M. Abu-al-saud, A. Gmira, S. Al-enezi, and A. Yousef, Pore-scale simulation of fluid flow in carbonates using micro-CT scan images, International Petroleum Technology Conference 2020, vol.2020, pp.1-11, 2020.

V. Alvarado and E. Manrique, Enhanced oil recovery: an update review, Energies, vol.3, issue.9, pp.1529-1575, 2010.

P. Angot, C. Bruneau, and P. Fabrie, A penalization method to take into account obstacles in incompressible viscous flows, Numer. Math, vol.81, issue.4, pp.497-520, 1999.

S. N. Apourvari and C. H. Arns, An assessment of the influence of micro-porosity for effective permeability using local flux analysis on tomographic images, International Petroleum Technology Conference, pp.19-22, 2014.

J. Auriault, On the domain of validity of Brinkman's equation, Transp. Porous Media, vol.79, issue.2, pp.215-223, 2009.

P. Aussillous, D. Quéré, and D. Qué, Quick deposition of a fluid on the wall of a tube, Phys. Fluids, vol.12, issue.10, pp.2367-32107, 2000.

K. Baber, B. Flemisch, and R. Helmig, Modeling drop dynamics at the interface between free and porous-medium flow using the mortar method, Int. J. Heat Mass Transf, vol.99, pp.660-671, 2016.

I. Battiato, D. O'malley, C. T. Miller, P. S. Takhar, F. J. Valdés-parada et al., Theory and applications of macroscale models in porous media, Transp. Porous Media, pp.1-72, 2019.

J. Bear, Dynamics of Fluids in Porous Media, 1972.

G. S. Beavers and D. D. Joseph, Boundary conditions at a naturally permeable wall, J. Fluid Mech, vol.30, pp.197-207, 1967.

P. Bousquet-melou, B. Goyeau, M. Quintard, F. Fichot, and D. Gobin, Average momentum equation for interdendritic flow in a solidifying columnar mushy zone, Int. J. Heat Mass Transf, vol.45, issue.17, pp.3651-3665, 2002.

J. Brackbill, D. Kothe, and C. Zemach, A continuum method for modeling surface tension, J. Comput. Phys, vol.100, issue.2, pp.335-354, 1992.

H. C. Brinkman, A calculation of the viscous force exerted by a flowing fluid on a dense swarm of particles, Appl. Sci. Res. A, vol.1, pp.27-34, 1947.

R. Brooks and A. Corey, Hydraulic properties of porous media, Hydro Paper, vol.3, p.27, 1964.

F. J. Carrillo and I. C. Bourg, A Darcy-Brinkman-Biot approach to modeling the hydrology and mechanics of porous media containing macropores and deformable microporous regions, Water Resour. Res, vol.55, pp.8096-8121, 2019.

A. Cassie and S. Baxter, Wettability of porous surfaces, Trans. Faraday Soc, vol.40, pp.546-551, 1944.

C. Y. Chen and E. Meiburg, Miscible porous media displacements in the quarter five-spot configuration. Part 1. The homogeneous case, J. Fluid Mech, vol.371, pp.233-268, 1998.

J. D. Chen and D. Wilkinson, Pore-scale viscous fingering in porous media, Phys. Rev. Lett, vol.55, issue.18, pp.1892-1895, 1985.

R. Cox, The dynamics of the spreading of liquids on a solid surface, J. Fluid Mech, vol.168, pp.169-194, 1986.

S. M. Damian, An extended mixture model for the simultaneous treatment of short and long scale interfaces, 2013.

S. S. Datta, J. Dupin, and D. A. Weitz, Fluid breakup during simultaneous two-phase flow through a three-dimensional porous medium, Phys. Fluids, vol.26, p.62004, 2014.

G. D. Donato, W. Huang, and M. Blunt, Streamline-based dual porosity simulation of fractured reservoirs, Proceedings -SPE Annual Technical Conference and Exhibition, pp.121-131, 2003.

J. Douglas, J. L. Hensley, and T. Arbogast, A dual-porosity model for waterflooding in naturally fractured reservoirs, Comput. Methods Appl. Mech. Eng, vol.87, issue.2-3, pp.157-174, 1991.

Y. Efendiev and T. Hou, Multiscale finite element methods for porous media flows and their applications, Appl. Numer. Math, vol.57, pp.577-596, 2007.

A. Ferrari and I. Lunati, Direct numerical simulations of interface dynamics to link capillary pressure and total surface energy, Adv. Water Resour, vol.57, pp.19-31, 2013.

