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Abstract

Michaelis–Menten kinetics describe a broad range of physical, chemical, and

biological processes. Since they are non-linear, spatial averaging of reaction

kinetics is non-trivial, and it is not known how concentration gradients affect

the global effective kinetics. Here, we use numerical simulations and theoreti-

cal developments to investigate the effective kinetics of diffusing solute pulses

locally subject to Michaelis–Menten reaction kinetics. We find that coupled

diffusion and reaction lead to non-monotonic effective kinetics that differ sig-

nificantly from the local kinetics. The resulting effective reaction rates can be

significantly enhanced compared to those of homogeneous batch reactors. We

uncover the different regimes of effective kinetics as a function of the Damköhler

number and Michaelis–Menten parameters and derive a theory that explains and

quantifies these upscaled kinetics using a weakly-coupled description of reaction

and diffusion. We illustrate the consequences of these findings on the acceler-

ated consumption of nutrient pulses by bacteria. These results are relevant to a

large spectrum of reactive systems characterized by heterogeneous concentration

landscapes.
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1. Introduction1

Michaelis–Menten kinetics [1] occur in many natural and engineered reac-2

tive systems. They were originally developed as a model of catalytic reactions,3

where the reaction of interest is mediated by binding to a catalyst, leading to4

saturation effects [1, 2]. This type of kinetics has found applicability in a variety5

of contexts, such as microbial growth [3, 4], chemotaxis [5], solute transport in6

biological tissues [6, 7, 8, 9], enzyme reactions [10], predator-prey models [11],7

and reaction-diffusion in electrodes [12]. In the context of bacterial growth,8

it is also known as Monod kinetics [13]. They have been used extensively to9

model biodegradation of contaminants in hydrological and groundwater sys-10

tems [14, 15, 16, 17, 18, 19]. These kinetics display a simple non-linearity:11

the reaction rate is proportional to concentration at low concentrations and12

saturates to a constant above a threshold concentration. Analytical solutions13

exist for the Michaelis-Menten kinetics in batch conditions [20, 21]. For non-14

homogeneous systems, the reaction-diffusion equation with Michaelis-Menten15

kinetics has been analyzed mathematically for different applications, leading to16

approximate solutions in some regimes [6, 7, 8, 22, 23, 24, 25, 26]. Here we17

analyze the effect of chemical gradients on the average kinetic laws for local18

Michaelis-Menten kinetics. We investigate whether non-homogeneities in con-19

centrations may lead to enhanced or reduced average reaction rates compared20

with batch kinetics, characterized by homogeneous concentrations.21

Under non-linear kinetics, unresolved concentration gradients lead to effec-22

tive macroscopic reactive transport laws that are different from microscopic23

laws [27, 28, 29, 30]. In the context of Michaelis-Menten reactions, the effect24

of mass transfer limitations on effective macroscopic kinetics has been studied25

with an emphasis on bioavailability limitations when micro-organisms are lo-26

cated on solid surfaces [31, 32, 33] or more generally distributed in space [34].27

Mixing limitation with Michaelis–Menten kinetics have also been investigated28

in the context of reactive fronts, where reactants are spatially segregated and29

mixing is the limiting step to bring reactants into contact [35, 36]. Here we30
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study situations where nutrients or reactants are released as discrete pulses in31

time and space, which encompasses a large spectrum of natural and engineered32

systems. Examples include pulse of nutrients in soil [37, 38], plants [39], aquifers33

[40] or catchments [41], which are often consumed by biological agents through34

Michaelis–Menten kinetics [42]. While other types of non-homogeneous initial35

conditions could be considered, we argue that the general impact of concentra-36

tion gradients on the average kinetics will be similar as for pulses.37

We study the effective kinetics of diffusing pulses of a single chemical species38

undergoing degradation with Michaelis–Menten kinetics. We assume that the39

local kinetics are uniform in space and hence focus on the effect of spatial40

and temporal changes in reactant concentration on the effective kinetics. We41

approximate these nonlinear kinetics by a sharp crossover from a linear depen-42

dency of the degradation rate on c for concentrations lower than the crossover43

concentration, to a saturated, constant rate above it. We investigate the de-44

pendency of the effective kinetics on the Damköhler number Da and the ratio45

α between the kinetics’ crossover concentration and the initial concentration.46

We develop a semi-analytical framework relying on a weak-coupling approx-47

imation regarding diffusion and reaction. The results compare favorably to48

numerical simulations of the coupled equations. Fully-analytical descriptions49

are also derived for asymptotic regimes corresponding respectively to reaction-50

and diffusion-dominated dynamics.51

In the following, we first present, in Section 2, a mathematical description52

of the dynamics, including the solution under well-mixed conditions, which will53

serve as the reference scenario. Next, Section 3 is concerned with analysing the54

dynamics of the effective reaction rate as a function of the Damköhler number55

and α based on numerical simulations. Section 4 is devoted to the derivation56

of the semi-analytical theory relying on the approximation of weakly-coupled57

diffusion and reaction. Section 5 explores the consequences of our results in58

the context of the consumption of nutrients by bacteria. Conclusions are drawn59

and the results discussed in terms of their relevance to natural systems in sec-60

tion 6. Additional technical derivations regarding the analytical theory and61
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details on the performance of the weakly coupled approximation may be found62

in appendix.63

2. Dynamics64

The dependence of local reaction rate on local concentration associated with65

Michaelis–Menten kinetics is given by66

r′(c′) =
µc′

K + c′
, (1)

where c′ is the concentration, µ is the maximum reaction rate per unit con-67

centration, and K is the characteristic concentration for the transition between68

first-order and zero-order kinetics. The key qualitative features of these kinetics69

are (i) saturation of the reaction rate at high concentrations c′ � K, and (ii)70

linear growth of the reaction rate at low concentrations c′ � K.71

We define the normalized concentration and characteristic concentrations72

respectively as73

c = c′/c′0 (2)

and74

α = K/c′0, (3)

where c′0 is the initial concentration. We associate a characteristic reaction time75

with the low-concentration regime,76

τ` = K/µ, (4)

and we nondimensionalize time as77

t = t′/τ`. (5)

This leads to a dimensionless reaction rate r = τ`r
′/c′0, given as a function of78

dimensionless concentration by79

r(c) =
αc

α+ c
. (6)
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In nondimensional terms, the saturation condition reads c � α, and the satu-80

rated rate value is likewise given by r(c) = α. In the following, we present and81

discuss our results in terms of nondimensional quantities, unless noted other-82

wise.83

For simplicity, in order to elucidate the main mechanisms driving the effec-84

tive kinetics describing the evolution of total mass under this type of scenario,85

we consider a piecewise-linear model of kinetics accounting for saturation,86

r(c) = cH(α− c) + αH(c− α), (7)

where H is the Heaviside step function. This corresponds to a linear increase,87

r(c) = c, of the reaction rate up to the critical concentration α, so that r(α) = α.88

Above the critical concentration, the reaction rate saturates and remains equal89

to its maximum value α (see Fig. 1). This model simplifies the analytical90

treatment, and allows us to focus on the key features of the interplay between91

transport-induced mixing and saturation. In Appendix F, we investigate nu-92

merically the effect of this simplification and show that it tends to slightly93

over-estimate the maximum effective reaction rates (Fig. F.16). However, re-94

sults are very similar since the piecewise-linear approximation is very close to95

the two regimes over orders of magnitudes in concentrations (Fig. 1 and F.17).96

2.1. Well-mixed kinetics97

We first consider the well-mixed case, corresponding to the conditions found98

in a batch reactor. The concentration c is then spatially homogeneous and99

depends only on time t. The dynamic equation describing concentration decay100

is the well-mixed rate law101

ċ = −r(c), (8)

which describes the decay resulting from the sharp crossover approximation of102

the Michaelis–Menten kinetics when the rate r(c) is defined according to Eq. (7).103

Throughout, the dot denotes (nondimensional-time) differentiation.104

If the initial concentration is sufficiently large (α < 1), reaction starts in105

the saturated regime. The reaction then proceeds at a constant rate for a106
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Figure 1: Nonlinear kinetics exhibiting saturation. Blue: Michaelis–Menten kinetics, Eq. (6).

