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Abstract

Michaelis—Menten kinetics describe a broad range of physical, chemical, and
biological processes. Since they are non-linear, spatial averaging of reaction
kinetics is non-trivial, and it is not known how concentration gradients affect
the global effective kinetics. Here, we use numerical simulations and theoreti-
cal developments to investigate the effective kinetics of diffusing solute pulses
locally subject to Michaelis-Menten reaction kinetics. We find that coupled
diffusion and reaction lead to non-monotonic effective kinetics that differ sig-
nificantly from the local kinetics. The resulting effective reaction rates can be
significantly enhanced compared to those of homogeneous batch reactors. We
uncover the different regimes of effective kinetics as a function of the Damkohler
number and Michaelis—Menten parameters and derive a theory that explains and
quantifies these upscaled kinetics using a weakly-coupled description of reaction
and diffusion. We illustrate the consequences of these findings on the acceler-
ated consumption of nutrient pulses by bacteria. These results are relevant to a
large spectrum of reactive systems characterized by heterogeneous concentration
landscapes.
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1 1. Introduction

2 Michaelis-Menten kinetics [1] occur in many natural and engineered reac-
3 tive systems. They were originally developed as a model of catalytic reactions,
4+ where the reaction of interest is mediated by binding to a catalyst, leading to
s saturation effects [1, 2]. This type of kinetics has found applicability in a variety
s of contexts, such as microbial growth [3, 4], chemotaxis [5], solute transport in
7 biological tissues [6, 7, 8, 9], enzyme reactions [10], predator-prey models [11],
s and reaction-diffusion in electrodes [12]. In the context of bacterial growth,
o it is also known as Monod kinetics [13]. They have been used extensively to
10 model biodegradation of contaminants in hydrological and groundwater sys-
u tems [14, 15, 16, 17, 18, 19]. These kinetics display a simple non-linearity:
12 the reaction rate is proportional to concentration at low concentrations and
13 saturates to a constant above a threshold concentration. Analytical solutions
1 exist for the Michaelis-Menten kinetics in batch conditions [20, 21]. For non-
15 homogeneous systems, the reaction-diffusion equation with Michaelis-Menten
16 kinetics has been analyzed mathematically for different applications, leading to
v approximate solutions in some regimes [6, 7, 8, 22, 23, 24, 25, 26]. Here we
18 analyze the effect of chemical gradients on the average kinetic laws for local
1w Michaelis-Menten kinetics. We investigate whether non-homogeneities in con-
20 centrations may lead to enhanced or reduced average reaction rates compared
2 with batch kinetics, characterized by homogeneous concentrations.

2 Under non-linear kinetics, unresolved concentration gradients lead to effec-
;3 tive macroscopic reactive transport laws that are different from microscopic
2 laws [27, 28, 29, 30]. In the context of Michaelis-Menten reactions, the effect
»  of mass transfer limitations on effective macroscopic kinetics has been studied
2 with an emphasis on bioavailability limitations when micro-organisms are lo-
z cated on solid surfaces [31, 32, 33] or more generally distributed in space [34].
s Mixing limitation with Michaelis-Menten kinetics have also been investigated
2 in the context of reactive fronts, where reactants are spatially segregated and

» mixing is the limiting step to bring reactants into contact [35, 36]. Here we
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a1 study situations where nutrients or reactants are released as discrete pulses in
2 time and space, which encompasses a large spectrum of natural and engineered
13 systems. Examples include pulse of nutrients in soil [37, 38], plants [39], aquifers
1 [40] or catchments [41], which are often consumed by biological agents through
s Michaelis-Menten kinetics [42]. While other types of non-homogeneous initial
s conditions could be considered, we argue that the general impact of concentra-
s tion gradients on the average kinetics will be similar as for pulses.

38 We study the effective kinetics of diffusing pulses of a single chemical species
3 undergoing degradation with Michaelis-Menten kinetics. We assume that the
w0 local kinetics are uniform in space and hence focus on the effect of spatial
o and temporal changes in reactant concentration on the effective kinetics. We
2 approximate these nonlinear kinetics by a sharp crossover from a linear depen-
s dency of the degradation rate on ¢ for concentrations lower than the crossover
4 concentration, to a saturated, constant rate above it. We investigate the de-
s pendency of the effective kinetics on the Damkohler number Da and the ratio
% o between the kinetics’ crossover concentration and the initial concentration.
w7 We develop a semi-analytical framework relying on a weak-coupling approx-
s imation regarding diffusion and reaction. The results compare favorably to
4 numerical simulations of the coupled equations. Fully-analytical descriptions
so are also derived for asymptotic regimes corresponding respectively to reaction-
si  and diffusion-dominated dynamics.

