A. &. Arad and . Evans, The hydrogeology, hydrochemistry and environmental isotopes of 729 the Campaspe River aquifer system, Journal, vol.730, issue.2, pp.63-86, 1987.

M. Bakker, V. Post, C. D. Langevin, J. D. Hughes, J. T. White et al., , 2016.

, Scripting MODFLOW Model Development Using Python and FloPy. Groundwater, vol.733, issue.5, pp.733-739

F. K. Barthold, C. Tyralla, K. Schneider, K. B. Vaché, H. G. Frede et al., How 735 many tracers do we need for end member mixing analysis (EMMA)? A sensitivity 736 analysis, Water Resources Research, vol.47, issue.8, 2011.

V. Bedekar, E. D. Morway, C. D. Langevin, and &. Tonkin, Groundwater Solute Transport Simulator for MODFLOW: U.S. Geological Survey 739 Software Release, 2016.

V. Bedekar, E. D. Morway, C. D. Langevin, and &. Tonkin, MT3D-USGS version 1: A 741 U.S. Geological Survey release of MT3DMS updated with new and expanded transport 742 capabilities for use with MODFLOW: U.S. Geological Survey Techniques and Methods, vol.743, p.69, 2016.

P. Brunner, J. T. Doherty-&-c, and . Simmons, Uncertainty assessment and implications for 745 data acquisition in support of integrated hydrologic models, Water Resources Research, vol.746, issue.7, p.48, 2012.

P. Brunner, C. T. Simmons, P. G. Cook, and &. Therrien, , 2010.

, Groundwater Interaction with MODFLOW: Some Considerations, Ground Water, vol.749, issue.2, pp.174-180

I. Cartwright, T. R. Weaver, D. I. Cendón, L. K. Fifield, S. O. Tweed et al., Constraining groundwater flow, residence times, inter-aquifer mixing, vol.751

, Applied Geochemistry, vol.27, issue.9, pp.1698-1709

I. Cartwright, T. R. Weaver-&-l, and . Fifield, Cl/Br ratios and environmental isotopes as 755 indicators of recharge variability and groundwater flow: An example from the southeast 756 Murray Basin, Australia. Chemical Geology, vol.231, issue.1, pp.38-56, 2006.

I. Cartwright, T. R. Weaver, C. T. Simmons, L. K. Fifield, C. R. Lawrence et al.,

. Varley, Physical hydrogeology and environmental isotopes to constrain the age, 760 origins, and stability of a low-salinity groundwater lens formed by periodic river 761 recharge: Murray Basin, Australia. Journal of Hydrology, vol.380, issue.1, pp.203-221, 2010.

S. &. Christensen and . Doherty, Predictive error dependencies when using pilot points and 764 singular value decomposition in groundwater model calibration, Advances in Water, vol.765, issue.4, pp.674-700, 2008.

P. G. Cook, Estimating groundwater discharge to rivers from river chemistry surveys, 2013.

, Hydrol Process, vol.27, issue.25, pp.3694-3707

P. G. Cook, Quantifying river gain and loss at regional scales, Journal of Hydrology, vol.531, pp.749-758, 2015.

P. G. Cook, S. Lamontagne, D. &. Berhane, and . Clark, Quantifying groundwater discharge 771 to Cockburn River, southeastern Australia, using dissolved gas tracers 222Rn and SF6, 2006.

, Water Resources Research, vol.42, issue.10

A. M. Dausman, J. Doherty, C. D. Langevin-&-m, and . Sukop, Quantifying Data Worth 774 Toward Reducing Predictive Uncertainty, Ground Water, vol.48, issue.5, 2010.

G. &. Di-baldassarre and . Montanari, Uncertainty in river discharge observations: a 777 quantitative analysis, Hydrol Earth Syst Sci, vol.13, issue.6, pp.913-921, 2009.

J. Doherty, Calibration and Uncertainty Analysis for Complex Environmental Models. 780 PEST: complete theory and what it means for modelling the real world, Watermark 781 Numerical Computing, 2015.

J. E. Doherty, PEST, Model-Independent Parameter Estimation User Manual Part I: 783 PEST, SENSAN and Global Optimisers, 2016.

K. K. Ellins, A. Roman-mas, and &. R. Lee, Using 222Rn to examine groundwater/surface 785 discharge interaction in the, Journal of Hydrology, vol.786, issue.1, pp.319-341, 1990.

M. N. Fienen, J. E. Doherty, R. J. Hunt-&-h, and . Reeves, Using prediction uncertainty 788 analysis to design hydrologic monitoring networks, 2010.

J. H. Fleckenstein, S. Krause, D. M. Hannah, and &. Boano, Groundwater-surface water 791 interactions: New methods and models to improve understanding of processes and 792 dynamics, Advances in Water Resources, vol.33, issue.11, pp.1291-1295, 2010.