Black dashed: Piecewise-linear kinetics, Eq. (7).

dimensionless duration σB , defined such that c(σB) = α. For α > 1, the batch107

starts in the linear regime and σB = 0. Thus,108

σB = max

{
0,

1− α
α

}
. (9)

For t > σB , standard linear dynamics apply, and the concentration decreases109

exponentially. The total mass corresponding to a homogeneous batch of width110

s0 is given, in one dimension, by M ′B(t) = s0c
′(t), which we nondimensionalize111

as MB(t) = M ′B(t)/M ′B(t = 0). Hence, expressed in nondimensional terms, the112

temporal evolution of the total mass of reactant is given by113

MB(t) =





1− αt, t 6 σB

min{α, 1}e−(t−σB), t > σB

. (10)

2.2. Diffusing pulses of reactive solutes114

We now consider a pulse of a reactant diffusing in a solution and locally115

subject to the piecewise-linear reaction rate r(c) defined in Eq. (7). Our goal116
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is to compare the effective reaction kinetics under these conditions to the well-117

mixed batch reaction kinetics for the same initial mass of reactant and the118

same initial concentration. For simplicity, we consider transport in one spatial119

dimension, but the approach can be extended to three dimensions. The initial120

condition is taken to be homogeneous within a region of width s0, centered at121

x′ = 0. For a total initial mass of M ′0, the initial concentration corresponding to122

this injection is c′0 = M ′0/s0. In dimensional terms, the corresponding dynamical123

equation is124

∂t′c
′ = D∂2x′c

′ − r′(c′), (11)

where D is the diffusion coefficient. Here and throughout, the notation ∂y de-125

notes the partial derivative with respect to a variable y. Note that equation126

(11) is also relevant for one-dimensional dispersion when substituting the diffu-127

sion coefficient by a dispersion coefficient. Hence results derived here for one-128

dimensional diffusion also apply to one-dimensional dispersion, which would be129

relevant for instance for reactive pulses released in porous media columns under130

flow [43]. In Appendix G we also discuss the effect of dimensionality by solving131

the reactive transport equation in spherical coordinate for three-dimensional132

diffusion. Since the surface available for diffusion is larger in three-dimensions,133

the effect of average kinetics enhancement is found to be even more pronounced134

for three-dimensional pulses than for one-dimensional pulses (Fig. G.18 and135

G.19).136

As above, we nondimensionalize concentration as c = c′/c′0 and time as137

t = t′/τ`. Furthermore, we normalize position as x = x′/s0. We introduce138

also the diffusion time τD = s20/(2D), corresponding to the characteristic time139

needed to homogenize the width of the initial condition, i.e., to homogenize a140

unit length in dimensionless units. We then define the Damköhler number as141

Da =
τD
τ`

=
s20µ

2DK
, (12)

which quantifies the relative importance of reaction versus diffusion and is also142

simply the diffusion time in dimensionless units. The dynamical equation then143
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becomes144

∂tc =
∂2xc

2 Da
− r(c), (13)

where r(c) is given by equation (7) and the initial condition is145

c(x, 0) = H (x+ 1/2)H (1/2− x) . (14)

Since under diffusion and degradation the maximum concentration cannot146

increase, once the latter reaches the value α the kinetics become linear every-147

where and are identical to the well-mixed scenario. Similarly to above, we denote148

by σ the time at which the maximum concentration reaches α. For t > σ, we149

have150

M(t) = M(σ)e−(t−σ) (15)

and151

Ṁ(t) = −M(σ)e−(t−σ). (16)

As for the batch problem, α > 1 means all mass starts in the linear regime,152

corresponding to the linear reaction problem for all times. Furthermore, for any153

value of α, the limit Da → ∞ reduces to the batch problem. This happens154

because, in this limit, all mass reaches the linear regime through reaction before155

diffusion has time to deform the initial uniform concentration distribution. Note156

that we consider a pulse in a formally infinite domain. This means that our157

results for the total mass are valid so long as deformation of the pulse by diffusion158

does not extend to the spatial domain boundaries, at least while the saturated159

regime lasts. In a finite domain, the limit Da→ 0 reduces to a batch of the size160

of the domain (as opposed to the initial pulse size), corresponding to the initial161

pulse becoming homogeneous over the entire domain before reaction becomes162

important.163

2.3. Effective kinetics of diffusing pulses164

In order to quantify the effective kinetics of diffusing pulses, we study the165

evolution of the total mass of reactant. In dimensionless terms, the effective166
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reaction rate as a function of time is given by167

rt(t) = −Ṁ(t). (17)

We analyze the evolution of the effective reaction rate rt as a function of time168

and as a function rM of the mass itself,169

rM (m) = −Ṁ [T (m)], (18)

where T (m) is the time at which the total mass M [t = T (m)] is equal to m.170

Under well-mixed conditions, the effective kinetics governing the total mass171

always coincide with the local kinetics, irrespective of the latter. In the pulse172

scenario and for nonlinear kinetics, however, the mixing state, as encoded in173

the concentration profile, changes the nature of the effective reaction rate. As174

we will see, this is reflected in a qualitatively different behavior of rM (m) when175

compared to the local kinetics r(c) seen as a function of concentration.176

Note that, formally, T is the inverse of M , that is, M [T (m)] = m and177

T [M(t)] = t. This inverse exists for our problem because the mass as a function178

of time is monotonic for degradation kinetics, meaning that a value of mass179

corresponds to exactly one value of time and vice-versa. If this were not the case,180

multiple rates would be associated with a given value of mass, and the effective181

kinetics would exhibit hysteresis. We do not address this type of scenario in the182

present work.183

3. Numerical simulations184

Before proceeding with the theoretical discussion, we illustrate some key185

aspects of the dynamics using numerical simulations. To this end, we numeri-186

cally integrated Eq. (13) with a square pulse initial condition, as described in187

Section 2.2, using Matlab’s pdepe method.188

Figure 2 illustrates the evolution of the concentration profile for all com-189

binations of values of Da ∈ {10−3, 1, 103} and α ∈ {0.01, 0.05, 0.26}. These190

parameter combinations are representative of the different qualitative dynamics191
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Figure 2: Temporal evolution of the concentration profile for a square-pulse initial condition,

for varying Damköhler number Da and maximum batch rate α. Five evenly-spaced times

between t = 0 and t = σ are represented by color-coded profiles. The value of α is shown as

a dashed red line.

which may be observed. For high Da and high α (top right panel), reaction192

dominates over diffusion and the shape of the initial profile remains relatively193

unchanged until the onset of the linear regime. In fact, this is expected for194

sufficiently high Da, whatever the value of α. Indeed, in the limit of high Da,195

diffusion becomes slow compared to reaction, so that each region of the pulse196

becomes essentially independent, and the pulse behaves as a set of independent197

batches. Hence, for sufficiently high Da and a square pulse initial condition, the198

pulse remains homogeneous for the duration of the saturated regime and the ef-199

fective kinetics tend towards the batch kinetics. For low Da and high α (bottom200

right), diffusion dominates and the profile approaches a Gaussian before relevant201

reaction occurs. For decreasing α and increasing Da (left and center panels),202

corresponding to an initial condition higher above the saturation threshold and203

faster reaction, there is an enhanced interplay between diffusion and reaction,204

and the evolution of the concentration profile becomes more complex.205

Figure 3a compares the evolution of the total mass over time for diffusing206
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pulses and well-mixed batch conditions. The interplay between diffusion and207

nonlinear reaction in pulses leads to an enhancement of the effective reaction208

rate when compared to the batch reaction. The well-mixed conditions are the209

least efficient, in the sense that the remaining mass is always higher at a given210

time. This is consistent with the above discussion regarding the convergence211

to batch behavior at high Da. For low Da, when the effect of diffusion is most212

pronounced, the effective reaction rate initially increases with time to reach213

a maximum before decaying at larger times (Fig. 3b). These non-monotonic214

effective kinetics contrast with the well-mixed scenario, which mimics the local215

kinetics (constant rate followed by exponential decay, see Eq. (16)).216

Figure 3c compares the evolution of the effective reaction rate as a function217

of total mass with the local kinetics. The initial value of the reaction rate,218

corresponding to M = 1, is always the same as the initial batch reaction rate,219

because the initial conditions are identical. Then, the reaction rate increases220

up to a maximum value, before decreasing and reaching the linear regime when221

the peak concentration drops below α. The maximum reaction rates increase222

markedly with decreasing Da, and the local kinetics are recovered at high Da.223

Note that the reaction rate is maximum when the mass of the pulse is distributed224

such that all concentrations lie below α. Local concentrations then obey ċ = −c,225

which upon spatial integration leads to Ṁ = −M . This linear dependence226

corresponds to the upper envelope of rM (m), as seen in Fig. 3c. In Appendix A,227

we present a series of additional numerical simulations and discuss the sensitivity228

of the non-monotonic effective kinetics on Da and α (Fig. A.11).229

The maximum reaction rate rmax increases with decreasing Da and increasing230

α (Fig. 4a). Therefore, the region of maximum reaction rate corresponds to a231

regime where diffusion dominates over reaction and where the linear regime232

dominates over the saturated regime for most of the dynamics (see Fig. 1). The233

time tmax at which this maximum reaction rate occurs is largest for high Da and234

low α, which corresponds to relatively low values of rmax, see Fig. 4b. Note that235

