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Abstract. The Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment took place from 2014 to 2019.

Over this period, more than 20 instrumented buoys were deployed at the North Pole. Once locked into the ice, the buoys drifted

for periods of a month to more than a year. Some of these buoys were equipped with 808 nm wavelength lidars which acquired

a total of 1805 profiles over the course of the campaign. This IAOOS lidar dataset is exploited to establish a novel statistic of

cloud cover and of the geometrical and optical characteristics of the lowest cloud layer. Cloud frequency is globally at 75%,5

and above 85% from May to October. Single layers are thickest in October/November and thinnest in the summer. Meanwhile,

their optical depth is maximum in October. On the whole, the cloud cover is very low, with the great majority of first layer

bases beneath 120 m. In the shoulder seasons, surface temperatures are markedly warmer when the IAOOS profile contains

at least one low cloud than when it does not. This temperature difference is statistically insignificant in the summer months.

Indeed, summer clouds have a shortwave cooling effect which can reach−60 W m−2 and balance out their longwave warming10

effect.

1 Introduction

The Arctic is a key region of climate change: it is warming about twice as fast as the middle latitudes. This phenomenon, called

"Arctic amplification", is most commonly attributed to the ice-albedo feedback, which is due to areas of open ocean exposed

by melting sea ice absorbing more solar radiation. However some models with fixed albedos also appear to show amplified15

warming in the Arctic, pointing to other mechanisms at work (Winton, 2006; Pithan and Mauritsen, 2014). Clouds are one of

the main contributors to uncertainty in global climate models because cloud feedbacks and cloud-aerosol interactions are still

poorly understood; however, clouds appear to be of particular importance in the Arctic (Tjernström et al., 2008), where they

play a very important role in the climate system. Indeed, Arctic clouds are observed to influence the melting of sea ice (Kay

and Gettelman, 2009) and may exert control on the ice-albedo feedback this way. However, these effects and processes are20

seasonally variable and not well represented by annual means (Kay and Gettelman, 2009).

Firstly, the cloud cover in the Arctic has a large seasonal variability: it is especially extensive in the summer and reaches a

minimum in the winter (Curry et al., 1988, 1996). This result is well attested in the literature although values and trends tend to

differ between studies and instruments. For example, during the Surface Heat Balance of the Arctic (SHEBA) campaign, winter

cloud occurrence measured from a combined radar/lidar was 70%. It increased to over 80% in the summer months and reached25
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a 95% peak in September (Shupe et al., 2006). Using data from CALIPSO (Cloud-Aerosol Lidar and Infrared Pathfinder

Satellite Observations), Zygmuntowska et al. (2012) find two peaks of 85% and 90% in May and October respectively, and

a minimum in January-March around 70%, in good agreement with Shupe et al. (2006). However, in the same study, cloud

fractions retrieved from the space-borne Advanced Very-High-Resolution Radiometer (AVHRR) instrument were < 60% for

the whole October-April period, and never rose above 80%.30

Cloud microphysical characteristics and radiative impact are also seasonally-dependant. Winter clouds contain mostly ice

and are therefore less emissive than summer liquid-containing clouds, although mixed-phased clouds maintain themselves

throughout the year (Morrison et al., 2011). However, seasonal statistics of cloud optical depth (COD) over the Arctic ocean

are scarce and uncertain: based on the AVHRR radiometer data for example, Wang and Key (2004) found a slight seasonal

variation in the cloud optical depth over the Arctic ocean, with a peak in May and October (> 6) and lower values (≈ 5) in the35

winter. It has been shown that cloud radiative forcing is positive (i.e., clouds warm the surface) for much of the year, except

for a short period in late June to early July when the cloud shortwave forcing is larger than the longwave forcing (Intrieri et al.,

2002a). Indeed, in contrast to winter, clouds impact the surface radiative budget in two competing ways in the summer. As

in winter, they provide longwave warming; but they also have a shortwave cooling effect, by preventing solar radiation from

reaching the surface.40

Large uncertainties remain about the characteristics of Arctic clouds and their surface impact, in part because more data and

observations are needed (Kay et al., 2016). Ground-based measurements are sparse in the Arctic because of the harsh condi-

tions and the lack of permanent settlements. The ground-based measurement stations of the International Arctic Systems for

Observing the Atmosphere (IASOA) network (Uttal et al., 2016), for example Eureka (Nunavut, Canada) or Barrow (Alaska)

are necessarily coastal. Measurements on the sea-ice take the form of ship-based or airborne campaigns, covering only a narrow45

spatial and temporal window. The first such campaign was SHEBA, which covered a full year from October 1997 to October

1998. Although it yielded significant results (Stramler et al., 2011; Shupe et al., 2006), it is now more than 20 years old and

not representative of the modern Arctic. Subsequent campaigns aimed at studying the Arctic’s changing conditions such as

the Arctic Summer Cloud Ocean Study (ASCOS) (Tjernström et al., 2014), the Arctic Clouds in Summer Experiment (ASCE)

(Sotiropoulou et al., 2016) or the Norwegian Young Sea Ice Experiment (N-ICE) (Walden et al.) covered one to six months,50

disproportionately in the summer. Most recently, the Multidisciplinary drifting Observatory for the Study of Arctic Climate

(MOSAiC) campaign is a one year-long study of the Arctic climate, with clouds as one of many research axes. The drift is due

to end in September 2020.

In this context, many established statistics - e.g., Wang and Key (2004) - make use of satellite measurements, which have

large coverage but are flawed at high latitudes. Indeed, spectroradiometers (such as MODIS, or the AVHRR) may have diffi-55

culties in distinguishing clouds from the underlying sea-ice. Their performance also differs between the dark winter months

and the summer (Zygmuntowska et al., 2012). All in all, there are large differences in measured values between instruments

(Chan and Comiso, 2013). Satellite-based lidars such as the instrument aboard CALIPSO give more reliable measurements but

are limited to 82°N because of the satellite flight path (Winker et al., 2009).
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This paper presents results of the Ice, Atmosphere, Arctic Ocean Observing System (IAOOS) field experiment lidar mea-60

surements. This novel database offers a ground-based view of lower tropospheric clouds at very high latitudes (over 80°N)

over a significant period of time - from 2014 to 2019 (Mariage, 2015). A small part of this dataset has already been analysed

in Di Biagio et al. (2018) and Mariage et al. (2017). Here it is treated as a whole to extract a 5 year statistic of the Arctic cloud

cover. First, the IAOOS field campaign and other relevant datasets are presented (Sect. 2). Then the treatment of the IAOOS

lidar data and the derivation of cloud characteristics are explained (Sect. 3). The obtained statistics of cloud frequency, and65

geometrical and optical properties are presented in Sect. 4.1 and the impact of the clouds on surface radiation and temperature

is explored in Sect. 4.2 and 4.3.

2 Data used

2.1 The IAOOS field campaign: a 5 year study of the Arctic troposphere

2.1.1 Deployed instruments70

The IAOOS field experiment was led by Sorbonne University - through the LATMOS and LOCEAN laboratories - with the

support of several structures, among which the French polar institute IPEV (Institut polaire français Paul-Emile Victor) and the

technical division of the Institute for Earth Sciences and Astronomy (CNRS-INSU) from 2014 to 2019. The main campaign

objective was to "collect real time observations of the ocean, ice, snow and atmosphere of the Arctic", offering a complementary

viewpoint to that of satellites (L2). In order to do this, several instruments were installed on an autonomous floating platform75

(or buoy). These buoys were then locked into the pack ice and left to drift with it for a duration of several months to a year.

