Sherman, 2007b; Peacock, 2009; Pefa et al.,
714 2010) Competitve sorption at TCS/DCS sites has been proposed also as a
715 mechanism favoring structural incorporationthe octahedral layei efkowitz and

716  Elzinga, 2017) Some studies report the prevalence of Ni sorbed at TCS/DCS sites
717  even for Ni/Mn ratios higher than 10%, howeElanceau et al., 2007a,b; Pefa et al.,
718 2010; Yin et al., 2012; Simanova et al., 2015; Grangeon et al.,.2@13)ch cases,

719 sorption of Ni(ll) as inner sphere complexes is favored by the presence of vacant
720 octahedral sites and is thus negdtiveorrelated with the Mn(lll) content.

721  Consistently, in our studystructural incorporation of Ni invacancyfree NiB

722  precursors appears very limitdd NiB layeredprecursors, Ni isatherpresent both

723 as Ni (hydr)oxide an@s hydrated cations in birnéggbuseri¢ interlayersas shown

724 by the increased hydration of Nch precursorsKigs. 1,S1). The influence of Ni on

725 phyllomanganate hydration has been reported also for natural samples in which
726  buserite (or 18 vernadite) abundance increases wittré@sing Ni contenBodel et

727 al., 2007; Manceau et al., 2007a)

728 As discussed above, hydrated Ni(ll) ially present in birnessite interlayers are
729 readily stabilized during the reflux products by forming Ni(@Hagments(Fig. S5,

730 Table S2, consistent with previous experiments with vacafieg phyllomanganate

731  precursors(Feng et al., 2001)Polymerization of Ni(OH) brucitelike octahedral

732 layers in phyllomanganate interlayers is consistent also with the nptadaminance

733  of asbolane in Nrich environmentsNIO ~10-20 wt.%, +Chukhrov, 1982; Chukhrov

734 et al., 1987; RoguRosell et al., 2010; Ploquin et al., 201&lthough the Mn AG

735 of his synthetic samples (~4.0) was favorable for Ni sorption at layer vacancy sites,
736 Manceau et al2007b)also reported the overwhelming presence of NNg§OH), at

737  high Ni content (Ni/Mn ratio of ~0.10 and ~0.18 at pH 4 and 7, respectively), despite

738 experimental conditions supposed to prevent Ni@OBhecipitation. The reflux
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process appesito have little influence on the Ni (hydr)oxidermed together with

the layered precursqras evidenagby the stability of the corresponding maximum at
~4.6A in the reflux product$Fig. 1b. Finally, part of Ni(~20 %)is stabilized during

the reflux process, as shown by the incomplete Ni reldageg acid treatmenf{g.

5d). Stabilized Ni ispossibly structurally inaporated in the reflux product®n the
contrary,Atkins et al.(2016)reportedno structural incorp@ation of Ni(ll) during the
formation of todorokite from a MNbearing birnessite precursor1( wt% Ni in
hexagona birnessite) They reported alsa decrease in the Ni content of their reflux
products, whereasn our experimental conditionstability of Ni{Mn+Ni) ratios
(Table J) indicates that all Ni initially present in layered precursors is retained during

the reflux process.

5. CONCLUSION

The present study reports on the associationweékly bound Ni species
(hydrated Ni, Ni(hydr)oxides) with phyllomanganateghat possibly prevail in natural
Ni-rich (>10% NiO) manganates Whatever their Ni content, repared
phyllomanganates systematically exhibit an orthogonal layer symmetry, indicative of
a high Mn(lll) content and of a minimal number aftanedral layer vacancies. N§ i
essentially present as chamgmmpensating hydrated Ni(ll) and &8 (hydr)oxide
with no detectable Ni(ll) sorbed or structurally incorporated in the phyllomanganate
structure.

Despite the high content of Mn(lll), a favolde condition for their conversion
to tectomanganatesbsolane rather than tectomanganétess during the reflux
processing of these Mich phyllomanganates. Asbolane formation results from the
kinetically favored polymerization ofragments of Ni(OH) octahedrallayers in
birnessite interlayersThe structure of the initial mangae layers is essentially
unaffected by this transformation.

Formation of asbolangrather than todorokitenayactuallybe more frequent than
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reportedin the literature owindo the similar periodicities in both compounds. High
values (> 1) of thd, gl intensity ratio maysuggestthe presence of this seldom
described phyllomanganate. Acid nitric treatmemnining at the dissolution of the
islandlike interlayer Ni(OH) layer, represents an easy and unambiguous way to
differentiate asblane fromtodarokite which is unaffected by the treatment.