α corresponds to the maximum reaction rate for well-mixed batch dynamics.236

Thus, increasing α leads to an increase in rmax, but also in the maximum batch237
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lines. The dashed green line corresponds to linear kinetics. (a) Time-evolution of the total

mass. (b) Time-evolution of the effective reaction rate. Note that, due to the logarithmic
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Figure 4: (a) Dependence of the maximum reaction rate rmax on Da and α. (b) Similar

results for the time tmax at which the rate is maximum, rt(tmax) = rmax.

To evaluate the reaction enhancement relative to the batch kinetics, we define239

the instantaneous reaction rate enhancement as240

r̃(t) =
Ṁ(t)

ṀB(t)
. (19)

Because of the nature of Michaelis-Menten kinetics, the batch reaction rate241

ṀB(t) is maximum at initial time and equal to α until the time t = σB when242

the concentration reaches the transition concentration K. In contrast, the max-243
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imum reaction rate of the pulse kinetics Ṁ(t) is always maximum at an in-244

termediate time tmax < σB (Fig. 3). Hence the maximum reaction rate en-245

hancement is r̃max = Ṁ(tmax)/α (Fig. 5). The maximum enhancement of the246

effective reaction is found in the limit of low Da and α. This corresponds to the247

case of diffusion processes dominating over reaction processes with a saturation248

concentration far below the initial concentration. Conversely, the minimum en-249

hancement of effective reaction by mixing is found in the opposite limit of high250

Da, where reaction dominates the dynamics, and high α. In Appendix A,251

we present an analysis of the late time surviving masses to quantify the global252

reaction enhancement as a function of Da and α. The behavior of the global253

reaction enhancement follows the same tendencies as the instantaneous reaction254

enhancement (Fig. 5) described above: it is maximum for low Da and low α255

(Fig. A.12).256
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Figure 5: Dependence of the maximum reaction enhancement r̃max on Da and α.
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4. Theory257

We will now develop a theoretical description in order to better understand258

and quantify the numerical results discussed in the previous section. Since the259

dynamics for the mass are trivially identical to the batch problem whenever260

there is no saturated regime, we assume in what follows that the initial concen-261

tration maximum is larger than α. To develop the theory, we first introduce two262

key quantities governing the dynamics of the diffusion–reaction system, relat-263

ing to the dynamics of the spatial boundary between the linear and saturated264

kinetic regimes. We then develop a weak-coupling approximation to predict the265

evolution of total mass under reaction and diffusion.266

4.1. Transition between saturated and linear regimes267

For times t < σ, at which the peak concentration is above the saturation268

threshold α, the spatial domain may be divided into regions in which either the269

linear or the saturated reaction dynamics are taking place. In this framework,270

the first key quantity is the position of the interface between these domains. If271

the concentration profile is symmetric at the initial time, it will remain so at272

all times. If, further, over the half-space of positive x the initial concentration273

profile c(x, t = 0) decreases monotonically (i.e., ∂xc < 0 for x > 0), the profile274

will remain monotonically decreasing at all times. Hence, the saturated region275

occurs around x = 0, and is separated from the linear region by an interface276

at positions ±ξ(t), where ξ(t) is the positive solution to c[ξ(t), t] = α. We may277

thus separate the concentration field into two terms corresponding respectively278

to these two regions: c(x, t) = c`(x, t) + cs(x, t), with279

cs(x, t) = c(x, t)H[ξ(t)− |x|], c`(x, t) = c(x, t)H[|x| − ξ(t)], (20)

where s stands for saturated and ` for linear kinetics. The total mass is given280

by281

M(t) =

∞∫

−∞

dx c(x, t) = Ms(t) +M`(t), (21)
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where the masses in each regime are given by the integrals of the corresponding282

concentrations.283

The second key quantity is the total diffusive flux across the interface be-284

tween the regions (i.e., between reaction regimes). The net diffusive flux into285

the linear regime, considering the contributions at both ±ξ(t), is given by286

f(t) =
|∂xc(x, t)|x=ξ(t)

Da
. (22)

For t > σ, when the full profile is in the linear reaction regime, we set ξ(t) =287

f(t) = 0. Then, c(x, t) = c`(x, t), and therefore M(t) = M`(t).288

Mass transfer between regimes is governed by the direct effect of the diffusive289

flux across the interface, as well as by the displacement over time of the interface290

position due to both reaction and diffusion. By the Leibniz integral rule for291

differentiation under the integral sign, we have292

Ṁs(t) =

∫

|x|6ξ(t)

dx ∂tc(x, t) + 2αξ̇(t), Ṁ`(t) =

∫

|x|>ξ(t)

dx ∂tc(x, t)− 2αξ̇(t). (23)

The first term for each mass is due to the dynamical change of concentration,293

whereas the second is directly due to the time-dependence of the interface po-294

sition. As shown in Appendix B, this leads to295

Ms(t) = Ms(0)−R(t)− F (t)−B(t), (24a)

M`(t) = M`(0)e−t +G(t) +H(t), (24b)

where296

R(t) = 2α

t∫

0

du ξ(u), (25a)

F (t) =

t∫

0

du f(u) (25b)

are the saturated-regime mass losses due respectively to reaction and diffusive297

flux at the boundaries,298

B(t) = −2α

t∫

0

du ξ̇(u) = 2α[ξ(0)− ξ(t)] (25c)
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is the saturated mass loss due directly to the changing position of the interface,299

and300

G(t) =

t∫

0

du e−(t−u)f(u), (25d)

H(t) = −2α

t∫

0

du e−(t−u)ξ̇(u) (25e)

correspond to the amount of mass which was transferred to the linear regime at301

some time u < t by diffusion and directly by change of the interface position,302

respectively, and then survived (exponential) decay until time t.303

In order to simplify the analytical treatment, it is convenient to consider304

a Gaussian initial condition. The role of the initial condition on the effective305

reaction kinetics will be discussed shortly. In dimensionless units, we consider306

an initial profile with unit mass and variance,307

c(x, 0) = exp
(
−x2/2

)
/
√

2π. (26)

Note that the corresponding initial masses are308

Ms(0) = erf
[
ξ(0)/

√
2
]
, M`(0) = erfc

[
ξ(0)/

√
2
]
, (27)

where erf and erfc are the error function and the complementary error function,309

respectively. The initial position of the interface is given by310

ξ(0) =
√
− ln (2πα2). (28)

The numerically-computed time evolution of the total mass and effective311

reaction rate for the Gaussian initial condition are shown in Fig. 6. For small Da,312

when diffusion dominates, the behavior is the same as for the square-pulse initial313

condition because diffusion quickly deforms the initial profile into a Gaussian314

shape, before appreciable reaction takes place In the limit of small Da, reaction315

approaches the linear regime for masses arbitrarily close to the initial mass. For316

high Da, however, the initial condition controls the kinetics, because diffusion317

cannot deform it substantially before the linear regime is reached. In this case,318
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reaction is much more efficient than for the batch scenario, since a relevant319

portion of the mass starts in the linear regime, whereas the well-mixed batch320

is fully saturated. This effect is more pronounced for low α, since, as discussed321

above, it corresponds to a longer duration of the saturated regime.322

In what follows, we will develop approximations to quantitatively analyze323

the dynamical behavior of the diffusion–reaction system under the unit Gaussian324

initial condition. It should be kept in mind that the high-Da limit exhibits a be-325

havior which differs from the square-pulse initial condition, which, as discussed326

above, is identical with a well-mixed batch in this limit.327
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Figure 6: Total mass and reaction rate, computed numerically for the Gaussian initial con-

dition. The maximum batch rate is α = 0.05. The equivalent batch dynamics are shown as

dashed blue lines. (a) Time evolution of total mass. (b) Time evolution of the reaction rate.