During that time period, the buoys were tracked by GPS and communicated the acquired data to the IPEV office in Brest

(48°23′24′′ N, 4°29′24′′ W) every day.

The main instrument on the "atmosphere" side of the buoys was a micro lidar, which was was designed to study lower

troposphere and has a clear-sky range of around 4.4 km in the daytime, and 13.7 km at night, with a vertical resolution of 15 m80

(Mariage, 2015; Mariage et al., 2017). The wavelength was chosen in the near infrared (808 nm) in order to avoid disturbing

the local fauna while maintaining a distinct molecular signal. This is similar to many commercial ceilometers (Mariage, 2015).

However, it had to be custom made to resist the tough Arctic conditions. Indeed, several key components of a lidar are sensitive

to ambient temperature variations, and the buoys’ operating conditions in the pack ice could be up to 40°C colder than the lab

where it was calibrated. The lidar therefore had to be modified and isolated in order to keep it at a near constant temperature85

(Mariage, 2015). Furthermore, the tube containing the lidar emitter and receiver was topped with a window that, in operating

conditions, was often covered by frost. This layer of frost attenuates the signal, and, in extreme cases, totally blinds the lidar.

In order to overcome this problem a window heating system was put in place. The actual heating was limited to the 10-minute

interval before the two- to four-time daily profile acquisition in order to avoid draining the battery too fast. Theoretically, this

ensured that the lidar window was clear during measurement. However, in practice, the frost prevented lidar measurements90

from mid-December to early March. The frost problem will be further detailed in Sect. 3.1.1.
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Figure 1. Map of the IAOOS buoy tracks, 2014-2019 (this map only includes buoys which delivered the lidar data exploited in this article).

The different colours correspond to the different buoys, with the year of launch indicated. The red circle corresponds to the 82°N latitude:

north of this circle, no satellite lidar data is available.

The buoys were also equipped with temperature and pressure sensors for measuring outside conditions; and internal tem-

perature and humidity sensors for monitoring the lidar system. On the underwater portion of the buoys, a float measured ocean

temperature and salinity while an Ice Mass Balance system acquired temperature profiles of the snow, ice and liquid water

layers - see Koenig et al. (2016).95

2.1.2 Buoys and tracks

The first IAOOS platform was deployed in 2013. Since then, more than 20 buoys have drifted in the Arctic pack ice, and the

last one was deployed in August 2019. However, not all buoys were equipped with lidars and not all deployed lidars operated

successfully. In particular, the data transmission system of the 2016 buoys functioned poorly, and there are no exploitable lidar

profiles from July 2015 to March 2017 (see Table 1). All in all, five buoys yielded usable lidar data, amounting to 1805 profiles100

covering the March to December months. A vast majority of the drift took place north of 82°N (red line, Fig. 1). Furthermore,

apart from one buoy, all trajectories were confined to the Atlantic sector of the Arctic, reflecting the transpolar drift stream.

Indeed, most buoys studied here were locked into the ice close to the North Pole.
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Buoy Start date End date

Nb of ex-

ploitable

profiles

B02 13/04/2013 02/12/2014 462

B12 26/04/2015 05/06/2015 73

B24 06/04/2017 20/11/2017 322

B25 15/08/2017 28/10/2018 429

B27 19/04/2018 17/03/2019 519

Table 1. Start and end date of the buoy lidar data acquisition and number of exploitable profiles. Note that buoy B07 also yielded some

profiles (Di Biagio et al., 2018) which are not treated here.

2.2 Other data

2.2.1 N-ICE105

Four IAOOS buoys were deployed during the Norwegian Young Sea Ice Experiment (N-ICE) campaign, which took place

from January to June 2015 aboard the R/V Lance research vessel (Walden et al.). The buoys drifted in the sea-ice close to the

research vessel. The goal of this field campaign was to investigate thin, first-year sea-ice and its interactions with the rest of

the Arctic system; instruments deployed included an MicroPulse Lidar (MPL) to determine cloud phase and a four component

radiometer. Radiosondes were also launched twice-daily, yielding profiles of relative humidity, temperature and wind speed.110

The radiative flux and meteorological data from the second period (April to June) of this campaign were in this study as a

complement to the IAOOS data (see Sect. 4.2.1 and 4.3).

2.2.2 ERA5

ERA5 is the new reanalysis from the European Center for Medium-Range Weather Forecast, replacing ERA-Interim. ERA5

provides hourly or four times daily estimates of many weather variables on a 0.25°x0.25° grid and with 137 vertical levels. It115

is made available online with a three month delay (L1). Here we interpolated the ERA5 values on the IAOOS positions using

bilinear interpolation in space (and linear interpolation in time) during the N-ICE drift period. This allowed us to compare the

radiative flux values measured during N-ICE with the ERA5 reanalyses (see Sect. 4.2.1).
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3 Methodology of the IAOOS lidar data treatment

3.1 Overcoming Arctic-specific challenges120

3.1.1 Lidar window frost

Several problems are associated with the autonomous drift of a lidar in harsh Arctic conditions, as outlined in Sect. 2.1. In

particular, the cold conditions cause frost to form on the lidar window, because the installed window heating system could not

operate the whole time in order to preserve batteries. This caused the signal to be attenuated and therefore the system constant

C - which is the ratio of the raw signal in photon numbers to the actual signal - to diminish.125

Because it is crucial to know the system constant value in order to extract geophysical information from the raw lidar signal,

this effect had to be corrected. The correction method was put in place by Mariage (2015). First a "frost index", γ is defined:

γ =
P0

P

where P is the lidar window reflection peak, and P0 the minimal value taken by P over the course of a drift. P0 is therefore

assumed to be the value of the reflection peak when the window is entirely frost-free. γ then ranges from approximately 1 when

the window is frost free to very low values (< 5 · 10−2) when the window is totally opaque. In fact, this frost index becomes a130

proxy for the window transmittance.

Under the assumption that aerosol load is very low in the high Arctic, C can be calculated from cloud-free profiles. Its values

are then compared to the frost index. As could be expected, 1
C diminishes with γ: that is, the signal is dampened when the

window is covered with frost. An empirical fit of 1
C as a function of γ can then be established (Mariage, 2015). This allows us

to deduce the value of C for each profile from the value of γ. The fitting coefficients were determined independently for each135

buoy when possible, since the frost index depends on P0, which is buoy specific.

It should be noted however that when the frost is too thick, no usable signal is recoverable. This means that there were no

exploitable lidar profiles in late December to early March.

3.1.2 Receiver saturation due to reflective low clouds

The detectors used in the IAOOS lidar are avalanche photodiodes, and can reach saturation. This means that if they are exposed140

to a signal which is too intense, the photon count goes down. If the saturation is very intense, the photon count can even reach

zero (Exc, 2018). Following saturation, the photon number count then slowly increases back up to its normal background value.

Saturation is not usually an issue in most lidar operation situations; however during the Arctic summer, background noise levels

are high due to shortwave radiation and the reflective sea ice and the signal reflected by the very low cloud cover is often enough

to saturate the detector. This problem was observed from the very first deployment of the IAOOS buoys (Mariage, 2015). It145

translates visually into a lidar signal which dips below background noise levels at a certain altitude, and then slowly increases

back to the background. Over the whole IAOOS period, approximately 30% of profiles were concerned by this phenomenon.
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A saturated profile may contain some geophysical data above the saturation altitude; therefore, it was important to correct

this effect. We hypothesised that the saturated signal Ssat resulted from the convolution of the "true" signal S with a saturation

impulse response function (IRF ):150

Ssat(z) = S(z) ∗ IRF (z)

The goal was therefore to deduce S from the measured profile, i.e. Ssat. A deconvolution algorithm was therefore put into

place (Richardson, 1972; Refaat et al., 2008). The deconvolution process recovered useful signal from the saturated profiles in

about a third of cases. In the remaining two-thirds, the "true" signal was only background noise. This represented an appreciable

gain in data for the IAOOS campaign.