Both the presence of Co and Ni in synthesized phyllomanganates impede their
transformation to tectomanganates when refluxed, trggnodf this similar impact
being different for the two metals, however. Oxidation of Co(ll) sorbed on the;MnO
layer and the subsequent structural incorporation of Co(lll) in the octahedral layer
releases the steric straimslated to the presence of Jareller distorted Mn(lll)
octahedra, which is required for the phyllomangateatectomanganate conversion.

In contrast, lhe presence of hydrated Ni(ll) favors the polymerization of fragments of

Ni(OH), octahedral layers, that in turn prevents the formabd tectomanganates

despite the favorable presence of Mn(lll) in the octahedral Mayr. In both cases,
3IRUHLJQ” PHWDO FDWLRQV DUH UHWDLQHG LQ WKH UHIO

structural incorporation.
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1041 Table 1
1042 Chemical composition and specific surface aoédayered precursorand reflux
1043 products

Samples ' Wt'\.' '% N f]':/'orl‘;'\") W'\t"%/o (Mgn::'o)/i'v'” SSA (nf/g)
Bir  55.4(1.0) - - - ~ -
NiBl  54.1(1.1) 0.39(1) 0.67 - - N
NiB5 53.7(1.0) 1.86(4) 3.18 -- - -
NiB10 51.2(1.0) 3.89(7) 598 - . .
NiB15 47.3(1.7) 5.32(3) 8.71 -- - -
NiB20  44.8(1.8) 7.14(7)  11.50 - - .
Tod 54421 - - 3.95(8) 16.4 90.7
NiTL  54.38) 0.33(1) 0.57 3.51(12) 16.2 .
NiTS  54.2(6) 1.57(2) 2.57 3.12(2) 15.6 93.7
NiT10  52.7(6) 3.79(1) 5.94 2.61(2) 17.5 119.7
NiT15  52.4(1.2) 5.66(9) 8.41 2.59(6) 20.4 109.0
NiT20  49.2(9) 7.742)  11.38 2.11(2) 225 106.8

1044



1045 Table 2

1046  Weight loss of layeredgrecursors and reflux productsver specific temperature
1047 intervals

Weight loss/%

Temperature (°C)

Bir NiB5 NiB10 NiB15 NiB20

RT-100 2.45 2.87 2.64 2.84 9.25
100170 8.43 7.14 6.54 5.73 4.87
170400 1.78 4.10 4.74 5.78 6.72
Total 17.38 19.20 18.85 19.15 25.31
Tod NiT5 NiT10 NiT15 NiT20

RT-110 2.75 2.93 3.39 3.90 412
110240 8.05 7.68 7.43 6.57 6.12
240-380 5.47 5.32 5.04 5.34 5.97
380-500 2.69 2.33 2.08 1.93 1.79
500650 4.50 4.35 4.06 3.75 3.61
Total 23.47 22.61 22.01 21.48 21.60

1048



1049 Table3.

1050 Fractional and average valence states of Mn obtafoedayered precursors and
1051 reflux productsfrom the Combo fit of XANES spectra and' derivatives The
1052 estimated error for Combo method is £4%=anceau et al., 2012; Yin et al., 2015)

Mn*  Mn**  Mn*
Sample Mn-AOS
at. % at. % at %

Bir 3 26 72 3.69

NiB1 2 25 74 3.71

NiB5 2 30 67 3.64

NiB10 2 31 68 3.66

NiB15 0 31 69 3.69

NiB20 0 35 65 3.65

Tod 2 25 74 3.72

NiT1 1 35 65 3.64

NiT5 3 32 66 3.63

NiT10 2 35 64 3.62

NiT15 1 34 65 3.64

NiT20 0 33 67 3.67

1053
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Figure Captions

Fig. L XRD patterns of layered precursoter) and reflux productsbpttom). Colors
correspond to the INNi+Mn) ratio of thesamplesGreen ticks at the bottoof upper
and lowerfigures indicate the reflectiors triclinic birnessite (CDD #43-1456 and
todorokite (CDD #38-0475, respectively.

Fig. 2 XRD patterns collected for NiT20, NiT15, and Tod at (a) Miedge (6.5 keV),

(b) Ni K-edge (8.3 eV), (c) 12.0 keV, and (d) 18.0 keV. Intensities were systematically
normalized to the most intense reflectidbolors as inFig. 1 (e) XRD patterns
calculated fo an asbolane containing 0.525 Ni(QHk) MnO; interlayers. Contents of

Ni and Mn atoms are reduced by 20% at their respective absorption edges to simulate

the anomalous effect.