(c) Reaction rate as a function of total mass; the unit-slope dashed green line corresponds to

linear kinetics.

4.2. Weak-coupling approximation328

As formalized in Eqs. (24) and (25), determining the dynamics of the to-329

tal mass of reactant M(t) reduces to computing the temporal evolution of the330

position of the regime interface ξ(t) between the linear and saturated regimes,331

along with the diffusive flux f(t) thereat. To solve this problem, it is sufficient332

to develop an approximation for the concentration distribution in the saturated333

regime cs(x, t), because the reaction dynamics in the linear regime are indepen-334

dent of the concentration profile.335

In the saturated regime, the local reaction rate r(c) is constant and equal to336
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α, and the corresponding reactive transport equation is337

∂tcs =
∂2xcs
2 Da

− α. (29)

Defining, for |x| < ξ(t), cD = cs + αt, cD solves the conservative equation338

∂tcD =
∂2xcD
2 Da

. (30)

Solving this equation is not trivial in general, since it depends on the boundary339

condition at the interface x = ±ξ(t) with the linear regime. Neglecting the effect340

of the boundary condition on the shape of the saturated part of the profile, we341

obtain, for |x| < ξ(t), the solution342

cD(x, t) ≈
√

Da

2π(Da +t)
e−

Da x2

2(Da+t) , (31)

and343

cs(x, t) = [cD(x, t)− αt]H[ξ(t)− |x|]. (32)

Thus, assuming that the linear regime does not significantly influence the344

shape of the profile in the saturated regime leads to a weak-coupling approx-345

imation for the dynamics of diffusion and reaction: the concentration in the346

saturated regime is the result of superimposing a linear concentration decay347

−αt corresponding to the constant rate r(c) = α on the conservative diffusion348

problem. This leads, for the interface behavior, to349

ξ(t) ≈
√

Da +t

Da
ln

[
Da

2πα2(1 + t)2(Da +t)

]
, (33a)

f(t) ≈ αξ(t) 1 + t

Da +t
, (33b)

valid for t 6 σ, the duration of the saturated regime. For t > σ, we set350

ξ(t) = f(t) = 0 as discussed before.351

As mentioned above, we consider configurations for which the saturated352

regime is present initially, which means that the maximum initial concentration353

is above α. For the Gaussian initial condition, this means α <
√

2π. Time354

σ then corresponds to the time when the peak of the concentration profile, at355
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x = 0, reaches α. It follows that σ solves ξ(σ) = 0, which gives356

(1 + σ)2(Da +σ) ≈ Da

2πα2
. (34)

This is a cubic equation for σ with a single positive root. An analytical solution357

exists, but it is not particularly useful or insightful, and the root can easily be358

found numerically.359

Under the weak coupling approximation, the saturated-regime mass has the360

analytical solution361

Ms(t) = erf

[√
Da

Da +t

ξ(t)√
2

]
− 2αtξ(t). (35)

While we are not aware of a general closed-form solution for the mass in the lin-362

ear regime, the latter can easily be obtained by numerically computing the inte-363

grals in Eq. (24b). The total mass is then the sum of the two regime masses, and364

the effective kinetics rM can be computed from Eq. (18). In the diffusion- and365

reaction-dominated limits, analytical solutions can be obtained; these regimes366

are discussed in detail in Appendix C.367

4.3. Effective kinetics368

We compare the results for the total mass and the temporal effective kinet-369

ics rt(t) under the weak coupling approximation against numerical simulations370

in Fig. 7. Overall, the approximation provides very good predictions. Unsur-371

prisingly, Da ∼ 1 together with low values of α leads to the most discrepancy372

between simulations and semi-analytical solutions, since it corresponds to a373

long saturated regime with reaction and diffusion acting on similar timescales.374

Nonetheless, the weakly-coupled formulation provides a reasonable approxima-375

tion even in this regime, capturing the main features of the dynamics of the376

total mass. A more detailed analysis of the performance of this approximation377

in terms of the interface dynamics is provided in Appendix D.378

We now use the weak-coupling approximation to gain insight into the en-379

hancement and non-monotonic behavior of the effective kinetics. The latter can380
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be understood by examining the derivative drM/dm. In particular, the condi-381

tion for non-monotonic effective kinetics is drM (m = 1)/dm < 0, because the382

linear regime is always reached for small masses m, so that drM (m)/dm = 1 > 0.383

Using the chain rule in Eq. (18) for the effective mass kinetics, we obtain for384

the change in reaction rate with total mass385

drM (m)

dm
=
M̈ [T (m)]

rM (m)
. (36)

As shown in Appendix E, the first and second times derivatives of the total386

mass are given by387

Ṁ(t) = −M`(t)− 2αξ(t), (37a)

M̈(t) = M`(t)− f(t). (37b)

The interpretation of the first result is straightforward: The total rate of loss of388

mass is the sum of the reactive mass loss rates in each regime, with the linear389

regime being characterized by a rate proportional to mass, and the saturated390

regime consuming concentration at a constant rate α within a region of length391

2ξ. The remaining terms involved in the change of the mass in each regime392

correspond to transfer between regimes and therefore do not affect the total393

mass. The result for the temporal change M̈ in the rate Ṁ of mass consumption394

is more subtle, because it is affected by transfer processes. The rate in the linear395

regime changes according to the negative of the change of mass therein due to396

the linear character of the reaction. In the saturated regime, the reaction rate397

changes as 2αξ̇ due to change in size of the saturated region; thus, the rate of398

change of mass, which is the negative of the reaction rate, changes as −2αξ̇. In399

turn, the mass in the linear regime changes as −2αξ̇ due to movement of the400

boundary, compensating the change in saturated-regime rate. Finally, the mass401

in the linear regime also increases according to the diffusive flux f(t). The net402

rate change resulting from these processes is given by M`(t)− f(t).403

The result for Ṁ(t) leads, according Eq. (18), to404

rM (m) = M`[T (m)] + 2αξ[T (m)], (38)
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and, using the result for M̈(t), we find405

drM (m)

dm
=

M`[T (m)]− f [T (m)]

M`[T (m)] + 2αξ[T (m)]
. (39)

The initial condition, corresponding to unit mass m = 1 and time T (m = 1) = 0,406

is characterized by407

drM (m)

dm

∣∣∣∣∣
m=1

=
M`(0)− f(0)

M`(0) + 2αξ(0)
. (40)

Thus, if M`(0) > f(0), the initial change is the reaction rate is nonnegative,408

and the maximum reaction rate occurs for m = 1 (t = 0). For M`(0) < f(0),409

the effective kinetics are non-monotonic and the maximum reaction rate occurs410

at some intermediate value mc = M`(tc) = f(tc), corresponding to some time411

0 < tc 6 σ.412

We will now identify three qualitative Damköhler number regimes of reaction413

enhancement. These are characterized by two transition Damköhler numbers,414

Da1 and Da2, such that the three regimes correspond to Da 6 Da1, Da1 < Da <415

Da2, and Da > Da2. We consider first the upper transition number Da2. Using416

Eqs. (27), (28), and (33b) for the initial masses, interface position, and boundary417

flux under the weak-coupling approximation, the condition M`(0) < f(0) for418

drM/dm to switch signs at some intermediate mass mc becomes Da < Da2,419

where420

Da2 =
α
√
− ln(2πα2)

erfc[
√
− ln(2πα2)/2]

. (41)

We note that this criterion is well approximated by the small- and large-α421

expansions422

Da2 ≈




− ln(

√
2πα2), α� 1

√
1−
√
2πα2

π , 1−
√

2πα2 � 1

, (42)

with the crossover between these two α-dependencies occurring for α ≈ 0.2.423

For a given α and Da > Da2, the effective kinetics are monotonic and the424

maximum rate occurs at m = 1. It is given by rM (1) = Ml(0) + 2αξ(0) (from425

Eq. (38)). Using Eqs. (27) and (28), we obtain for the maximum enhancement,426
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r̃max = rmax/α,427

r̃max = α−1 erfc
[√
− ln(2πα2)/2

]
+ 2
√
− ln(2πα2). (43)