3.2 Derivation of cloud characteristics from raw lidar data155

The lidar profile treatment program is a simplified version of the CALIPSO treatment algorithm described by Winker et al.

(2009).

3.2.1 Attenuated scattering ratio calculation

The first step involves calculating the attenuated scattering ratio:

SRatt =
(S−B) · z2

C ·O(z) ·βm(z)Tm(z)2
= (1 +

βp(z)
βm(z)

) ·Tp(z)2 (1)160

where

– S is the raw signal

– B the background noise (calculated as the mean of the raw signal above 20 km, where there is no geophysical signal due

to attenuation)

– z the altitude above the lidar, which is at sea level165

– C is the system constant, which varies with the lidar window frost as described above

– O(z) is the overlap factor between the lidar source and receiver: this factor is determined for each buoy as the average

ratio of the raw signal to the calculated Rayleigh signal for very clear, cloudless days. The overlap creates a minimum

height underneath which the signal cannot be resolved: a sort of lidar "blind zone".

The Rayleigh (molecular) backscatter and transmission are calculated according to Bucholtz (1995), using vertical temperature170

and pressure profiles from ERA5 reanalyses.
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3.2.2 Cloud detection

Clouds are then detected by applying a threshold to SRatt, since in the absence of particulate attenuation the attenuated

scattering ratio will be equal to 1 (βp = 0, T 2
p = 1). The initial threshold, St, is set to 1.1 at z = 0 and increases with altitude

in order to take into account that noise increases on the vertical (Winker and Vaughan, 1994).175

The base of a feature is detected when seven consecutive points are above the threshold. The top is detected either when

SRatt has fallen beneath the threshold and has stopped decreasing (a condition inspired by Winker and Vaughan (1994)) or

when the signal is below the noise level. The noise level is defined as 2σz2, where σ is the standard deviation of the raw signal

above 20 km. Assuming gaussian noise, 95% of pure noise fluctuations are therefore beneath this level.

Above the features, SRatt will again be constant but equal to T 2
f (ztop), where ztop is the top altitude of the features and Tf180

its transmission, because of the particle attenuation. This means that new features above this feature will be missed unless the

threshold is modified to take the feature attenuation into account. Therefore, above a feature, the threshold is updated to T 2
f ·St.

Once detected, a feature is determined to be a cloud if its spread, defined as the ratio of maximum feature SRatt to average

below-feature SRatt, is greater than 100 (or 20 for higher-altitude layers for which average below-feature SRatt is strongly

impacted by noise).185

3.2.3 Calculation of optical depth and lidar ratio

When the lidar beam goes through the cloud layer and reaches the particle-free air on the other side, the cloud transmission can

be directly calculated as the ratio of the mean SRatt above and below the cloud layer over a minimum of 20 points (or 300 m).

However, this was rarely the case during IAOOS, especially in the summer when the noise level is high. Over the whole

IAOOS campaign, only 14% of all features were transparent to the lidar. In all other cases, T 2
c was calculated from the integrated190

attenuated backscatter (IAB), assuming a constant lidar - or backscatter-to-extinction - ratio Sc within the cloud layer:

IAB =

z1∫

z0

βp(z) · e−2
∫ z

z0
ηαp(z′)dz′

dz =
1

2ηSc
(1−T 2

c ) (2)

with z0 and z1 the bottom and top of the cloud, and η the multiple scattering coefficient (Platt, 1973). The IAB can then be

calculated from the attenuated scattering ratio and molecular backscatter (Winker et al., 2009) :

IAB ≈
z1∫

z0

SRatt(z) ·βm(z)dz

− 1
2

(z1− z0) · (βm(z0)SRatt(z0) +βm(z1)SRatt(z1)) (3)195

The (relatively few) cases where the cloud layer transmission could be independently calculated were used to derive values of

the multiple-scattering lidar ratio S∗ = ηSc by inverting Eq. (2).

For both Rayleigh- and IAB-derived Tc, the cloud optical depth τc can then be deduced:

Tc = e−η·τc (4)
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The multiple-scattering coefficient η was assumed constant and equal to 0.8, based on previous analyses of the IAOOS data200

(Mariage et al., 2017; Di Biagio et al., 2018).

3.2.4 Uncertainty and limits of the method

Equation (2) implies that as T 2
c → 0, IAB→ 1

2ηSc
. This means that for optically thick clouds, a small error on the value of

IAB or Sc risks propagating to a large error on COD. The error is also asymmetrical: an overestimation of IAB or Sc yields

a much worse result on COD than an underestimation of these same quantities. In practice, if the lidar ratio of a cloud of true205

optical depth 1.5 is underestimated by 10%, the measured optical depth will be ≈ 1.1. On the other hand, if it is overestimated

by the same amount, the measured optical depth will be ≈ 2.2. In some cases, overestimation of lidar ratio or IAB can even

lead to negative T 2
c values, which is non-physical and doesn’t allow for the calculation of optical depth. In practice, therefore,

this method is appropriate mainly for optically thinner cloud layers. We will refer to "low-IAB" cloud layers, for which the

method does not lead to non-physical results (i.e., the cloud layer is thin enough that this method works well). This accounts210

for 42% of all features. We will call "high-IAB" cloud layers those for which calculated T 2
c is negative. These mathematically

correspond to clouds with higher IAB, and therefore higher COD, than low-IAB cases. The inclusion of these high-IAB COD

values in the statistic will be discussed in Sect. 4.1.3.

Although uncertain in other respects, this COD calculation method has the advantage of being only faintly impacted by

background noise levels. On the other hand, noise levels can have a strong impact on the cloud top determination. Tests215

with simulated lidar signals indicate that cloud top determination error reaches up to 150 m for typical summer noise levels

and optically thicker clouds (τc ≈ 2.5). This error is much lower for low noise levels, such as are found in the high Arctic

during the polar night (October - March). This difference must be kept in mind when interpreting seasonal variation of cloud

geometrical thickness (Sect. 4.1.2).

4 Results & discussion220

4.1 Seasonal variability of Arctic low clouds and their impact on surface temperatures

4.1.1 Frequency of cloud presence

IAOOS data confirms that low clouds (i.e., with a base under 2 km) are very frequent in the Arctic, especially in the summer.

Global low cloud frequency from March to December, defined as the average of monthly ratios of profiles containing at least

one cloud with base lower than 2 km to all profiles, is 75%. This value is coherent with previous statistics of cloud fraction225

above 80°N derived from satellites, for example Wang and Key (2004) and Curry et al. (1996), which usually give a global

annual cloud cover of around 60− 70%, with a maximum in summer and a minimum in November - April.