52 In the following, we first present, in Section 2, a mathematical description
53 of the dynamics, including the solution under well-mixed conditions, which will
s« serve as the reference scenario. Next, Section 3 is concerned with analysing the
55 dynamics of the effective reaction rate as a function of the Damkohler number
ss and a based on numerical simulations. Section 4 is devoted to the derivation
57 of the semi-analytical theory relying on the approximation of weakly-coupled
ss diffusion and reaction. Section 5 explores the consequences of our results in
ss the context of the consumption of nutrients by bacteria. Conclusions are drawn
s and the results discussed in terms of their relevance to natural systems in sec-

st tion 6. Additional technical derivations regarding the analytical theory and
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e details on the performance of the weakly coupled approximation may be found

63 in appendix.

& 2. Dynamics

6 The dependence of local reaction rate on local concentration associated with
e Michaelis—-Menten kinetics is given by
/

e
’I‘/(C,) — Kic (1)

&7 where ¢’ is the concentration, p is the maximum reaction rate per unit con-
e centration, and K is the characteristic concentration for the transition between
e first-order and zero-order kinetics. The key qualitative features of these kinetics
70 are (i) saturation of the reaction rate at high concentrations ¢’ > K, and (ii)
7 linear growth of the reaction rate at low concentrations ¢’ < K.

7 We define the normalized concentration and characteristic concentrations

7z respectively as
c=d/c (2)
7 and

a:K/Cé)a (3)

5 where ¢ is the initial concentration. We associate a characteristic reaction time

7 with the low-concentration regime,

=K/, (4)
77 and we nondimensionalize time as

t=1t'/m. (5)

72 This leads to a dimensionless reaction rate r = 747’ /c(, given as a function of

7 dimensionless concentration by

r(c) = (6)
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s In nondimensional terms, the saturation condition reads ¢ > «, and the satu-
s rated rate value is likewise given by r(¢) = a. In the following, we present and
&2 discuss our results in terms of nondimensional quantities, unless noted other-
s Wise.

8 For simplicity, in order to elucidate the main mechanisms driving the effec-
s tive kinetics describing the evolution of total mass under this type of scenario,

s we consider a piecewise-linear model of kinetics accounting for saturation,
r(c) =cH(a—c¢)+ aH(c— a), (7)

sz where H is the Heaviside step function. This corresponds to a linear increase,
s 1r(c) = ¢, of the reaction rate up to the critical concentration «, so that r(a) = «.
s Above the critical concentration, the reaction rate saturates and remains equal
o to its maximum value « (see Fig. 1). This model simplifies the analytical
o1 treatment, and allows us to focus on the key features of the interplay between
o transport-induced mixing and saturation. In Appendix F, we investigate nu-
o3 merically the effect of this simplification and show that it tends to slightly
s over-estimate the maximum effective reaction rates (Fig. F.16). However, re-
s sults are very similar since the piecewise-linear approximation is very close to

o the two regimes over orders of magnitudes in concentrations (Fig. 1 and F.17).

o 2.1. Well-mized kinetics

% We first consider the well-mixed case, corresponding to the conditions found
o in a batch reactor. The concentration c is then spatially homogeneous and
w0 depends only on time t. The dynamic equation describing concentration decay

01 is the well-mixed rate law
¢=—r(c), (8)

102 which describes the decay resulting from the sharp crossover approximation of
s the Michaelis-Menten kinetics when the rate r(c) is defined according to Eq. (7).
s Throughout, the dot denotes (nondimensional-time) differentiation.

105 If the initial concentration is sufficiently large (o < 1), reaction starts in

s the saturated regime. The reaction then proceeds at a constant rate for a
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Figure 1: Nonlinear kinetics exhibiting saturation. Blue: Michaelis-Menten kinetics, Eq. (6).