Note the independence on Da. This expression is well approximated by the low-428

and high-α expansions429

r̃max ≈





2 1−ln(2πα2)√
− ln(2πα2)

, α� 1

√
2π
[
1 + (1−

√
2πα2)

]
, 1−

√
2πα2 � 1

, (44)

with the crossover occurring for α ≈ 0.1.430

Next, we consider the limit of small Da for a given α. For sufficiently431

small Da, we have Da < Da2, so that the effective kinetics are non-monotonic.432

Diffusion-dominated dynamics occur for Da � πα2, see Eq. (Appendix C.23)433

in Appendix C.2. In this regime, we have M`(t) ≈ 1 for t 6 σ. Us-434

ing Eqs. (Appendix C.20) and (Appendix C.22) for the boundary position435

and flux under diffusion-dominated dynamics, we obtain tc ≈ σD, see also436

Eq. (Appendix C.21). We conclude that rmax ≈ M`(σ) ≈ 1. This means437

that, in agreement with the trend observed in Fig. 6c, in the limit of small Da438

at fixed α the maximum reaction rate is approximately unity and occurs after439

diffusion has placed roughly all the mass in the linear regime, with little loss440

due to reaction. Thus, in this limit, the maximum reaction enhancement is441

r̃max = 1/α, (45)

independent of Da to leading order. Since this regime occurs for Da� πα2, we442

set443

Da1 = πα2/10, (46)

so that the regime is characterized by Da . Da1.444

For a given α, the dependence of the maximum effective reaction rate on Da445

thus follows three regimes: (i) a plateau of maximum enhancement for low Da446

below a first transition Damköhler Da1; (ii) a decrease of the maximum reac-447

tion rate up to a second transition Damköhler Da2; and (iii) a second plateau448
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at large Damköhler. The weak coupling approximation accurately captures the449

non-monotonic behavior of the effective kinetics (Fig. 8a) and their enhance-450

ment relative to the batch kinetics (Fig. 8b). The weak coupling approximation451

allows for deriving analytical expressions for the two plateaus and the associated452

transition Damköhler numbers, and for accurate and efficient numerical compu-453

tation of the complex intermediate-Da behavior. We summarize these findings454

in Fig. 9.455
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Figure 7: Temporal evolution of the effective reaction rate for a Gaussian initial condition,

computed from simulations (black) and based on the weak-coupling approximation (dashed

red).

5. Accelerated consumption of nutrient pulses by bacteria456

To illustrate the phenomena described above, we compute effective reaction457

rates for nutrient pulses consumed by bacteria under Michaelis–Menten kinetics458

and investigate the influence of pulse size on the maximum reaction rate. We459

consider Michaelis–Menten parameters representative of nutrient consumption460

by E. coli [44], see Eq. (1) and Table 1.461
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Figure 8: Performance of the weak-coupling approximation in describing the effective reaction

kinetics as a function of total mass, for a Gaussian initial condition. The weakly-coupled model

predictions are shown as solid lines and the results of numerical simulations as squares. (a)

Effective reaction rate as a function of mass for maximum batch rate α = 0.05 and varying

Damköhler number Da. (b) Maximum reaction rate as a function of Damköhler number Da

for different α; the dashed lines show the analytical predictions for the high- and low-Da

plateaus, occurring respectively for Da 6 Da1 and Da > Da2.

We consider a pulse of nutrient in a solution of homogeneous bacterial con-462

centration B. We assume here that the bacterial concentration does not evolve463

in time, which requires the division rate to be much slower than the nutrient464

consumption rate. The nutrient is introduced as a pulse of width s0 in the di-465

rection x and uniform in the y and z directions. In the x direction, the spatial466

domain is assumed much wider than the pulse at all times, and in the y–z plane467

the latter is assumed to occupy the full available area S. While we focus here468

on the one-dimensional problem, the derivations above could easily be extended469

to localized pulses in three-dimensional systems by expressing Eq. (13) in radial470

coordinates. The nutrient pulse thus diffuses in the x direction and follows the471

reactive transport equation (13), where the maximum consumption rate µ is a472

function of the concentration B of bacteria,473

µ = µcB, (47)

with µc the rate of consumption of the nutrient by a single bacterium. For a474

given initial (dimensional) mass M ′0 of nutrient, the initial nutrient concentra-475
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Figure 9: Regimes of effective kinetics in the α–Da space for a Gaussian initial pulse. The

dotted line shows the first transition Damköhler number Da1, which marks the upper limit of

the maximum-enhancement regime. The dashed line shows the second transition Damköhler

number Da2, which determines the onset of the second (lowest) reaction enhancement plateau

associated with monotonic effective kinetics. Analytical solutions for r̃max in the end-member

regimes below Da1 and above Da2 are indicated.

tion is c′0 = M ′0/(s0S). Therefore, α is given by476

α = s0KS/M
′
0, (48)

covering a broad range of values depending on pulse size.477

Figure 10a shows the Damköhler number associated with a given pulse width478

s0 and bacterial concentration B, expressed as a fraction of the maximum bac-479

terial concentration Bmax [45]. Since the Damköhler number is proportional to480

s20µ, see Eq. (12), it varies broadly with pulse size and bacterial concentration.481

Expressing s0 in terms of α, the system’s trajectory in the Da–α plane when482

varying s0 is therefore characterized by the relation483

Da =
M ′20 µ

2DK3S2
α2. (49)
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We show these trajectories for different bacterial concentrations in Fig. 10b.484

When varying the initial pulse size of a pulse of given mass, all the different485

regimes discussed in the previous sections are explored, from low Da and α for486

small pulses, which corresponds to the maximum enhancement relative to the487

batch, to large Da and α, which corresponds to the reaction-dominated regime,488

where the global and local kinetics are identical. For large s0, and therefore489

low c0, most of the mass is initially in the linear regime. In this situation, the490

effective reaction rate is therefore maximum. Similar reaction rates are however491

reached in the opposite situation of sharp and highly concentrated pulses due492

to the effects discussed above. The system thus exhibits two optima at low493

and high s0. The lowest effective reaction rate is reached for intermediate pulse494

sizes (blue area in Fig. 10b), where a large portion of the mass remains in the495

saturated regime for a long time.496

For this simple, yet very common, scenario of a nutrient pulse consumed by497

bacteria, these results illustrate some of the non-trivial consequences of our find-498

ings. For different pulse sizes, a broad range of the Da–α space is explored where499

the different regimes uncovered in our analysis occur. Our results could there-500

fore provide a guide for understanding natural systems or designing bacterial501

cultures under non-uniform nutrient conditions. In practice, these phenomena502

should be expected to be coupled to other important processes such as bacterial503

growth, chemotaxis, or biofilm development, which further increase the system’s504

complexity.505
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Table 1: Parameters used to investigate the effective kinetics of nutrient pulses under consump-

tion by bacteria, relating to E. coli [44]. Values are representative of glucose consumption.