Observed seasonal variation of cloud fraction can differ strongly between satellites (Wang and Key, 2004; Zygmuntowska

et al., 2012). Chan and Comiso (2013) found large disagreements between MODIS and CALIOP in the Arctic, for example,

especially over sea-ice and during the polar night. This is because MODIS finds it difficult to differentiate between the surface230
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Figure 2. Monthly variation of low cloud frequency, defined as the number of profiles that contain at least one cloud layer with base lower

than 2 km divided by the total number of profiles for the month, for five IAOOS buoys. The dashed line represents the total monthly cloud

frequency over all IAOOS profiles. It is only calculated for months with more than 30 profiles in total.

and the clouds when relying only on IR channels. On the other hand, Blanchard et al. (2014) shows that there is good general

agreement and similar trends in cloud fraction over Eureka (Nunavut, Canada) between CALIOP, MODIS, CloudSat and the

IIR instrument aboard CALIPSO, with a global maximum in September - November and a minimum in March - May. However,

discrepancies between passive and active instruments remain (Blanchard et al., 2014). Ground-based measurements play a key

part in quantifying seasonal cloud cover variability in the Arctic, although they are often sensitive primarily to lower-level235

clouds. Averaging ship and ice-camp data above 80°N, Hahn et al. (1995) found that cloud cover was globally stable around

60% in winter, increasing to 80% from April to June, and decreasing again from September to November. A maximum of 85%

was reached in August/September. The combined lidar-radar measurements at SHEBA give slightly higher values of 70% in

winter and 90% in summer, with an earlier transition (February to April) and a peak in September (Intrieri et al., 2002b). The

IAOOS data shows a similar trend, with generally higher cloud cover values. From May to October, clouds are present over240

85% of the time (Fig. 2), decreasing to 60% in April and November, which appear to be the transition months. In contrast to

the previous ground-based climatologies outlined above, there are two peaks at more than 90% in the monthly cloud frequency,

although they differ little from the summer baseline. The first is in June, although there is strong variability between years and

buoys in this month (see below). The second peak, which is very consistent for every year and buoy, is in October. This is

reminiscent of the results of Zygmuntowska et al. (2012), from CALIPSO data, which show a peak in cloud occurrence above245

90% in October.

IAOOS cloud frequency has the greatest interannual variability in spring to early summer (April to June), and appears most

consistent in September - October. In 2014, the B02 buoy observed a very sharp spring transition in cloud frequency: from 40%

in April to more than 90% in May and June (blue circles, Fig. 2). On the other hand, this transition was much more gradual

in 2017 (buoy B24, orange diamonds: the June cloud frequency is less than 80%). This is not an effect of spatial variability as250

both B02 and B24 were drifting in the Atlantic sector of the Arctic (Fig. 1).

It has been observed from satellite data that the Atlantic sector is the cloudiest part of the Arctic Ocean (Liu et al., 2012;

Wang and Key, 2004). This is linked to the low pressure systems and the storm tracks arriving from the northern Atlantic
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Month Np (#)
Nml

Nprofiles

(%)
First cloud base (%)

<

120m

120−
500m

500m

−2km

2−
5km

Mar 28 0 57 29 7 7

Apr 94 4 96 0 2 2

May 359 4 95 2 1 1

Jun 330 8 87 8 3 1

Jul 342 14 93 1 3 3

Aug 205 12 91 2 5 2

Sep 251 10 90 5 4 1

Oct 98 13 98 2 0 0

Nov 54 2 93 3 3 0

Dec 44 0 93 7 0 0
Table 2. Cloud multiple layer and base characteristics for all profiles from March to December. Np is the total number of lidar profiles for

each month, and Nml is the number of profiles containing multilayered clouds. The last four columns represent the % of first layer cloud

bases in each altitude range. The 120 m cutoff corresponds to the minimum altitude at which the lidar overlap factor can be corrected for all

buoys. Cloud bases above 5 km, which correspond to "high-level" clouds in many reanalyses such as ERA5, are not included because the

lidar range in perfectly clear daytime conditions is only 4.4 km (Sect. 2.1).

Ocean. This is not supported by the IAOOS data: there is little difference in cloud frequency between buoy B25, which drifted

to the Laptev sea from summer to autumn 2018, and buoy B27, which at that time was drifting in the Atlantic sector. However,255

the IAOOS dataset lacks spatial coverage for a robust determination of the ocean-wide variability of cloud cover.

The results above pertain to the low cloud cover, i.e. clouds with a base underneath 2 km. Clouds with a base between

2− 5 km are much rarer in the IAOOS dataset, occurring only 3% of the time from March to December, with a peak at 8% in

July. However, as the lidar signal is often dampened by the first cloud layers, IAOOS statistics of cloud cover above 2 km are

expected to be biased low.260

4.1.2 Cloud geometrical properties

Multi-layer clouds were detected 7% of the time by the IAOOS lidar over the course of the campaign. This value is small

compared to previous observations: for example, Liu et al. (2012) find that multi-layer clouds are present 20% of the time

year-round, with very low seasonal variation. These results are drawn from satellite observations and Liu et al. (2012) note that

they are also underestimated. Ground-based measurements generally attest to frequent multilayering in the summertime, with265

layers separated by several hundred meters (Curry et al., 1988, 1996). SHEBA measurements even show that multi-layer clouds

exceeded single-layer clouds in June and July 1998, and occurred on average 45% of the time over the whole experiment period
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Figure 3. Monthly evolution of first layer cloud geometrical thickness (in km), for five IAOOS buoys. The markers represent the median

value, and the whiskers indicate the 25th and 75th percentiles. The open circles represent individual cloud thickness values where the lidar

signal sees through the cloud layer, i.e. the cloud top is clearly detected. The median, 25th and 75th percentiles are only calculated when

more than 15 data points are available.

(Intrieri et al., 2002b). IAOOS measurements also attest to a higher frequency of multiple layered clouds in summer: they occur

more than 10% of the time July - October, and only 4% of the time in April and May (Table 2). November, December and March

multilayered cloud occurrence is non-significant. IAOOS measurements strongly underestimate frequency of multilayered270

clouds due to the fact that the lowest cloud layer entirely attenuates the lidar signal in most profiles. Furthermore, cloud layers

separated by less than 300 m were counted as one in the IAOOS data treatment in order to have a better estimation of cloud

transmission (Sect. 3.2.3). However, the robust measurement of the geometry of the first cloud layer derived from IAOOS

measurements base is a useful statistic. Indeed, the base of the lowest cloud layer is expected to have the strongest impact on

surface radiative fluxes as compared to higher cloud layers. Hereafter, all cloud statistics refer to single cloud layers; in most275

cases, the lowest.

It is clear from the IAOOS database that Arctic clouds are extremely low, with little seasonal variability. From April to

December, at least 85% of first layer clouds have a base below 120 m, which is the minimum altitude at which the lidar overlap

factor can be corrected for all buoys (Table 2). The median base altitude is therefore at 120 m in nearly every month. In March,

only 57% of cloud bases are below 120 m. Another 29% of first layer cloud bases are between 120 and 500 m, which still280

corresponds to low level, likely boundary layer clouds (note however the low number of profiles in this month). This is in line

with the results of previous measurements campaigns. During ASCOS, which took place in August 2008, the lowest cloud

base distribution peaked beneath 100 m (Tjernstrom et al., 2012). Median first cloud base from SHEBA measurements (Shupe

et al., 2007) was also less than 120 m for all months except March (179 m) and April (209 m). Nevertheless, higher-altitude

first cloud layers were more frequent than during IAOOS, especially in spring to early summer (Intrieri et al., 2002b).285

On the other hand, Fig. 3 highlights a significant difference in measurements of single-layer cloud geometrical thickness

between summer (May to September) and the shoulder months (April, October/November). The median cloud thickness from

June to August ranges between 360 and 390 m, whereas it is nearly 750 m in October and March, and more than 1 km in

November. As explained in Sect. 3.2.3, it is expected that summer cloud thickness would be underestimated by up to 150 m
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due to higher noise levels in this period. However, this is too small an error to explain the different median values observed290

between summer and spring/autumn. Furthermore, these values and trends are coherent with previous studies of single-layer

clouds at Barrow and Eureka. For example, the average thickness of single-layer clouds at Barrow from June to August 2000

was 320 m while the September average was 550 m (Dong and Mace, 2003). Over the 2005 to 2008 period the average

single-layer mixed-phase cloud thickness at Eureka varied from 200 m to 700 m with maxima in autumn and minima in spring

(de Boer et al., 2009). Total thickness of all clouds, single-layered or not, may however be much larger. During SHEBA, median295

total cloud thickness from radar data was above 1 km in every month, with peaks at around 3 km in April and October (Shupe

et al., 2007). These values are from 3 (March/April) to 7 (July/August) times larger than the IAOOS monthly median values.