D. Herckenrath, C. D. Langevin, and &. Doherty, Predictive uncertainty analysis of a 795 saltwater intrusion model using null-space Monte Carlo, Water Resources Research, vol.47, issue.5, p.796, 2011.

R. J. Hunt, J. J. Doherty-&-m, and . Tonkin, Are Models Too Simple? Arguments for Increased 798, 2007.

, Parameterization. Ground Water, vol.45, issue.3, pp.254-262

E. Kalbus, F. Reinstorf, and &. Schirmer, Measuring methods for groundwater – 800 surface water interactions: a review, Hydrol Earth Syst Sci, vol.10, issue.6, pp.873-887, 2006.

C. Kikuchi, Toward Increased Use of Data Worth Analyses in Groundwater Studies, 803 Groundwater, vol.55, issue.5, pp.670-673, 2017.

M. J. Knowling, J. T. White-&-c, and . Moore, Role of model parameterization in risk-805 based decision support: An empirical exploration, Advances in Water Resources, vol.128, pp.59-806, 2019.

M. J. Knowling, J. T. White, C. R. Moore, P. Rakowski, and &. K. Hayley, On the 808 assimilation of environmental tracer observations for model-based decision support, 2019.

, Hydrol Earth Syst Sci Discuss, vol.2019, pp.1-19

H. Kunstmann, W. Kinzelbach, and &. T. Siegfried, Conditional first-order second-moment 811 method and its application to the quantification of uncertainty in groundwater modeling, 2002.

, Water Resources Research, vol.38, issue.4, pp.6-7

C. &. Moore and . Doherty, Role of the calibration process in reducing model predictive error, 2005.

, Water Resources Research, vol.41, issue.5

R. G. Niswonger, S. Panday, and &. Ibaraki, A Newton formulation for 816 MODFLOW-2005: U.S. Geological Survey Techniques and Methods, p.44, 2011.

R. G. Niswonger and . Prudic, Documentation of the Streamflow-Routing, p.818, 2005.

, Package to include unsaturated flow beneath streams-A modification to SFR1: U.S. 819 Geological Survey Techniques and 820 Methods 6-A13, vol.50

W. Nowak, Y. P. Rubin-&-f, and . De-barros, A hypothesis-driven approach to optimize field 822 campaigns, Water Resources Research, vol.48, issue.6, 2012.

O. S. Schilling, J. Doherty, W. Kinzelbach, H. Wang, P. N. Yang et al., Using 824 tree ring data as a proxy for transpiration to reduce predictive uncertainty of a model 825 simulating groundwater-surface water-vegetation interactions, Part B:2258-2271 doi, vol.826, 2014.

O. S. Schilling, C. Gerber, D. J. Partington, R. Purtschert, M. S. Brennwald et al., , p.828

&. P. Hunkeler and . Brunner, Advancing Physically-Based Flow Simulations of Alluvial 829, 2018.

, Systems Through Atmospheric Noble Gases and the Novel 37Ar Tracer Method. Water, vol.830

A. Tarantola, Inverse problem theory and methods for model parameter estimation, vol.832, 2005.

I. Wallis, C. Moore, V. Post, L. Wolf, E. Martens et al., Using predictive 834 uncertainty analysis to optimise tracer test design and data acquisition, Journal of 835 Hydrology, vol.515, pp.191-204, 2014.

J. T. White, J. E. Doherty, and &. D. Hughes, Quantifying the predictive consequences of 837 model error with linear subspace analysis, Water Resources Research, vol.50, issue.2, pp.1152-1173, 2014.

J. T. White, M. N. Fienen, and &. E. Doherty, A python framework for environmental model 840 uncertainty analysis, Environmental Modelling & Software, vol.85, pp.217-228, 2016.

T. Wöhling, M. J. Gosses, S. R. Wilson, and &. P. Davidson, Quantifying River-Groundwater 843 Interactions of New Zealand's Gravel-Bed Rivers: The Wairau Plain, 2018.

B. Wu, Y. Zheng, Y. Tian, X. Wu, Y. Yao et al., Systematic 846 assessment of the uncertainty in integrated surface water-groundwater modeling based on 847 the probabilistic collocation method, Water Resources Research, vol.50, issue.7, pp.5848-5865, 2014.

W. O. Zell, T. B. Culver-&-w, and . Sanford, Prediction uncertainty and data worth 850 assessment for groundwater transport times in an agricultural catchment, Journal, p.851, 2018.

, validation, writing -review and editing Camille Bouchez: Conceptualization, writing -review and editing Declaration of interests ? The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work, Takuya Iwanaga: Conceptualization, methodology, software, data curation