F. Golfier, C. Zarcone, B. Bazin, R. Lenormand, D. Lasseux et al., On the ability of a Darcy-scale model to capture wormhole formation during the dissolution of a porous medium, J. Fluid Mech, vol.457, pp.213-254, 2002.

B. Goyeau, D. Lhuillier, D. Gobin, and M. Velarde, Momentum transport at a fluid-porous interface, Int. J. Heat Mass Transf, vol.46, issue.21, pp.4071-4081, 2003.

M. Graveleau, C. Soulaine, and H. A. Tchelepi, Pore-scale simulation of interphase multicomponent mass transfer for subsurface flow, Transp. Porous Media, vol.120, issue.2, pp.287-308, 2017.

W. G. Gray, A. L. Dye, J. E. Mcclure, L. J. Pyrak-nolte, and C. T. Miller, On the dynamics and kinematics of two-fluid-phase flow in porous media, Water Resour. Res, vol.51, pp.5365-5381, 2015.

D. Gründing, M. Smuda, T. Antritter, M. Fricke, D. Rettenmaier et al., Capillary rise -a computational benchmark for wetting processes, pp.1-38, 2019.

R. Guibert, M. Nazarova, P. Horgue, G. Hamon, P. Creux et al., Computational permeability determination from pore-scale imaging: sample size, mesh and method sensitivities, Transp. Porous Media, vol.107, issue.3, pp.641-656, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01122477

S. M. Hassanizadeh, M. A. Celia, and H. K. Dahle, Dynamic effects in the capillary pressure-saturation relationship and its impacts on unsaturated flow, Vadose Zone J, vol.1, pp.38-57, 2002.

R. Helmig, B. Flemisch, M. Wolff, A. Ebigbo, and H. Class, Model coupling for multiphase flow in porous media, Adv. Water Resour, vol.51, pp.52-66, 2013.
URL : https://hal.archives-ouvertes.fr/hal-01301482

R. Helmig, B. Flemisch, M. Wolff, and B. Faigle, Efficient modeling of flow and transport in porous media using multi-physics and multi-scale approaches, Handbook of Geomathematics, pp.418-457, 2010.

P. Higuera, J. L. Lara, and I. J. Losada, Realistic wave generation and active wave absorption for Navier-Stokes models. Application to OpenFOAM®, Coast. Eng, vol.71, pp.102-118, 2013.

C. Hirt and B. Nichols, Volume of fluid (VOF) method for the dynamics of free boundaries, J. Comput. Phys, vol.39, issue.1, pp.201-225, 1981.

E. Holzbecher, Modeling of viscous fingering, The COMSOL Conference, p.6, 2009.

P. Horgue, M. Prat, and M. Quintard, A penalization technique applied to the volume-of-fluid method: wettability condition on immersed boundaries, Comput. Fluids, vol.100, pp.255-266, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01010612

P. Horgue, C. Soulaine, J. Franc, R. Guibert, and G. Debenest, An open-source toolbox for multiphase flow in porous media, Comput. Phys. Commun, vol.187, pp.217-226, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01128399

F. A. Howes and S. Whitaker, The spatial averaging theorem revisited, Chem. Eng. Sci, vol.40, issue.8, pp.1387-1392, 1985.

C. Hsu and P. Cheng, Thermal dispersion in a porous medium, Int. J. Heat Mass Transf, vol.33, issue.8, pp.1587-1597, 1990.

M. Ishii and T. Hibiki, Thermo-Fluid Dynamics of Two-Phase Flow, 2011.

R. I. Issa, Solution of the implicitly discretised fluid flow equations by operator-splitting, J. Comput. Phys, vol.62, pp.40-65, 1985.

M. Jabbari, V. A. Jambhekar, J. H. Hattel, and R. Helmig, Drying of a tape-cast layer: numerical modelling of the evaporation process in a graded/layered material, Int. J. Heat Mass Transf, vol.103, pp.1144-1154, 2016.

H. Jasak, Error analysis and estimation for the finite volume method with applications to fluid flows, 1996.

P. Jenny, S. Lee, and H. A. Tchelepi, Multi-scale finite-volume method for elliptic problems in subsurface flow simulation, J. Comput. Phys, vol.187, issue.1, pp.47-67, 2003.

P. Jenny, S. H. Lee, and H. A. Tchelepi, Adaptive fully implicit multi-scale finite-volume method for multi-phase flow and transport in heterogeneous porous media, J. Comput. Phys, vol.217, issue.2, pp.627-641, 2006.

J. Jurin and I. I. , An account of some experiments shown before the Royal Society; with an enquiry into the cause of the ascent and suspension of water in capillary tubes, Philos. Trans. R. Soc. Lond, vol.30, issue.355, pp.739-747, 1719.