4.1.3 Cloud optical properties

As noted in Sect. 3.2.3, cloud layers for which both IAB and T 2
c are determined independently can be used to calculate the

multiple-scattering lidar ratio S∗. In total, there were 222 such cloud layers during the IAOOS period, covering the March to300

December period. They are shown in Fig. 4a, along with the median and the 25th and 75th percentiles for each month. The

global median is 17.5 sr, with 90% of values falling in the 7− 38 sr range. Although the spread is quite large, these results are

consistent with cloud lidar ratio values found in the literature. For example O’Connor et al. (2004) found that S∗ values ranged

between 14.5 and 16.5 sr for low water clouds; for ice or mixed-phase clouds, the range was 5− 40 sr, very similar to IAOOS

results.305

The seasonal variation of S∗ is statistically significant: the median S∗ for the summer months (JJA) was 23 sr versus 15.5 sr in

the autumn (SON). The Mann-Whitney U is 4953.5, with n1 = 67, n2 = 98, yielding a p-value of< 10−5 (Mann and Whitney,

1947). There are two possible causes for the observed variability in S∗ = ηSc: changes in the multiple scattering coefficient η

or Sc. η decreases with cloud temperature (Garnier et al., 2015) while Sc depends on cloud microphysical properties, among

which cloud droplet effective radius and phase. In the absence of additional measurements, it is difficult to determine which310

one has the largest impact here, as well as the ultimate physical cause of variation. For example, the very high values observed

in March might be due to the higher occurrence of ice particles in clouds during this period, but could also be suggestive of

Arctic haze. Indeed, Lubin and Vogelmann (2006) found evidence that the cloud droplet effective radius is lower, and Sc is

therefore higher, when aerosol condensation nuclei concentrations are high in the Arctic, independent of other seasonal or

temperature effect. In any case, the monthly median values were then used to calculate COD (Sect. 3.2.3).315

The average single-layer COD during IAOOS excluding high-IAB cases was 0.9, with values ranging from 0.3 to 2.1. These

values are small when compared to previous satellite and ground based studies in the Arctic. But as noted in Sect. 3.2.4,

the retrieval method used for calculating COD from the IAOOS lidar data when the signal is fully attenuated is not suited to

optically thick clouds: the rough upper bound of COD which can be measured through this method is 2. As almost 20% of cloud

layers observed during the campaign were high-IAB, this likely has a non-negligible impact on results. Furthermore, contrarily320

to satellite data, IAOOS values are single-layer, not whole column, COD. The contribution of the first layer to total column

COD is discussed in Sect. 4.3. It is therefore understandable that previous studies gave larger COD values. For example, Curry

et al. (1996) cites a range of 2− 24 with an average of 8 in summer. Wang and Key (2004) also finds that monthly mean COD
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Figure 4. Panel a: monthly variations of lidar ratio values over the IAOOS campaigns. The open circles represent the measurements. The filled

markers represent the monthly medians, with the whiskers indicating the 25th and 75th percentiles. Panel b: monthly evolution of single-layer

COD, for five IAOOS buoys. Open circles represent the Rayleigh-derived cloud optical depths. Crosses correspond to the low-IAB COD

values (Sect. 3.2.4) Filled markers represent the monthly medians, when high-IAB cases are excluded (circles) or included (squares). These

medians are calculated when more than 15 data points are available.

(from 1982 - 1999) varied from 4 to 6 in the AVHRR data over the Arctic Ocean. From ground-based lidar measurements at

SHEBA, Turner (2005) shows that 63% of clouds were single-layer with an optical depth < 6, and that optically thin clouds325

tended to be predominantly composed of ice.

Single-layer COD appears to vary seasonally (Fig. 4b). Excluding high-IAB cases, the monthly median COD appears to be

almost constant from April to September, and largest in October - November (filled circles). However, this is in part because

of the low noise levels in these months as compared to the summer. In March and October - December, i.e. the months with

no sunlight, more than 50% of cloud layers were transparent to the lidar. This proportion is less than 10% in May to July.330

The COD can therefore be directly calculated for optically thick clouds from late September - March but not in other months.

This is visible in Fig. 4b: in late September/October, there is a sudden apparition of directly-calculated COD values (open

circles) greater than 2. The IAB method, which is an alternative to the direct method of calculating COD when the signal is

fully attenuated by the cloud, is mainly suited to optically thin clouds (Fig. 4, grey crosses). This creates bias between summer

months, for which the COD calculation is limited by noise levels to optically thin clouds, and October - December, during335

which higher COD values can be calculated.

To overcome this problem, the COD of high-IAB cloud layers was set to 2. This value was chosen as it is the 95th percentile

of CODs calculated for low-IAB layers, and high-IAB cloud layers are globally expected to have higher COD than low-IAB
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Month

Number

of pro-

files

Cloud

fraction

(%)

Median temperature (°C)

Cloudy Cloudless ∆

Mar 28 46 -23.2 -29.9 6.8

Apr 94 59 -17.7 -21.2 3.5

May 359 88 -9.9 -13.6 3.7

Jun 330 92 -1.5 -1.5 0

Jul 342 85 -0.1 -0.5 0.4

Aug 205 85 -0.9 -1.1 0.2

Sep 251 89 - 3.7 -6 2.3

Oct 98 92 -6.6 -14.6 8.

Nov 54 56 -16.7 -25 8.4

Dec 44 32 -27.9 -28.5 0.6

Table 3. Monthly median temperature for cloudy and cloudless profiles from March to December over the whole IAOOS period. Cloudy

profiles contain at least one cloud with a base underneath 2 km. Cloudless profiles contain no clouds. ∆ is the difference between cloudy and

cloudless profile median temperatures.

layerS. The monthly median COD was then calculated including these high-IAB cases (Fig. 4, filled squares). This correction

is not quantitatively robust as the value of 2 is arbitrarily chosen, not calculated. However, it is helpful for examining the340

seasonal trend. It creates a significant difference in June and July, the months in which the percentage of high-IAB cloud layers

is the highest. With this correction, the median monthly COD exhibits two peaks (June and October) and a minima in April.

The October peak is however still the annual maximum.

Previous satellite measurements have exhibited a pattern of higher COD in the shoulder seasons, for instance May and

October for the AVHRR data (Wang and Key, 2004) over the Arctic Ocean. IAOOS measurements confirm that there is a peak345

in single-layer COD in October, and possibly in June.

4.1.4 Impact of clouds on surface temperatures

IAOOS lidar profiles can be split into two groups: those that contain a low cloud with a base < 2 km and those that don’t. The

temperatures measured by the buoy meteorological station during each lidar profile acquisition can be compared to estimate

the effect of the presence of clouds on surface temperatures.350

The 2 m temperature distributions of cloudy and cloudless profiles differ significantly in October-November and March-

April (Table 3). The Mann-Whitney test p-value is less than 0.05 (< 10−4 for November) and the common language effect

size is more than 70% (> 80% for October and November). For all of these these months, the 2 m temperature is much lower
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for cloudless than for cloudy profiles. Indeed, the difference between the medians is of 8°C for the autumn months and around

4− 7°C in the spring (Table 3). This difference is probably not due solely to radiative processes, as cloudy situations in the355

Arctic winter are also associated with the passage of storms, which bring warm, moist air with them. However, as seen in Sect.