Parameter Value Unit

D 10−9 m2.s−1

s0 10−5–10−1 m

M ′0 10−6 kg

µc 5.10−20 kg.cell−1.s−1

Bmax 1015 cell.m−3

S 10−2 m2
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Figure 10: (a) Damköhler number Da as a function of pulse size s0 for different bacterial

concentrations. (b) Trajectories in the Da–α plane corresponding to varying the pulse size s0

from 10 µm to 10 cm for a given nutrient mass. Solid lines correspond to different bacterial

concentrations B, superimposed on the corresponding maximum effective reaction rate rmax.
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6. Conclusions506

We have investigated the kinetics of solute pulses locally subject to a Michaelis–507

Menten reaction, which occur in many natural and industrial systems. We have508

analyzed the effective (i.e., global) kinetics of such pulse reactors by represent-509

ing the rate of mass change as a function of mass. While for linear local kinetics510

the global effective kinetics are also linear, under nonlinear kinetics the global511

behavior differs from the local kinetics. In the present problem, the nonlinearity512

arises from the transition from linear to constant local reaction rate due to sat-513

uration. Spatial heterogeneity in the concentration profile causes the transition514

to occur at different times for different spatial locations. This fact underlies the515

difference between local and global kinetics.516

The coupling of diffusion and nonlinear kinetics can lead to non-monotonic517

effective kinetics, characterized by an initial enhancement of the effective reac-518

tion rate up to a maximum, followed by a linear decay of the reaction rate. This519

enhancement is mediated by diffusion, which transfers mass from regions where520

the kinetics are saturated to others where it is is linear, i.e., where the reaction521

rate is locally proportional to concentration. This mechanism can significantly522

accelerate the effective kinetics of pulse reactors relative to a batch reactor of523

the same size as the initial pulse, in which reactants are spatially homogeneous.524

The precise kinetics depend on the initial condition, as illustrated by comparing525

the square initial pulse (Fig. 3) to the Gaussian initial pulse (Fig. 6) but the en-526

hancement of effective kinetics through the coupling of diffusion and reaction is527

expected to be a general result. For any non-uniform initial condition, diffusion528

always accelerates the transfer of mass from the saturated regime to the linear529

kinetics regime, leading to faster average kinetics than in batch conditions.530

We have numerically explored the different regimes that emerge from this531

nonlinear reactive transport problem, and shown that they can be adequately532

understood and quantified using a weak-coupling approximation. This approxi-533

mation leads to analytical expressions that predict the transitions between differ-534

ent regimes and quantify the enhancement of reaction rates in the end-member535
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scenarios. We have considered here a piecewise-linear approximation of the536

Michaelis-Menten kinetics to facilitate analytical derivations. Our methodology537

could be extended to more complex analytical solutions of full Michaelis-Menten538

kinetics [21, 20] for a more precise analysis of reaction enhancement close to the539

transition between first-order and zero-order kinetics. The mechanisms of reac-540

tion enhancement discussed here for one-dimensional diffusion are qualitatively541

similar as those occurring in three dimensions as discussed in Appendix G and542

analytical solutions in spherical coordinates can be derived following the same543

approach. Since the diffusion-reaction equation is the same of the diffusion-544

reaction equation studied here, the mechanisms described here are also relevant545

for conventional dispersion processes. The effect of more complex mixing pat-546

terns induced by shear and stretching [46] could be investigated using a similar547

approach by considering stretching enhanced diffusion captured by lamella mix-548

ing models [47].549

We have illustrated the consequences of these findings by investigating the550

dynamics of consumption of nutrient pulses by bacteria. Varying the bacterial551

concentration and pulse size allows for exploring the different regimes of non-552

linear effective kinetics. For a given mass of nutrient, the consumption kinetics553

are characterized by two maxima, respectively for localized, highly concentrated554

pulses and for wide, dilute pulses. A minimum consumption rate is obtained555

for intermediate pulse sizes and concentrations. These findings provide new556

clues to understand natural bio-reactive systems and potentially optimize en-557

gineered bacterial cultures, either to maximize or minimize consumption rates558

under non-uniform nutrient landscapes. Furthermore, these results provide a559

new framework to understand and model the effective kinetics of Michaelis–560

Menten reactions in non-homogeneous concentration fields. While these kinetics561

are well known in batch reactors, we have uncovered a rich array of behaviors562

that arise from the coupling of concentration gradients and nonlinear kinetics.563

These results are relevant to a broad range of reactive systems characterized by564

saturating kinetics and non-uniform concentration landscapes.565
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Appendix A. Sensitivity of the effective kinetics on Da and α710

In this appendix, we provide additional numerical results illustrating how the711

effective kinetics depend on Da and α. The non-monotonic nature of the effective712

kinetics is enhanced for decreasing Da and increasing α (Fig. A.11). For low713

Da (Fig. A.11a), the maximum reaction rate initially increases markedly with714

decreasing mass before converging to linear decay. For high Da (Fig. A.11c), the715

effective kinetics approach the local kinetics. For increasing α at fixed Da, the716

maximum reaction rate increases and occurs for higher masses (Fig. A.11d-f).717

At late times, once the peak concentration drops below α, both the pulse718

and batch kinetics are linear. The transition to linear kinetics happens at time719
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Figure A.11: Reaction rate as a function of total mass. Batch kinetics are shown as dashed

lines for each value of the maximum batch rate α. Linear kinetics are indicated by dashed

green lines with unit slope. The top row shows the behavior for different values of α at

three fixed Damköhler number Da values. Conversely, the bottom row shows the behavior for

varying Da at three fixed α values, with the corresponding batch kinetics represented by a

dashed blue line.

σ for the diffusive problem and σB for the batch problem. When all the mass720

is in the linear regime, mass and reaction rates decay exponentially at unit rate721

regardless of the mixing state, see Eqs. (15) and (16). Thus, r̃(t) is constant at722

times larger than both σB and σ and given by the ratio of surviving masses,723

λ = r̃(t) =
M(t)

MB(t)
, t > max{σB , σ}. (Appendix A.1)

Asσ is always smaller than σB , the value of λ can be obtained by evaluating the724

mass ratio for any time t > σB . Taking t = σB and using Eqs. (10) and (15),725

we find726

λ =
M(σ)

α
e−(σB−σ), (Appendix A.2)

and η = 1 − λ is thus a measure of the overall enhancement of the effective727

reaction rate. The larger η, the more efficient the diffusing-pulse reactor is728

when compared to the batch reactor, with η = 1 (λ = 0) being the largest729
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possible value. A value of η = 0 (λ = 1) means that mixing has no effect730

on the overall reaction efficiency. Negative values of η would mean that the731

incompletely-mixed system is less efficient than the batch, but these do not732

occur for Michaelis–Menten reactions.733

We show the dependence of the overall reaction enhancement η on Da and734

α in Fig. A.12. When α is low, both the diffusion and batch problems start735

from highly-saturated conditions. These conditions correspond to less-efficient736

overall reaction when compared to linear kinetics, since the effective kinetics are737

constant rather than linearly increasing with total mass. In the batch problem,738

exiting the saturated regime requires mass to be consumed until the uniform739

concentration drops below α, which means reaction proceeds under saturated740

conditions for a long time. On the other hand, when Da is low, diffusion can741

quickly deform the concentration profile so that a significant portion of mass742

reacts under linear conditions, leading to substantially increased overall reac-743

tion efficiency. Increasing α corresponds to less-saturated initial conditions; the744

duration of the saturated regime is reduced, and the difference between the two745

scenarios decreases. As Da increases, diffusion becomes less important until the746

linear regime is reached, so that pulse and batch reactors behave similarly.747

a b Da
0.389

0.259
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0.115

0.076
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0.023
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0.001

Figure A.12: Overall reaction enhancement η relative to the equivalent batch system. (a)

Overall reaction enhancement as a function of Da for different α. (b) Overall reaction en-

hancement as a function of maximum batch rate α for different Damköhler numbers Da.
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Appendix B. Analytical solution for concentration in terms of bound-748

ary dynamics749

In this appendix, we provide details on the derivation of the concentration750

dynamics under diffusive transport, in terms of the boundary position ξ(t) and751

the mass flux f(t). The nondimensional dynamical equations for the saturated752

and linear regimes may be written as753

∂tcs(x, t) =
∂2xcs(x, t)

2 Da
− αH[ξ(t)− |x|], (Appendix B.1a)

∂tc`(x, t) =
∂2xc`(x, t)

2 Da
− c`(x, t), (Appendix B.1b)

with the boundary conditions754

cs[±ξ(t), t] = c`[±ξ(t), t] = α, (Appendix B.2a)

∂xcs(x, t)
∣∣
x=±ξ(t) = ∂xc`(x, t)

∣∣
x=±ξ(t) = ∓Da f(t) (Appendix B.2b)

and a given initial condition c(x, 0).755

We write ĥ(k, t) =
∫∞
−∞ dx exp(−ikx)h(x, t) for the Fourier transform of a756

function h with respect to position, in terms of the Fourier variable k. Note757

that758

ĉs(k, t) =

∫

|x|6ξ(t)

dx exp(−ikx)cs(x, t), (Appendix B.3a)

ĉ`(k, t) =

∫

|x|>ξ(t)

dx exp(−ikx)c`(x, t), (Appendix B.3b)

and, according to the Leibniz rule for differentiation under the integral sign,759

∫

|x|6ξ(t)

dx exp(−ikx)∂tcs(x, t) = ∂tĉs(k, t)− 2αξ̇(t) cos[kξ(t)],

(Appendix B.4a)
∫

|x|>ξ(t)

dx exp(−ikx)∂tc`(x, t) = ∂tĉ`(k, t) + 2αξ̇(t) cos[kξ(t)].

