M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen et al., TensorFlow: Large-Scale Machine Learning on Heterogeneous Distributed Systems, 2016.

, African Plant Database, 2019.

, African Pollen Database, 2019.

L. Beaufort and D. Dollfus, Automatic recognition of coccoliths by dynamical neural networks, Marine Micropaleontology, vol.51, pp.57-73, 2004.
URL : https://hal.archives-ouvertes.fr/hal-01460381

R. Bonnefille, Associations polliniques actuelles et quaternaires en Ethiopie (vallées de l'Awash et de l'Omo). PhD Dissertation, 1972.

R. Bonnefille, Methode palynologique et reconstitutions paleoclimatiques au Cenozoique dans le Rift est-africain, Bulletin de la Société Géologique de France S7, pp.331-342, 1979.

R. Bonnefille, Cenozoic vegetation, climate changes and hominid evolution in tropical Africa, Global and Planetary Change, vol.72, pp.390-411, 2010.

R. Bonnefille, R. Potts, F. Chalié, D. Jolly, and O. Peyron, High-resolution vegetation and climate change associated with Pliocene Australopithecus afarensis, Proceedings of the National Academy of Sciences, vol.101, pp.12125-12129, 2004.
URL : https://hal.archives-ouvertes.fr/hal-02407751

R. Bonnefille, A. Vincens, and G. Buchet, Palynology, stratigraphy and palaeoenvironment of a pliocene hominid site, Palaeogeography, Palaeoclimatology, Palaeoecology, vol.60, issue.2, pp.249-281, 1987.

G. Buchet, Transport des pollens dans les fleuves Omo et Awash (Ethiopie): étude des vases actuelles. PhD Dissertation, École pratique des hautes études, p.20, 1982.

C. Chudyk, H. Castaneda, R. Léger, I. Yahiaoui, and F. Boochs, Development of an Automatic Pollen Classification System Using Shape, Texture and Aperture Features, Proceedings of the LWA 2015 Workshops: KDML FGWM IR and FGDB Trier, pp.65-74, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01922755

A. Cohen, C. Campisano, R. Arrowsmith, A. Asrat, A. K. Behrensmeyer et al., The Hominin Sites and Paleolakes Drilling Project: inferring the environmental context of human evolution from eastern African rift lake deposits, Scientific Drilling, vol.21, pp.1-16, 2016.

B. B. Curry, The late-glacial and early Holocene geology, paleoecology and paleohydrology of the Brewster Creek Site, a proposed wetland restoration site, Pratt's Wayne Woods Forest Preserve and James 'Pate' Philip State Park, 2007.

A. Daood, Pollen Grains Recognition Based on Computer Vision Methods. PhD Dissertation, Florida Institute of Technology, 2018.

A. Daood, E. Ribeiro, and M. Bush, Sequential Recognition of Pollen Grain Z-Stacks by Combining CNN and RNN, The Thirty-First International Florida Artificial Intelligence Research Society Conference, pp.8-13, 2018.

M. Fernandez-delgado, P. Carrion, E. Cernadas, and J. F. Galvez, Improved Classification of Pollen Texture Images Using Svm and Mlp, 3rd IASTED International Conference on Visualization, Imaging and Image Processing, 1968.

N. M. García, V. Chaves, J. C. Briceño, and C. M. Travieso, Pollen Grains Contour Analysis on Verification Approach, International Conference on Hybrid Artificial Intelligence Systems, pp.521-532, 2012.

A. B. Gonçalves, J. S. Souza, G. G. Silva, . Da, M. P. Cereda et al., Feature Extraction and Machine Learning for the Classification of Brazilian Savannah Pollen Grains, PLOS ONE, vol.11, p.157044, 2016.

L. Han and Y. Xie, Local Decimal Pattern for Pollen Image Recognition, Artificial Neural Networks and Machine Learning -ICANN 2018, pp.47-55, 2018.

K. Holt, G. Allen, R. Hodgson, S. Marsland, and J. Flenley, Progress towards an automated trainable pollen location and classifier system for use in the palynology laboratory, Review of Palaeobotany and Palynology, vol.167, pp.175-183, 2011.

K. A. Holt and K. D. Bennett, Principles and methods for automated palynology, New Phytologist, vol.203, pp.735-742, 2014.

J. D. Hunter, Matplotlib: A 2D Graphics Environment, Computing in Science & Engineering, vol.9, pp.90-95, 2007.

Y. Kaya, S. M. P?nar, M. E. Erez, and M. Fidan, An expert classification system of pollen of Onopordum using a rough set approach, Review of Palaeobotany and Palynology, vol.189, pp.50-56, 2013.