D. H. Kang, E. Yang, and T. S. Yun, Stokes-Brinkman flow simulation based on 3-D ?-CT images of porous rock using grayscale pore voxel permeability, Water Resour. Res, vol.55, issue.5, pp.4448-4464, 2019.

M. Karimi-fard and L. J. Durlofsky, A general gridding, discretization, and coarsening methodology for modeling flow in porous formations with discrete geological features, Adv. Water Resour, vol.96, pp.354-372, 2016.

K. Khadra, P. Angot, S. Parneix, and J. Caltagirone, Fictitious domain approach for numerical modelling of Navier-Stokes equations, Int. J. Numer. Methods Fluids, vol.34, issue.8, pp.651-684, 2000.

M. A. Knackstedt, C. H. Arns, A. Ghous, A. Sakellariou, T. J. Senden et al., 3D imaging and characterization of the pore space of carbonate core; implications to single and two phase flow properties, SPWLA 47th Annual Logging Symposium. Society of Petrophysicists and Well-Log Analysts, pp.1-15, 2006.

U. Lacis, G. A. Zampogna, and S. Bagheri, A computational continuum model of poroelastic beds, Proc. -Royal Soc., Math. Phys. Eng. Sci, vol.473, 2017.

L. Lake, R. T. Johns, W. R. Rossen, and G. A. Pope, Fundamentals of Enhanced Oil Recovery, 2014.

B. E. Larsen, D. R. Fuhrman, and J. Roenby, Performance of interFoam on the simulation of progressive waves, Coast. Eng. Jpn, vol.61, issue.3, pp.380-400, 2019.

D. Lasseux, M. Quintard, and S. Whitaker, Determination of permeability tensors for two-phase flow in homogeneous porous media: theory, Transp, Porous Media, vol.24, issue.2, pp.107-137, 1996.

R. Lenormand, E. Touboul, and C. Zarcone, Numerical models and experiments on immiscible displacements in porous media, J. Fluid Mech, vol.189, pp.165-187, 1988.

M. C. Leverett, Capillary behavior in porous solids, Trans. AIME, vol.142, issue.1, pp.152-169, 1940.

B. Li and S. M. Benson, Influence of small-scale heterogeneity on upward CO 2 plume migration in storage aquifers, Adv. Water Resour, vol.83, pp.389-404, 2015.

T. Li, S. Schlüter, M. I. Dragila, and D. Wildenschild, An improved method for estimating capillary pressure from 3d microtomography images and its application to the study of disconnected nonwetting phase, Adv. Water Resour, vol.114, pp.249-260, 2018.

J. Liu, Y. Ju, Y. Zhang, and W. Gong, Preferential paths of air-water two-phase flow in porous structures with special consideration of channel thickness effects, Nat. Sci. Rep, vol.9, issue.1, 2019.

X. Liu, A. Ormond, K. Bartko, L. Ying, and P. Ortoleva, A geochemical reaction-transport simulator for matrix acidizing analysis and design, J. Pet. Sci. Eng, vol.17, issue.1, pp.181-196, 1997.

J. Maes and C. Soulaine, A unified single-field Volume-of-Fluid-based formulation for multi-component interfacial transfer with local volume changes, J. Comput. Phys, vol.402, 2019.
URL : https://hal.archives-ouvertes.fr/insu-02426952

R. M. Maxwell, M. Putti, S. Meyerhoff, J. Delfs, I. M. Ferguson et al., Surface-subsurface model intercomparison: a first set of benchmark results to diagnose integrated hydrology and feedbacks, Water Resour. Res, vol.50, pp.1531-1549, 2014.

P. Meakin and A. M. Tartakovsky, Modeling and simulation of pore-scale multiphase fluid flow and reactive transport in fractured and porous media, Rev. Geophys, vol.47, p.3002, 2009.

C. Miller, K. Bruning, C. Talbot, J. Mcclure, and W. Gray, Nonhysteretic capillary pressure in two-fluid porous medium systems: definition, evaluation, validation, and dynamics, Water Resour. Res, vol.55, pp.6825-6849, 2019.

C. T. Miller, G. Christakos, P. T. Imhoff, J. F. Mcbride, J. A. Pedit et al., Multiphase flow and transport modeling in heterogeneous porous media: challenges and approaches, Adv. Water Resour, vol.21, issue.2, pp.77-120, 1998.