(Appendix B.4b)
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Using these results, along with integration by parts for the spatial second760

derivatives,761

∂tĉs(k, t) = −k
2ĉs(k, t)

2 Da
− ĝ(k, t)− 2αk−1 sin[kξ(t)], (Appendix B.5a)

∂tĉ`(k, t) = −
(

1 +
k2

2 Da

)
ĉ`(k, t) + ĝ(k, t), (Appendix B.5b)

where762

ĝ(k, t) = f(t) cos[kξ(t)]− αk sin[kξ(t)]

Da
. (Appendix B.6)

Thus, in Fourier space, we obtain linear ordinary differential equations with the763

boundary dynamics playing the role of a time-dependent forcing. The standard764

form of the solutions is765

ĉs(k, t) = ĉs(k, 0)−
t∫

0

du exp

[
− k2

2 Da
(t− u)

]

×
[
ĝ(k, u) + 2αk−1 sin[kξ(u)] + 2αξ̇(t) cos[kξ(u)]

]
,

(Appendix B.7a)

ĉ`(k, t) = ĉ`(k, 0) +

t∫

0

du exp

[
−
(

1 +
k2

2 Da

)
(t− u)

]

×
[
ĝ(k, u)− 2αξ̇(t) cos[kξ(u)]

]
. (Appendix B.7b)

In order to obtain the total masses in each regime, it suffices to set k = 0, since766

Ms,`(t) = ĉs,`(0, t), see Eq. (Appendix B.3). This leads directly to Eq. (24) in767

the main text.768

Appendix C. Analytical solutions for asymptotic regimes769

In this appendix, we identify and describe reaction- and diffusion-dominated770

dynamical regimes. We obtain closed-form analytical solutions for the behavior771

of the total mass under the weak coupling approximation introduced in section 4.772
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Appendix C.1. Reaction-dominated dynamics773

If we neglect the effect of diffusion on the shape of the concentration profile,774

we have cs(x, t) ≈ cR(x, t) for |x| 6 ξ(t), where775

cR(x, t) = c(x, 0)− αt =
e−

x2

2√
2π
− αt. (Appendix C.1)

Comparing to Eq. (32) for the shape of the profile, we see that we must require776

Da � σ, so that diffusion effects may be neglected for the duration σ of the777

saturated regime.778

The approximate interface position is given by ξ(t) ≈ ξR(t), where779

ξR(t) =
√
− ln [2πα2(1 + t)2]. (Appendix C.2)

We thus have a duration of the saturated regime σ ≈ σR such that ξR(σR) = 0,780

so that781

σR =
1−
√

2πα2

√
2πα2

. (Appendix C.3)

For the diffusive flux, we have f(t) ≈ fR(t), with782

fR(t) = αξR(t)
1 + t

Da
. (Appendix C.4)

For consistency, we must also require f(t) � 2αξ(t), so that the diffusive flux783

from the saturated to the linear regime is negligible compared to the saturated784

mass loss by reaction. This leads to the reaction-dominated condition785

Da� 1√
2πα2

, (Appendix C.5)

which also ensures Da� σR.786

For the saturated-regime mass, Eq. (35) becomes787

Ms(t) ≈ erf
[
ξR(t)/

√
2
]
− 2αtξR(t). (Appendix C.6)

For the linear-regime mass, neglecting the diffusive contributionG(t) in Eq. (24b)788

and using Eq. (27) for the initial mass, we have789

M`(t) ≈ H(t) + erfc
[
ξR(0)/

√
2
]
e−t. (Appendix C.7)
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Integrating Eq. (25e) for H(t) by parts, we obtain790

H(t) ≈ 2α




t∫

0

du e−(t−u)ξR(u) + ξR(0)e−t − ξR(t)


 . (Appendix C.8)

We are not aware of an exact closed-form solution, but a useful approximation791

can be developed. Note that792

σR∫

0

du e−(σR−u)ξR(u) =

1−
√
2πα2∫

0

du
e−u/

√
2πα2

√
2πα2

√
ln

[
1

(1− u)2

]
.

(Appendix C.9)

If 1−
√

2πα2 � 1, we have u � 1 due to the integral bounds. If, on the other793

hand,
√

2πα2 � 1, we still have u � 1 for the dominant contributions due to794

the exponential cutoff. Thus, we expand the logarithm for small u and obtain795

σR∫

0

du e−(σR−u)ξR(u) ≈
√

2(2πα2)1/4
σR∫

0

du e−u
√
u (Appendix C.10)

≈ (2πα2)3/4

2α

[
erf (
√
σR)− 2e−σR

√
σR
π

]
,

(Appendix C.11)

so that796

H(σR) ≈ (2πα2)3/4

[
erf (
√
σR)−

√
4σ

π
e−σR

]
+ 2αξR(0)e−σR .

(Appendix C.12)

It turns out this approximation works well for all values of α. A similar approach797

yields798

H(t) ≈ 2α

(
ξR(0)e−σR − ξR(t)

+

√
2

1 + t
e

1+t
2 ξR(t)2

[
Γ

(
3

2
,

1 + t

2
ξR(t)2

)
− Γ

(
3

2
, t+

1 + t

2
ξR(t)2

)])
,

(Appendix C.13)

where Γ(a, x) =
∫∞
x
dt ta−1e−t is the upper incomplete gamma function. This799

approximation is somewhat less accurate for intermediate α values (α ∼ 0.1)800
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and intermediate times (t ∼ σR/2). We also find the limiting forms801

H(σ) ≈





(2πα2)3/4,
√

2πα2 � 1

2√
π

(
1−
√

2πα2
)1/2

, 1−
√

2πα2 � 1

. (Appendix C.14)

For the mass at the transition to the fully linear regime, we obtain802

M`(σ) = H(σR) + erfc

[
ξR(0)√

2

]
e−σR , (Appendix C.15)

with the limits803

M`(σ) ≈





(
2πα2

)3/4
,
√

2πα2 � 1

√
2πα2, 1−

√
2πα2 � 1

. (Appendix C.16)

This leads to a reaction enhancement804

η ≈





1−
(
8π3
)1/4√

αe−(σB−σR) erf
(√
σR
)

−2e−σB
[
ξR(0) +

erfc
[
ξR(0)√

2

]

2α − (8π)1/4
√
ασR

]
, α < 1/

√
2π

1− e−σB/α, 1/
√

2π 6 α < 1

0, α > 1

,

(Appendix C.17)

which has the limiting behaviors805

η ≈





1−
(
8π3α2

)1/4
e
−
√

2π−1√
2πα2 ,

√
2πα2 � 1

1−
√

2πe−(
√
2π−1)

[
1− (

√
2π − 1)

(
1−
√

2πα2
)]

1−
√

2πα2 � 1

0, α > 1

.

(Appendix C.18)

Appendix C.2. Diffusion-dominated dynamics806

We now neglect the effect of reaction on the saturated-regime concentration807

profile, which corresponds, for |x| 6 ξ(t), to808

cs(x, t) ≈ cD(x, t) =

√
Da

2π(Da +t)
e−

Da x2

2(Da+t) . (Appendix C.19)
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Taking into account that the lowest value of concentration in this regime is α,809

comparison to Eq. (32) shows the approximation holds for t� 1. The position810

of the interface is now approximated by811

ξD(t) =

√
Da +t

Da
ln

[
Da

2πα2(Da +t)

]
. (Appendix C.20)

From this, we find σ ≈ σD, where812

σD = Da
1− 2πα2

2πα2
. (Appendix C.21)

The condition to ensure the validity of this regime for all relevant times is thus813

σD � 1. The diffusive flux is approximately given by814

fD(t) =
αξD(t)

Da +t
. (Appendix C.22)

In this case, the condition 2αξ(t)� f(t) that the reactive contribution to mass815

loss in the saturated regime be negligible compared to the diffusive contribution816

for all times t < σ is thus Da +σD � 1/2. This leads to the diffusion-dominated817

condition818

Da� πα2, (Appendix C.23)

which also ensures σD � 1,819

The condition σD � 1 implies that the amount of reaction in the linear820

regime is negligible for t < σD. Thus, we find that G(t) ≈ F (t) and H(t) ≈ B(t).821