4.1.3, IAOOS-measured CODs are larger in October/November than April. Since emissivity increases with optical depth, this

supports a larger surface warming in autumn than in spring.

The months with the lowest median temperature difference between cloudy and cloudless profiles are June, July and August.

In fact, the temperature distributions are statistically indistinguishable in these months from the relatively few measurements360

we have access to here. In particular, there is no month in which cloudless profiles are warmer than cloudy profiles, even though

clouds are known to exert negative radiative forcing from late June to early July. The reasons for this are explored in Sect. 4.3

by investigating the summer radiative balance.

4.2 Radiative modes in the Arctic

4.2.1 Identification of two summer radiative modes from IAOOS and N-ICE data365

The 2 m temperature difference between cloudy and cloudless profiles exposed in Sect. 4.1.4 is consistent with previous stud-

ies. Indeed, it is now well attested that the Arctic climate exhibits two distinct states during the winter, which are distinguished

through the surface net longwave flux (netLW) values. The bimodality of netLW was first observed during the SHEBA mea-

surement campaign over the January-February 1998 period (Stramler et al., 2011) and has since been confirmed Arctic-wide

by satellite observations (Cesana et al., 2012). The "radiatively clear" mode (netLW <−30 W m−2) is associated with strong370

radiative cooling, high pressures and low temperatures. Clouds may be present but are optically thin and mainly composed

of ice. The "opaquely cloudy" mode is characterised by low pressures and relatively higher temperatures, and often associ-

ated with so-called "moisture and temperature intrusions" from the midlatitudes (Woods et al., 2013). Clouds are then liquid

or mixed-phase, and optically thick. These intrusions are one of the main drivers of interannual variability of netLW, with a

contribution of about 40% (Woods et al., 2013).375

Here, we used radiative flux data from the N-ICE field campaign (second period, April - June 2015) to complement the

IAOOS lidar observations (Hudson et al., 2016). Measurements from the first period (January to March 2015) of N-ICE have

already been shown to confirm the wintertime bimodality of the netLW distribution (Graham et al., 2017). This result is

replicated in Fig. 5b. A more striking point is that the netLW distribution is also bimodal in spring to early summer (Fig. 5c).

During this period, netLW values range from −90 to 0 W m−2. The most predominant netLW mode, containing around 80%380

of data points, is centered around −11 W m−2, while the other is centered around −72 W m−2. As a IAOOS buoy drifted

near the main ice camp during April-June 2015, the IAOOS profiles were used to determine whether the sky was cloudless or

cloudy at a given moment. The comparison with netLW measurements is represented in Fig. 5a. Low netLW values (<−60

W m−2) are associated with IAOOS profiles that are cloudless at least up to ≈ 5 km, which is the maximum range of the lidar.

Meanwhile, profiles containing at least one low level cloud (grey lines) corresponded to netLW values larger than−20 W m−2.385
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Figure 5. Panel a: time series of surface net longwave measurements during the N-ICE field experiment (second period, April-June 2015).

IAOOS buoys were deployed near the main ice camp where radiative fluxes were measured. The vertical lines indicate the time of IAOOS

lidar profiles, with red lines corresponding to cloudless profiles. Panels b and c: histogram of the measured (filled line) and ERA5 (dashed

line) net longwave flux during the N-ICE winter (b) and spring/summer (c) campaign periods. Panels d and e: hourly ERA5 vs measured net

longwave in during the N-ICE winter (d) and spring/summer (e) campaign periods, with red dashed line indicating the 1:1 line. The colour

corresponds to point density as calculated by a Gaussian kernel.

This shows that the observed low netLW mode corresponds to a cloudless state and the high netLW mode to a cloudy state.

By analogy with the previously established winter radiative states, we name the spring/summer low-netLW mode "radiatively

clear" and the high-netLW mode "opaquely cloudy". However, these two modes differ from their winter analogues in several

ways. Firstly, the netLW mode values are lower than in the winter, due to the higher surface temperatures in spring/summer.
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Secondly, the difference between the two states is ≈ 60 W m−2, much larger than in the winter. This implies that clouds390

have a larger longwave warming effect in the spring/summer than in the winter, probably linked to larger liquid contents and

higher cloud temperatures in this season. Thirdly, the opaquely cloudy mode is much more frequent in spring/summer than

in the winter, representing a large majority of cases. This is coherent with the fact that cloud frequency is much higher in

spring/summer than in winter, with a transition in April (Sect. 4.1.1).

4.2.2 Comparison of ERA5 to N-ICE measurements395

The two atmospheric winter states (radiatively clear and opaquely cloudy) are not well reproduced by models (Cesana et al.,

2012; Pithan and Mauritsen, 2014; Graham et al., 2017). In fact, it has been suggested that representing the bimodality of the

netLW, pressure and temperature distributions in the wintertime is a key quality criterion for models. ERA-Interim and its suc-

cessor, ERA5, are among those that partially achieve this (Graham et al., 2017). This is visible in Fig. 5d. The opaquely cloudy

state lies on the 1:1 line and is therefore well represented. However, the radiatively clear netLW values are underestimated by400

about 15 W m−2. This is mainly due to an error in the upwards component of the longwave flux. Indeed, ERA5 overestimates

the clear mode 2 m temperature by about 5 K; its measured value is Tmeas =−32°C (Graham et al., 2017), while the ERA5

clear mode temperature is TERA5 =−27°C. This leads to an error on the longwave upwards flux at the surface (LWu) of:

∆(LWu) = 4σ · (TERA5−Tmeas) · (Tmeas + 273.15)3

≈ 15.8 W m−2 (5)

The result of Eq. (5) is in line with the observed netLW error. It should be noted that this overestimation of near-surface405

temperatures in clear, stable winter conditions, leading to an underestimation of netLW, is a feature shared by the six reanalyses

evaluated by Graham et al. (2019) using the N-ICE campaign data.

In the spring/summer period, Graham et al. (2019) further notes that ERA5 is the least biased of the six evaluated reanalyses

with regards to netLW, but has the worst correlation coefficient (R= 0.15). Indeed, we find that ERA5 fails to represent the

two spring/summer netLW modes. The ERA5 netLW distribution is not bimodal (Fig. 5c) and does not align with the mea-410

surements (Fig. 5e). Three zones have been outlined on figure 5e to aid with the following discussion of ERA5 spring/summer

netLW error. Zone OC corresponds to measured opaquely cloudy values over all spring/summer. The opaquely cloudy mode

is somewhat reproduced by ERA5 (yellow dots denoting a peak in the calculated gaussian kernel density), although its val-

ues are underestimated by 11 W m−2 on average. The two other boxes correspond to measured radiatively clear values from

April/May (RC1) and June (RC2) respectively. June values are well reproduced by ERA5. However, ERA5 vastly overesti-415

mates radiatively clear netLW in April and May: there is a 40 W m−2 difference with measurements in these month (Fig. 5e,

RC1).