Fig. 3 FTIR spectra of layered precursors and reflux produiis &nd bottm,

respectively. Colors as irFig. 1

Fig. 4 HRTEM images of(a-b): Tod, (c-e): NiT1, (f-h): NiT5, (i-m): NiT1. Numbers
in (b) and (d)indicate the numbesf MnOg octahedra defining tunnel widtArrows

in (i) and (I) indicate the direction of fringbgndng.

Fig. 5 Proportion of metal cations releasstaling the nitric acid treatmer(e-b): Mn,
(c-d): Ni, and €): Mg. The amount of metal released is normalized to the sample
overall metal content (see text for details). RD patterns of sampldaseated with

nitric acid Colors as irFig. 1except for Bir in (e).



1080 Fig. 6. Thermogravimetric analystsacesobtained for (a)ayered precursorand (b)
1081 reflux productsand their ¥ derivatives (c and d respectively. 1% derivative curves
1082 were smoothed using a Savitz&play filter and &5 pointwindow. Colors as irFig.

1083 1.
1084

1085 Fig. 7. XPS O1s spectra obtained for layered precursors and reflux products (left and
1086  right, respectively)The thick solid curve represents thest fit to the datéopen red

1087 squares)Peaks corresponding @, OH, and HO species are shown in the order of
1088 increasing binding energy as dashed purple, dattstied green, and dotted blue

1089 lines, respectivelyThe green deédline is the differene curve
1090

1091 Fig. 8 Mn K-edge EXAFSspectra obtainetbr (a) layered precursors an(@) reflux

1092 productsColors as irFig. 1
1093

1094 Fig. 9 Comparison of (a, dyin K-edge EXAFS andb, d) of theirFTs (showing both
1095 real and imaginary parts) obtained for-idih (Top: NiB15 and NiT15) and Nree

1096 (bottom: Bir and Tod) layered precursors and corresponding reflux products.
1097

1098 Fig. 10. Comparison of NiK-edge EXAFSspectra obtainefbr layered precursors

1099 and reflux productsvith reference spectr&ample olors as irFig. 1.
1100

1101 Fig. 1. Pair distribution functions obtained for 4Nch (NiT10 and NiT20) and
1102 Ni-free (Tod) reflux productgop). Middle: dPDFs relative to Tod PDF data; bottom:
1103 PDFscalculatedor Ni (hydr)oxides(ICSD #76670and#28101for NiO and Ni(OH}),
1104 respectively). Intensities of experimental PDFs and of difference PRé&®

1105 normalizedto the 2.93.1A peak.

1106



1107

1108

1109

1110

1111

Fig. 12. Intensitydistributions calculated fadeal todorokite(ICDD #38-0475)with

(a) only Mg in todorokite tunnels and (b) with Mg and Ni present in a 1:1 ratio in
todorokite tunnels. In both cases, the model of Post et(z103) was modified
assuming the complete filling of the O8 site byOHmMolecules (no cations) and the

presence of 1.0 cation (Mg or Mg+Ni) in the Mg site.
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Fig. 1 XRD patterns of layered precursotefd) and reflux productsbpttom). Colors
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Fig. 2 XRD patterns collected for NiT20, NiT15, and Tod at (a) Miedge (6.5 keV),

(b) Ni K-edge (8.3 eV), (c) 12.0 keV, and (d) 18.0 keV. Intensities were systematically
normalized to the most intense reflectid@olors as inFig. 1 (e) XRD patterns
calculated fo an asbolane containing 0.525 Ni(Qk) MnO; interlayers. Contents of

Ni and Mn atoms are reduced by 20% at their respective absorption edges to simulate

the anomalous effect.
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Fig. 4 HRTEM images of(a-b): Tod, (c-e): NiT1, (f-h): NiT5, (i-m): NiT1. Numbers
in (b) and (d)indicate the numbesf MnOg octahedra defining tunnel widtrrows

in (i) and (I) indicate the direction &inges benahg.
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Fig. 5 Proportion of metal cations releassating the nitric acid treatmen(e-b): Mn,
(c-d): Ni, and €): Mg. The amount of metal released is normalized to the sample
overall metal content (see text for details). &RD patterns bsampledreated with

nitric acid Colors as irFig. 1except for Bir in (e).
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Fig. 6. Thermogravimetric analysisacesobtained for (aJayered precursorand (b)
reflux productsand their ¥ derivatives (c and d respectively. 1% derivative curves
were smoothed using a Savitzéplay filter and d.5 pointswindow. Colors as irfFig.