N. Khanzhina, E. Putin, A. Filchenkov, and E. Zamyatina, Pollen grain recognition using convolutional neural network, Proceedings of the 26th, 2018.

, European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (, 2018.

B. Bruges, , pp.409-414

S. Kong, S. Punyasena, and C. Fowlkes, Spatially Aware Dictionary Learning and Coding for Fossil Pollen Identification, Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition Workshops, pp.1-10, 2016.

P. Li, W. J. Treloar, J. R. Flenley, and L. Empson, Towards automation of palynology 2: the use of texture measures and neural network analysis for automated identification of optical images of pollen grains, Journal of Quaternary Science, vol.19, pp.755-762, 2004.

L. Mander, S. J. Baker, C. M. Belcher, D. S. Haselhorst, J. Rodriguez et al., Accuracy and consistency of grass pollen identification by human analysts using electron micrographs of surface ornamentation, Applications in Plant Sciences, vol.2, issue.8, p.1400031, 2014.

R. Marchant, M. Tetard, and T. De-garidel-thoron, preparation. A system for classification of foraminifera images using deep convolutional neural networks

J. V. Marcos, R. Nava, G. Cristóbal, R. Redondo, B. Escalante-ramírez et al., Automated pollen identification using microscopic imaging and texture analysis, Micron, vol.68, pp.36-46, 2015.

M. A. Maslin, S. Shultz, and M. H. Trauth, A synthesis of the theories and concepts of early human evolution, Philosophical Transactions of the Royal Society B: Biological Sciences, vol.370, 2015.

J. Mohan, J. R. Stone, and C. J. Campisano, Three novel species of Bacillariophyta (Diatoms) belonging to Aulacoseira and Lindavia from the Pliocene Hadar Formation, Phytotaxa, vol.272, pp.235-247, 2016.

T. E. Oliphant, A guide to NumPy, 2006.

F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion et al., Scikit-learn: Machine Learning in Python, Journal of Machine Learning Research, vol.12, pp.2825-2830, 2011.
URL : https://hal.archives-ouvertes.fr/hal-00650905

F. Pérez, B. E. Granger, and J. D. Hunter, Python: An Ecosystem for Scientific Computing, Comput. Sci. Eng, vol.13, pp.13-21, 2011.

S. W. Punyasena, D. K. Tcheng, C. Wesseln, and P. G. Mueller, Classifying black and white spruce pollen using layered machine learning, New Phytologist, vol.196, pp.937-944, 2012.

M. Rodriguez-damian, E. Cernadas, A. Formella, M. Fernandez-delgado, and P. D. Sa-otero, Automatic detection and classification of grains of pollen based on shape and texture, IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews, vol.36, pp.531-542, 2006.

J. Schindelin, I. Arganda-carreras, E. Frise, V. Kaynig, M. Longair et al., Fiji: an open-source platform for biological-image analysis, Nature Methods, vol.9, pp.676-682, 2012.
URL : https://hal.archives-ouvertes.fr/pasteur-02616466

A. G. Sangster and H. M. Dale, Pollen grain preservation of underrepresented species in fossil spectra, Canadian Journal of Botany, vol.42, issue.4, pp.437-449, 1964.

V. Sevillano and J. L. Aznarte, Improving classification of pollen grain images of the POLEN23E dataset through three different applications of deep learning convolutional neural networks, PloS One, vol.13, p.201807, 2018.

K. Simonyan and A. Zisserman, Very Deep Convolutional Networks for Large-Scale Image Recognition, 2014.

M. K. Sobol and S. A. Finkelstein, Predictive pollen-based biome modeling using machine learning, PLOS ONE, vol.13, p.202214, 2018.

W. J. Treloar, G. E. Taylor, and J. R. Flenley, Towards automation of palynology 1: analysis of pollen shape and ornamentation using simple geometric measures, derived from scanning electron microscope images, Journal of Quaternary Science, vol.19, pp.745-754, 2004.

B. Villmoare, W. H. Kimbel, C. Seyoum, C. J. Campisano, E. N. Dimaggio et al., Early Homo at 2.8 Ma from Ledi-Geraru, Afar, Ethiopia. Science, vol.347, p.453, 2015.

A. Zheng, Evaluating Machine Learning Models: A Beginner's Guide to Key Concepts and Pitfalls, 2015.