The difference in ERA5 netLW values between radiatively clear April/May (RC1) and June (RC2) points is due to the down-

wards component of the longwave flux (LWd). ERA5 LWd is fairly close to measured values in RC2, but is overestimated by

≈ 53 W m−2 in RC1. This is partly compensated by a 14 W m−2 error on LWu in April/May, similar to what is observed during420
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Figure 6. Panel a: evolution longwave downwards radiative flux with near-surface (2 m) temperature as measured during the spring/summer

period of the N-ICE field campaign. Dark grey points correspond to values for which netLW <−50 W m−2 ("radiatively clear" mode) while

for light grey points netLW >−20 W m−2 ("opaquely cloudy" mode). The filled line correspond to the results of a simple parametrisation

of LWd (Eq. (6)) in the absence of clouds, while the dashed lines represent the results of the parametrisation for τLW = 1.5 and τLW = 4.1.

Panel b: same, for shortwave downwards radiative flux vs solar zenith angle. The dashed lines are the results of Eq. (7) for τSW = 1.7 and

τSW = 28.2. For both panels, points are 30-minute averages of measurements.

the winter. Ultimately, the overestimation of LWd in RC1 is due to a faulty representation of cloud fraction in April/May. The

ERA5 mean low cloud cover in RC1 is 0.96, even though measurements indicate a radiatively clear, and therefore cloudless,

situation. On the other hand, mean low cloud cover in RC2 is 0.06: ERA5 has correctly identified that the sky was cloudless.

The logical conclusion is that ERA5 overestimates low cloud cover in April and May, but not June, leading to the observed

errors in netLW. This may ultimately be due to an error in the satellite data that is assimilated by the ERA5 reanalyses. Indeed,425

as noted in Sect. 4.1.3, cloud fraction and optical depth is often overestimated by satellite measurements at high solar zenith

angles over bright surfaces (Chan and Comiso, 2013). These are the predominant conditions in April and May, whereas in June

the solar zenith angle is lower and areas of open water start to appear, decreasing the surface albedo.

4.3 Cloud impact on the summer surface radiative budget

Section 4.2.1 showed that the spring/summer netLW distribution exhibits two modes, termed radiatively clear (netLW <−50430

W m−2) and opaquely cloudy (netLW >−20 W m−2). These were linked respectively to the absence and presence of clouds
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in the lidar profiles. However, Sect. 4.1.4 showed that there is very little difference between 2 m temperatures of cloudless and

cloudy profiles in the summer. A more complete analysis of the summer surface radiative budget is therefore required.

In the Arctic summer, clouds impact the surface radiative budget in two competing ways: they have a longwave warming

effect and a shortwave cooling effect. The longwave effect depends on cloud temperature and phase. Warm, liquid-containing435

clouds are optically thicker and have much more radiative impact than cold, ice-containing clouds (Shupe and Intrieri, 2003).

This is most likely the reason behind the greater difference between netLW modes observed in the spring/summer (≈ 60

W m−2) N-ICE measurement period as compared to the winter (≈ 40 W m−2). The shortwave radiative forcing also depends

on cloud characteristics as optically thick clouds have higher albedos. It also depends on the solar zenith angle θ and, to a lesser

extent, the surface albedo α, due to reflections between the bright surface and the clouds (Shupe and Intrieri, 2003).440

The downwards longwave (LWd) and shortwave (SWd) flux components in the radiatively clear and opaquely cloudy modes

can be compared in order to evaluate the impact of clouds on the surface. We will use simple estimates of LWd and SWd as

a complement to the N-ICE flux measurements (Hudson et al., 2016). Schematically, the atmosphere can be seen as a cloud

layer with emissivity εc overlying a cloudless atmospheric layer with emissivity ε0. If both layers are emitting at temperature

T2m, this yields the following expression for LWd:445

LWd = [ε0 + εc(1− ε0)] ·σ ·T 4
2m (6)

The cloud emissivity can simply be expressed as εc = 1− e−τLW with τLW the longwave COD. Several simple parametri-

sations exist for ε0; here, we choose ε0 = 0.83− 0.18 · 10−0.067e0 , with e0 the near surface water vapour pressure, which was

fitted from summer data at Sodankylä, Finland (Niemelä et al., 2001a). This shows good correspondence to the N-ICE clear

mode data (Fig. 6a). In fact, equation (6) corresponds to a model introduced by Schmetz et al. (1986) under two simplifying450

assumptions. First, that the cloud cover is equal to 1, which is reasonable in the cloudy mode. Second, that the cloud base

and two-meter temperatures are approximately equal. This is justified by cross-comparison of the N-ICE (second period) ra-

diosonde data with the IAOOS lidar profiles: the overwhelming majority of lowest layer clouds have a base beneath 120 m and

the median difference between surface and 100 m temperature in the radiosonde profiles is only 1.3°C (with 90% of values

falling in the range 0.6− 2°C).455

SWd can be calculated from the downwards shortwave flux in the absence of clouds F0 and the cloud correction or cloud

broadband transmittance factor Tc:

SWd = F0(θ) ·Tc (7)

F0 depends on atmospheric gas and aerosol content and is usually parametrised to fit to local data (Reno et al., 2012;

Kambezidis et al., 2017). Here, the fit to N-ICE clear mode data is shown on Fig. 6b (filled black line). Tc has been modeled460

in numerous ways, the simplest depending solely on cloud cover (Niemelä et al., 2001b), while more complicated expressions

have been derived from the output of radiative transfer models. Here we used the parametrisation of Fitzpatrick (Fitzpatrick
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Optical depth 5th percentile Median 95th percentile

τLW 1.4 2 2.5

τSW 1.2 7.8 20.2

τ808 0.5 0.9 1.9

Table 4. Statistical range (5th, 50th and 95th percentiles) of three different estimations of optical depth: τLW (from the downwards longwave

flux), τSW (from the downwards shortwave flux) and τ808 (calculated from the IAOOS lidar profiles). For a robust comparison, τLW and

τSW values considered here are interpolated on the IAOOS profile times. The percentiles are therefore established over 54 data points which

correspond to the 54 IAOOS profiles.

et al., 2003), which assumes a cloud cover of 1 and depends on the solar zenith angle θ, the surface albedo α and the shortwave

COD τSW . We chose to use a fixed value of α= 0.8, as the measured albedo over the N-ICE second period varied from

0.75− 0.84 and the model performs poorly for albedos above 0.83 (Fitzpatrick et al., 2003).465

Downwards longwave radiative flux increased with near-surface temperature T2m and downwards shortwave flux decreased

with θ in both radiatively clear and opaquely cloudy modes during the N-ICE April-June measurement period (Fig. 6). This

evolution is well reproduced by Eqs. 6 and 7. Furthermore, there is a marked difference in downwards flux between points

identified as radiatively clear and opaquely cloudy for both the longwave and shortwave components. In accordance with a

cloud longwave warming effect, radiatively clear LWd values are uniformly lower than the opaquely cloudy values for each470

T2m (Fig. 6a). As netLW is the quantity used to discriminate between clear and cloudy points, this is expected. On the other

hand, radiatively clear SWd values are higher than opaquely cloudy SWd values for each θ (Fig. 6b). This corresponds to the

shortwave albedo effect, i.e. clouds reflect solar radiation back to space. The magnitude of this shortwave cooling is variable,

even for a fixed solar zenith angle. As a first order approximation, this variation is due to the cloud optical properties as the

albedo varied little over the measurement period. Equation (7) reproduces the spread of observed values for τSW between 1.7475

to 28.2, a range which is coherent with total column COD values from previous studies (Sect. 4.1.3). In contrast, the longwave

warming effect varies little either as a factor of T2m or τLW , and remains close to 60 W m−2.