S. Molins, C. Soulaine, N. Prasianakis, A. Abbasi, P. Poncet et al., Simulation of mineral dissolution at the pore scale with evolving fluid-solid interfaces: review of approaches and benchmark problem set, Comput. Geosci, pp.1-34, 2020.
URL : https://hal.archives-ouvertes.fr/hal-01998494

R. A. Morton, Factors controlling storm impacts on coastal barriers and beaches -a preliminary basis for near real-time forecasting, J. Coast. Res, vol.18, issue.3, pp.486-501, 2002.

M. Muskat, Physical Principles of Oil Production, 1949.

K. Nandlal and R. Weijermars, Drained rock volume around hydraulic fractures in porous media: planar fractures versus fractal networks, Pet. Sci, 2019.

G. Neale and W. Nader, Practical significance of Brinkman's extension of Darcy's law: coupled parallel flows within a channel and a bounding porous medium, Can. J. Chem. Eng, vol.52, issue.4, pp.475-478, 1974.

D. Or, P. Lehmann, E. Shahraeeni, and N. Shokri, Advances in soil evaporation physics-a review, Vadose Zone J, vol.12, issue.4, 2013.

L. Orgogozo, N. Renon, C. Soulaine, F. Hénon, S. Tomer et al., An open source massively parallel solver for Richards equation: mechanistic modelling of water fluxes at the watershed scale, Comput. Phys. Commun, vol.185, issue.12, pp.3358-3371, 2014.
URL : https://hal.archives-ouvertes.fr/hal-01881720

S. V. Patankar, Numerical Heat Transfer and Fluid Flow, 1980.

D. Picchi and I. Battiato, The impact of pore-scale flow regimes on upscaling of immiscible two-phase flow in porous media, Water Resour. Res, vol.54, pp.6683-6707, 2018.

G. F. Pinder and W. G. Gray, Essentials of Multiphase Flow and Transport in Porous Media, 2008.

M. Quintard and S. Whitaker, Convection, dispersion, and interfacial transport of contaminants: homogeneous porous media, Adv. Water Resour, vol.17, issue.4, pp.221-239, 1994.

A. Riaz and H. A. Tchelepi, Numerical simulation of immiscible two-phase flow in porous media, Phys. Fluids, vol.18, issue.1, 2006.

S. Rocco, A. W. Woods, J. Harrington, and S. Norris, An experimental model of episodic gas release through fracture of fluid confined within a pressurized elastic reservoir, Geophys. Res. Lett, vol.44, pp.751-759, 2017.

S. Roman, C. Soulaine, M. A. Alsaud, A. Kovscek, and H. Tchelepi, Particle velocimetry analysis of immiscible two-phase flow in micromodels, Adv. Water Resour, vol.95, pp.199-211, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01692761

M. Rudman, Volume-tracking methods for interfacial flow calculations, Int. J. Numer. Methods Fluids, vol.24, issue.7, pp.671-691, 1997.

H. Rusche, Computational fluid dynamics of dispersed two-phase flows at high phase fractions, 2002.

P. Saffman and G. Taylor, The penetration of a fluid into a porous medium or Hele-Shaw cell containing a more viscous liquid, Dyn. Curved Fronts, vol.245, pp.155-174, 1242.

B. P. Scandella, K. Delwiche, H. F. Hemond, and R. Juanes, Persistence of bubble outlets in soft, methane-generating sediments, J. Geophys. Res., Biogeosci, vol.122, pp.1298-1320, 2017.

T. D. Scheibe, W. A. Perkins, M. C. Richmond, M. I. Mckinley, P. D. Romero-gomez et al., Pore-scale and multiscale numerical simulation of flow and transport in a laboratory-scale column, Water Resour. Res, vol.51, issue.2, pp.1023-1035, 2015.

K. Singh, How hydraulic properties of organic matter control effective liquid permeability of mudrocks, Transp. Porous Media, pp.1-17, 2019.

C. Soulaine, P. Creux, and H. A. Tchelepi, Micro-continuum framework for pore-scale multiphase fluid transport in shale formations, Transp. Porous Media, vol.127, issue.1, pp.85-112, 2019.
URL : https://hal.archives-ouvertes.fr/hal-02004137

C. Soulaine, F. Gjetvaj, C. Garing, S. Roman, A. Russian et al., The impact of sub-resolution porosity of x-ray microtomography images on the permeability, Transp. Porous Media, vol.113, issue.1, pp.227-243, 2016.
URL : https://hal.archives-ouvertes.fr/hal-01692755

C. Soulaine, S. Roman, A. Kovscek, and H. A. Tchelepi, Mineral dissolution and wormholing from a pore-scale perspective, J. Fluid Mech, vol.827, pp.457-483, 2017.
URL : https://hal.archives-ouvertes.fr/hal-01692768

C. Soulaine, S. Roman, A. Kovscek, and H. A. Tchelepi, Pore-scale modelling of multiphase reactive flow. Application to mineral dissolution with production of CO 2, J. Fluid Mech, vol.855, pp.616-645, 2018.
URL : https://hal.archives-ouvertes.fr/insu-01934748

C. Soulaine and H. A. Tchelepi, Micro-continuum approach for pore-scale simulation of subsurface processes, Transp. Porous Media, vol.113, pp.431-456, 2016.