1.
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Fig. 7. XPS O1s spectra obtained for layered precursors and reflux products (left and
right, respectively)The thick solid curve represents thest fit to the datéopen red
squares)Peaks corresponding @, OH, and HO species are shown in the order of
increasing binding energy as dashed purple, dassthed green, and dotted blue

lines, respectivelyThe green deedline is the differene curve
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Fig. 8 Mn K-edge EXAFSspectra obtainetbr (a) layered precursors an(fd) reflux

productsColors as irFig. 1
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Fig. 9 Comparison of (a, dyin K-edge EXAFS andb, d) of theirFTs (showing both
real and imaginary parts) obtained fér-rich (Top: NiB15 and NiT15) and Nree

(bottom: Bir and Tod) layered precursors and corresponding reflux products.



53
54

55

56

57

58

Fig. 10. Comparison of NiK-edge EXAFSspectra obtainedbr layered precursors

and reflux productsiith reference spectra. Sample colors asign 1

Fig. 11. Pair distribution functions obtained for ch (NiT10 and NiT20) and
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Ni-free (Tod) reflux productéop). Middle: dPDFs relative to Tod PDF data; bottom:
PDFscalculatedor Ni (hydr)oxides (ICSD #7/6670and#28101for NiO and Ni(OH),
respectively). Intensities of experimental PDFs and of difference Pére

normalizecdto the 2.93.1A peak.

Fig. 12. Intensitydistributions calculated fadeal todorokite(ICDD #38-0475)with

(a) only Mg in todorokite tunnels and (b) with Mg and Ni present in a 1:1 ratio in
todorokite tunnels. In both cases, the model of Post €2@)) was modified
assuming the complete filling of the O8 site byOHmMolecules (no cations) and the

presence of 1.0 cation (Mg or Mg+Ni) in the Mg site.
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Table S1
Relative proportions of O species in the reanface of layered precursors and reflux

products calculated by fitting XPS Odata

Sample O1s(BE) State BE(eV) FWHM(eV) At.%
o? 529.6 1.59 72.9

Bir 529.35 OH 531.5 1.59 11.6
H-0 533.4 2.12 155

o? 529.7 1.59 65.9

NiB5 529.72 OH 531.2 1.59 18.8
H20 532.2 2.12 15.3

o* 529.5 1.59 60.8

NiB10 529.72 OH 531.0 1.59 22.3
H20 532.2 2.12 16.9

o 529.8 1.59 66.6

NiB15 530.06 OH 531.2 1.59 18.5
H20 532.3 2.12 15.0

o* 529.5 1.59 55.6

NiB20 530.21 OH 530.9 1.59 25.9
H20 532.4 2.12 18.5

o” 529.9 1.59 58.1

Tod 529.89 OH 531.6 1.59 20.9
H20 533.0 2.12 21.0

o* 529.8 1.59 46.7

NiT5 529.84 OH 531.4 1.59 29.0
H20 532.8 2.12 24.4

0% 529.8 1.59 47.6

NiT10 530.08 OH 531.3 1.59 31.0
H20 532.6 2.12 21.5

NiT15 530.15 o~ 529.8 1.59 46.8




NiT20

529.59

OoH 531.2 1.59 28.9
H20 532.5 2.12 23.4
o* 529.6 1.59 50.3
OoH 531.0 1.59 29.8
H0 532.3 2.12 19.9




Table S2
Relative proportions of NiB and Ni(OH}ppecies obtained froninear combination
fitting of NiT K-edge EXAFS spectra using Ni(O+#ind corresponding NiB samples

asstandard references (Fig. S5).

Samples NiBn/% Ni(OH)2/% Error /%

NIiT5 82.0 18.0 2.1
NiT10 86.5 13.5 1.0
NIiT15 87.1 12.9 0.9

NiT20 85.3 14.7 11




Fig. S1. XRD patterns of fresh layered precursors after heating to 140 °C for different

durations



Fig. S2. XRD patterns of reflux products (zoom on-amngle regions). Colors as in

Fig. 1.



Fig. S3. XRD patterns of reflux products after heating to 140 °C for 12 hours. Colors

asinFig. 1



Fig. S4. Intensity ratio of the intensity of 4.8 A and 8.Geaks (d4lo¢) in reflux

products as a function of Ni content anda$ energy (see Fig. 2 for the data).



Fig. S5. linear combination fitting of NiT Kedge EXAFS spectra using Ni(O+énd

corresponding NiB samples as standard references.



Fig. 5. Interatomic distances calculated for a variety of-Wim pairs and ideal
todorokite structur¢lCDD #38-0475).The Mn4Mn4 distancg4.48 A) which isnot
reported in the figurés similar tothe Mn2-Mn2 distance Figure modified from Fig.

1(b) in Wu etal. (2019.
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