COD variations therefore have a non-negligible impact on the surface radiative balance. For θ = 60°, for example, there is

an approximately 200 W m−2 difference in SWd between the optically thinnest and thickest clouds. This translates into a total

shortwave cloud forcing that ranges between −20 to −60 W m−2, assuming an albedo of 0.8. This range is significant when480

it is contrasted to the typical longwave forcing of ≈ 60 W m−2: even for θ = 60°, only optically thick clouds can have a net

radiative cooling effect over high-albedo sea ice. Thinner clouds will continue to warm the surface. This explains that averaged

over the IAOOS campaign, the 2 m temperature of cloudless profiles is not different at statistically significant level from that

of cloudy profiles (Sect 4.1.4).
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4.4 Contribution of the lowest cloud layer to the total column COD485

Cloud optical depths measured by the IAOOS lidar correspond only to the lowest cloud layer, and not to the total column (Sect.

4.1.3). Here we attempt to evaluate the contribution of this lowest layer to the total column COD. This would allow better

comparison of IAOOS CODs to existing satellite statistics. Furthermore, as seen in Sect. 4.3, total column shortwave COD

is the quantity that most impacts the surface radiative balance. Equations 6 and 7 were inverted to calculate the broadband

shortwave and longwave CODs τSW and τLW from the N-ICE opaquely cloudy SWd and LWd values at the time of the490

IAOOS profiles. In analysing the results, it must be taken into account that the longwave optical depth of any single cloud

layer is smaller than its shortwave optical depth. The shortwave-to-longwave optical depth ratio depends on the microphysical

properties of clouds (droplet phase, radius) and a precise determination would require the help of radiative transfer models. In

this manner, Garnier et al. (2015) calculates τ532nm/τ12µm ≈ 1.8 for ice particles with an effective diameter between 5 and 60

microns. We use this value as a rule of thumb to enable comparison between τLW , τSW and the IAOOS optical depths τ808.495

90% of τLW values obtained in this manner fall in the 1.4− 2.5 range (Table 4). It must be noted that these τLW values

do not capture the optical depth of the whole column. Indeed, because cloud emissivity εc tends to 1 exponentially, high τLW

values are likely to be underestimated. Instead, this τLW must be seen as the part of the cloud cover whose emitted radiation

reaches the surface. Inverting Eq. (7) yields shortwave optical depths between 1.2 and 20.2, with a median of 7.8. This range

shows much higher values than that of τLW , even when accounting for the longwave-to-shortwave ratio. This is because the500

shortwave radiative flux is impacted by the whole cloud column, and not only the first few layers. IAOOS optical depths (τ808

in Table 4) are much lower than both τLW and τSW , with 90% of values between 0.5 and 1.9. In fact, the ratio τ808/(1.8 ·τLW )

has a median value of 0.22 (range 0.15− 0.43), while τ808/τSW has a median value of 0.11 (range 0.03− 0.68). This means

that first-layer clouds measured by IAOOS contribute around a quarter of the optical depth of clouds which have a longwave

radiative impact on the surface, and 11% of the total cloud column.505

While this value is low, it is coherent with the observation that SHEBA-measured total cloud thicknesses are up to 7 times

higher than the IAOOS-measured first layer thickness (Sect. 4.1.2). Regardless of potential underestimations in IAOOS mea-

surements, it strongly suggests that further cloud layers must be present at higher altitudes. Some of these, possibly cirrus

clouds, would then have a shortwave but no longwave impact on the surface. Furthermore, visual inspection of the relative

humidity (RH) and temperature profiles obtained through radiosonde measurements during N-ICE supports the idea that the510

IAOOS lidar correctly identifies the first cloud layer and probably misses higher cloud layers. Indeed, strong temperature in-

version and diminution of RH are most often present at the lidar-identified cloud top. Further inversions and high RH values

are often present, marking higher altitude cloud layers that are invisible to the lidar.

5 Conclusions

The IAOOS field campaign (2014 - 2019) consisted in the deployment of instrumented buoys in the Arctic sea ice. In this515

study, the whole IAOOS lidar dataset was treated and analysed. This included correcting for window frost as outlined in

Mariage (2015) and deconvoluting the signal to reduce the effects of receiver saturation in bright conditions. An algorithm was
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implemented to detect cloud layers and calculate their optical depth, either directly when applicable or through the IAB by

assuming a constant lidar ratio. Surface radiative flux data from the N-ICE campaign, during which four IAOOS buoys were

deployed, and from ERA5 reanalyses, was also exploited.520

The results show a significant seasonal variation in cloud cover and optical and geometrical properties of clouds over the

seasonal cycle. Low cloud cover (i.e., with a base beneath 2 km) is found to be 76% globally over the course of the campaign.

Monthly cloud frequency is minimum in March/April and November/December and over 85% from May - October, with two

small maxima in June and October. First-layer clouds are geometrically thickest in October, and thinnest in the summer. This is

likely linked to moisture intrusions from the Atlantic in early autumn. Lastly, first-layer cloud bases are found to be extremely525

low in all seasons: under 120 m in a vast majority of cases.

The IAOOS lidar detects multiple cloud layers at much lower rates than other instruments, because the first cloud layer

usually dampens the signal completely. Total cloud optical and geometrical thicknesses from previous campaigns and satellite

data are much larger than those measured by IAOOS, especially in the summer when multilayered clouds are known to be

most common. We estimate from N-ICE radiometer measurements that the first layer COD measured by IAOOS accounted for530

13% of the total column shortwave COD during the April-June 2015 period. The single-layer COD as measured by IAOOS is

highest in October.

The surface impact of Arctic clouds is also seasonally variable. In October/November and March, clouds warm the surface:

2 m temperatures associated with cloudless profiles are up to 8 K colder than those associated with profiles containing at least

one low cloud. However, there is no statistically significant difference in surface temperatures between cloudless and cloudy535

profiles in the summer.

Data from the IAOOS lidar deployed during the N-ICE campaign allowed us to identify two modes in the N-ICE measured

netLW distribution in late spring/summer. The "radiatively clear" netLW mode, centered around −72 W m−2, is associated

with cloudless IAOOS lidar profiles, while the "opaquely cloudy" mode is centered around −11 W m−2 and is linked to

cloudy lidar profiles. These are analogous to the well-known winter radiative modes, except that the opaquely cloudy mode is540

much more prevalent (over 80%) and that the two modes have a 60 W m−2 difference, compared to 40 W m−2 in the winter.

Clouds exert a larger longwave warming in the summer than in the winter, probably linked to the higher proportion of liquid

water in clouds. Clouds in the spring/summer also have a shortwave cooling effect. This is shown to depend not only on solar

zenith angle and albedo, but also strongly on COD.

The optically thickest clouds have a net radiative cooling effect around θ = 60 ° over unbroken sea ice, while most thinner545

clouds contribute to warm the surface. The compensation of the cloud longwave warming effect by the shortwave cooling effect

explains that there is no clear difference in near-surface temperature between IAOOS cloudless and cloudy profiles during the

summer months.

The measured surface radiative fluxes were compared to the output of the ERA5 reanalyses. ERA5 does not accurately

reproduce the observed bimodality of the spring/summer netLW distribution. Indeed, it does not correctly identify cloudless550

periods during April and May (but not June). This issue should be investigated.
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Over the period 2014-2019, the IAOOS buoys have delivered 1805 lidar profiles. Despite technical difficulties with both the

lidar and the data analysis, this campaign has offered a medium-term 3-season picture of the Arctic lower troposphere above

82°N from ground-based measurement, which is an important complement to satellite data. These results help to broaden our

understanding of the Arctic low cloud cover and its impacts on the surface. However, more measurements would be needed to555

further characterise Arctic clouds. In particular, combined radiometer-lidar measurements would be crucial to allow the study

of radiative impacts to be generalised to late summer and especially autumn, when clouds are optically thick and frequent.
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