D. C. Standnes, S. Evje, and P. O. Andersen, A novel relative permeability model based on mixture theory approach accounting for solid-fluid and fluid-fluid interactions, Transp. Porous Media, vol.119, pp.707-738, 2017.

M. Starnoni and D. Pokrajac, On the concept of macroscopic capillary pressure in two-phase porous media flow, Adv. Water Resour, vol.135, p.103487, 2020.

T. Sun, Y. Mehmani, and M. T. Balhoff, Hybrid multiscale modeling through direct substitution of pore-scale models into near-well reservoir simulators, Energy Fuels, vol.26, issue.9, pp.5828-5836, 2012.

C. K. Tam, The drag on a cloud of spherical particles in low Reynolds number flow, J. Fluid Mech, vol.38, issue.03, pp.537-546, 1969.

P. Tomin and I. Lunati, Hybrid multiscale finite volume method for two-phase flow in porous media, J. Comput. Phys, vol.250, pp.293-307, 2013.

P. Tomin and I. Lunati, Investigating Darcy-scale assumptions by means of a multiphysics algorithm, Adv. Water Resour, vol.95, pp.80-91, 2016.

P. Tomin and D. Voskov, Robust and accurate formulation for modeling of acid stimulation, 16th European Conference on the Mathematics of Oil Recovery, pp.1-16, 2018.

F. E. Torres, Closure of the governing equations for immiscible, two-phase flow: a research comment, vol.2, pp.383-393, 1987.

K. Vafai and C. Tien, Boundary and inertia effects on flow and heat transfer in porous media, Int. J. Heat Mass Transf, vol.24, issue.2, pp.195-203, 1981.

M. T. Van-genuchten, A closed-form equation for predicting the hydraulic conductivity of unsaturated soils, Soil Sci. Soc. Am. J, vol.44, issue.5, pp.892-898, 1980.

O. Voinov, Hydrodynamics of wetting, vol.11, pp.714-721, 1976.

C. Wang and C. Beckermann, A two-phase mixture model of liquid-gas flow and heat transfer in capillary porous media-I. Formulation, Int. J. Heat Mass Transf, vol.36, p.2747, 1993.

H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, A tensorial approach to computational continuum mechanics using object-oriented techniques, Comput. Phys, vol.12, issue.6, pp.620-631, 1998.

R. N. Wenzel, Resistance of solid surfaces to wetting by water, Ind. Eng. Chem, vol.28, issue.8, pp.988-994, 1936.

S. Whitaker, Flow in porous media I: a theoretical derivation of Darcy's law, Transp. Porous Media, vol.1, pp.3-25, 1986.

S. Whitaker, Flow in porous media II: the governing equations for immiscible, two-phase flow, vol.1, pp.105-125, 1986.

S. Whitaker, The Method of Volume Averaging, Theory and Applications of Transport in Porous Media, 1999.

G. Whyman, E. Bormashenko, and T. Stein, The rigorous derivation of Young, Cassie-Baxter and Wenzel equations and the analysis of the contact angle hysteresis phenomenon, Chem. Phys. Lett, vol.450, pp.355-359, 2008.

Z. Xu, H. Liu, and A. J. Valocchi, Lattice Boltzmann simulation of immiscible two-phase flow with capillary valve effect in porous media, Water Resour. Res, vol.53, issue.5, pp.3770-3790, 2017.

B. Yan, Y. Wang, and J. E. Killough, Beyond dual-porosity modeling for the simulation of complex flow mechanisms in shale reservoirs, Comput. Geosci, vol.20, issue.1, pp.69-91, 2016.

Z. Yin, M. Khurana, H. K. Tan, and P. Linga, A review of gas hydrate growth kinetic models, Chem. Eng. J, vol.342, pp.9-29, 2018.

I. Zacharoudiou, E. S. Boek, and J. Crawshaw, The impact of drainage displacement patterns and Haines jumps on CO 2 storage efficiency, Sci. Rep, vol.8, p.15561, 2018.

G. A. Zampogna, U. L?cis, S. Bagheri, and A. Bottaro, Modeling waves in fluids flowing over and through poroelastic media, Int. J. Multiph. Flow, vol.110, pp.148-164, 2019.