As expected for a diffusive profile, we obtain, for t 6 σD,822

Ms(t) ≈ erf

[
ξD(t)√

2

]
, (Appendix C.24a)

M`(t) ≈ erfc

[
ξD(t)√

2

]
, (Appendix C.24b)

so that M`(σ) ≈ 1 (no appreciable reaction). The corresponding reaction en-823

hancement is824

η ≈





1− e−σB
α , α < 1

0, α > 1

. (Appendix C.25)
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Appendix D. Interface dynamics under the weak-coupling approxi-825

mation826

In this appendix, we assess the performance of the weak coupling approxi-827

mation in predicting the time evolution of the linear–saturated regime interface828

position ξ(t) and the diffusive mass flux f(t) between regimes. A comparison of829

the evolution of the interface position according to Eq. (33a) to full numerical830

simulations is shown in Fig. D.13. We show also the analytical solutions corre-831

sponding to the diffusive and reactive limits obtained in the previous appendix,832

Eqs. (Appendix C.20) and (Appendix C.2), respectively. In the limit of high833

Da, for all α, the numerical and semi-analytical solutions show good quanti-834

tative agreement and are also well approximated by the reaction-dominated835

solution. For high α, for all Da, Eq. (33a) also provides accurate predictions.836

It interpolates between the diffusion- and reaction-dominated at low and high837

Da, respectively, but differs substantially from both at intermediate Da. As ex-838

pected, low α leads to a worse quantitative approximation, except at high Da, for839

which the reaction-dominated approximation provides a good description. Note840

how low α and low Da lead to more complex dynamics, with a non-monotonic841

evolution of the interface position. This occurs because the interface evolution842

results from the competition of diffusion and reaction, with diffusion leading to843

both a widening and a reduction in the maximum of the concentration profile.844

Despite the worse quantitative agreement at low α, qualitative features such as845

non-monotonicity are well captured under the weak coupling approximation.846

Figure D.14 shows a similar comparison for the diffusive flux f(t) at the in-847

terface computed according to Eq. (33b). The diffusion- and reaction-dominated848

limits (Equations (Appendix C.22) and (Appendix C.4), respectively) are also849

shown. In this case, low Da or high α both lead to good quantitative agreement.850

When Da ∼ 1 and α is low, the weak coupling solution predicts non-monotonic851

behavior, whereas numerical simulations show that the diffusive flux is more852

closely described by the monotonically-decreasing diffusion-dominated predic-853

tion at early times. Nonetheless, the weak coupling approximation captures854
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Figure D.13: Temporal evolution of the saturated–linear regime interface position. Analytical

solutions for ξ(t) in the diffusive and reactive limits are shown as solid black and red lines,

respectively. The weak-coupling-based semi-analytical approximation is shown as a dashed

blue line and the numerical simulations as a green line with square markers.

the transition time to fully linear kinetics well, whereas the diffusion-dominated855

approximation does not. Note that, as shown in Fig. D.15, the mass predictions856

at high Da are accurate, despite the quantitative deviations observed for f(t) at857

low α. This is due to the fact that the magnitude of the diffusive flux is small858

in this limit, and therefore has a negligible effect compared to reaction.859

Appendix E. Temporal derivatives of total mass860

In this appendix, we present details on the calculation of the first and sec-861

ond derivatives of the total mass, Eq. (37). Taking the temporal derivative of862

Eq. (24), using the definitions in Eq. (25), we obtain863

Ṁs(t) = −2αξ(t)− f(t) + 2αξ̇(t), (Appendix E.1a)

Ṁ`(t) = −M`(0)e−t −G(t)−H(t) + f(t)− 2αξ̇(t). (Appendix E.1b)

Using Eq. (24b) for the linear-regime mass, the latter equation reads864

Ṁ`(t) = −M`(t) + f(t)− 2αξ̇(t), (Appendix E.2)
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Figure D.14: Temporal evolution of the diffusive flux f(t) at the saturated–linear regime

interface. Results shown and color schemes are analogous to Fig. D.13.
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Figure D.15: Temporal evolution of total mass (black), mass in the saturated regime (green),

and mass in the linear regime (red). The solid lines represent the weak-coupling approxima-

tion, and the markers are numerical simulations.

which has a simple interpretation: The first term characterizes the linear-regime865

reaction, the second refers to change in mass due to diffusive flux, and the third866
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quantifies the direct effect of boundary movement. Using Eq. (Appendix E.1a),867

this equation leads to868

Ṁ`(t) + Ṁs(t) = −M`(t)− 2αξ(t), (Appendix E.3)

which, since Ṁ = Ṁ` + Ṁs, yields Eq. (37a) for the first time derivative of the869

total mass.870

Next, we differentiate Eq. (37a), yielding871

M̈(t) = −Ṁ`(t)− 2αξ̇(t). (Appendix E.4)

Substituting Eq. (Appendix E.2) for Ṁ`(t) leads to Eq. (37b).872

Appendix F. Simulations of reactive pulses with full Michaelis–Menten873

kinetics874

In order to evaluate the effect of the piecewise linear approximation for875

the local reaction kinetics (equation (7)), we performed additional numerical876

simulations using the full Michaelis–Menten reaction kinetics (equation (6)).877

The temporal evolution of the mass with full Michaelis–Menten kinetics is found878

to be very close to the one simulated with the piecewise linear approximation879

(Fig. F.16.a). For low Da, the maximum reaction rate is slightly smaller than880

for the approximated kinetics and it occurs a bit earlier (Fig. F.16.b and F.16.c).881

The maximum reaction enhancement r̃max is however very similar for the full882

and approximated kinetics for a large range of Da and α (Fig. F.17).883

Appendix G. Simulations of three-dimensional reactive pulses884

In this Appendix, we investigate the sensitivity of our findings to dimension-885

ality. We thus consider a reactive pulse diffusing in three dimensions and solve886

numerically the reactive transport equation in spherical coordinates,887

∂c

∂t
=

1

2 Da ρ2
∂

∂ρ

(
ρ2
∂c

∂ρ

)
+ r(c), (Appendix G.1)
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Figure F.16: Total mass and reaction rate computed numerically for the square initial con-

dition and full Michaelis–Menten kinetics (equation (6)) with α = 0.05 and Da ranging from

10−3 to 103. The dashed lines represent the results of simulations with full Michaelis–Menten

kinetics and the grey lines correspond to the piecewise linear kinetics presented in the paper.

(a) Time evolution of total mass. (b) Time evolution of the reaction rate. (c) Reaction rate

as a function of total mass.
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Figure F.17: Dependence of the maximum reaction enhancement r̃max on Da and α for

(a) piecewise linear reaction kinetics (equation (7)) and (b) full Michaelis–Menten reaction

kinetics (equation (6)).

with ρ the radial distance from the initial pulse of mass M0 = V0c0 = 1. The888

evolution of the mass and effective reaction rates is found to be similar for889

one-dimensional and three-dimensional pulses (Fig. G.18). In three-dimensions,890

the maximum reaction rate tends to be larger and to occur earlier (Fig. G.18.b891

and G.18.c). This is due to the fact that diffusion is more efficient at diluting892

a pulse in three-dimensions than in one-dimension. This enhanced diffusive893
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flux accelerates the transfer of mass from the saturated to the linear regime894

and thus tends to increase the effective reaction enhancement compared to one-895

dimensional pulses, with similar trends as a function of Da and α (Fig. G.19)896
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Figure G.18: Total mass and reaction rate computed numerically for three-dimensional

and one-dimensional reactive pulses, with α = 0.05 and Da ranging from 10−3 to 103.

The dashed lines represent the results of simulations of three-dimensional pulses (equa-

tion (Appendix G.1)) and the grey lines correspond to the results of simulations for one-

dimensional pulses (equation (13)) presented in the paper. (a) Time evolution of total mass.

(b) Time evolution of the reaction rate. (c) Reaction rate as a function of total mass.
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Figure G.19: Dependence of the maximum reaction enhancement r̃max on Da and α

for (a) one-dimensional pulses (equation (13)) and (b) three-dimensional pulses (equation

(Appendix G.1)).
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