Black dashed: Piecewise-linear kinetics, Eq. (7).

w7 dimensionless duration op, defined such that ¢(ocp) = a. For o > 1, the batch

w8 starts in the linear regime and op = 0. Thus,

UB:max{o};“}. (9)

w For t > op, standard linear dynamics apply, and the concentration decreases

o exponentially. The total mass corresponding to a homogeneous batch of width
ut 8o is given, in one dimension, by Mp(t) = soc/(t), which we nondimensionalize
w2 as Mp(t) = Mp(t)/Mg(t = 0). Hence, expressed in nondimensional terms, the
n3  temporal evolution of the total mass of reactant is given by

1—at, t<op

Mg(t) = . (10)
min{a, 1}e~¢=8) ¢ > op

ue  2.2. Diffusing pulses of reactive solutes

15 We now consider a pulse of a reactant diffusing in a solution and locally

us subject to the piecewise-linear reaction rate r(c) defined in Eq. (7). Our goal
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n7 is to compare the effective reaction kinetics under these conditions to the well-
ns  mixed batch reaction kinetics for the same initial mass of reactant and the
ne  same initial concentration. For simplicity, we consider transport in one spatial
2o dimension, but the approach can be extended to three dimensions. The initial
1 condition is taken to be homogeneous within a region of width sg, centered at
2 2’ = 0. For a total initial mass of M|, the initial concentration corresponding to
w3 this injection is ¢f, = M{)/so. In dimensional terms, the corresponding dynamical
124 equation is

Opc = D¢ —r' (), (11)

s where D is the diffusion coefficient. Here and throughout, the notation 9, de-
ns notes the partial derivative with respect to a variable y. Note that equation
w7 (11) is also relevant for one-dimensional dispersion when substituting the diffu-
s sion coefficient by a dispersion coefficient. Hence results derived here for one-
19 dimensional diffusion also apply to one-dimensional dispersion, which would be
1o relevant for instance for reactive pulses released in porous media columns under
wm  flow [43]. In Appendix G we also discuss the effect of dimensionality by solving
12 the reactive transport equation in spherical coordinate for three-dimensional
133 diffusion. Since the surface available for diffusion is larger in three-dimensions,
13« the effect of average kinetics enhancement is found to be even more pronounced
s for three-dimensional pulses than for one-dimensional pulses (Fig. G.18 and
s G.19).

1w As above, we nondimensionalize concentration as ¢ = ¢//c¢}, and time as
w = t'/7p. Furthermore, we normalize position as x = z’/sp. We introduce
10 also the diffusion time 7p = s2/(2D), corresponding to the characteristic time
1 needed to homogenize the width of the initial condition, i.e., to homogenize a

w1 unit length in dimensionless units. We then define the Damkoéhler number as

2
D Sol
D = — =
4=, T 2DK’

(12)

12 which quantifies the relative importance of reaction versus diffusion and is also

13 simply the diffusion time in dimensionless units. The dynamical equation then
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s becomes

Oic = ma —r(c), (13)

1s  where r(c) is given by equation (7) and the initial condition is
c(x,0)=H(x+1/2)H (1/2—1z). (14)

146 Since under diffusion and degradation the maximum concentration cannot
17 increase, once the latter reaches the value « the kinetics become linear every-
us  where and are identical to the well-mixed scenario. Similarly to above, we denote

1w by o the time at which the maximum concentration reaches a. For ¢t > o, we

10 have
M(t) = M(a)e_(t_”) (15)

11 and
M(t) = —M(o)e™ =9, (16)
152 As for the batch problem, o > 1 means all mass starts in the linear regime,

153 corresponding to the linear reaction problem for all times. Furthermore, for any
1« value of «, the limit Da — oo reduces to the batch problem. This happens
155 because, in this limit, all mass reaches the linear regime through reaction before
156 diffusion has time to deform the initial uniform concentration distribution. Note
157 that we consider a pulse in a formally infinite domain. This means that our
18 results for the total mass are valid so long as deformation of the pulse by diffusion
159 does not extend to the spatial domain boundaries, at least while the saturated
10 ‘regime lasts. In a finite domain, the limit Da — 0 reduces to a batch of the size
11 of the domain (as opposed to the initial pulse size), corresponding to the initial
12 pulse becoming homogeneous over the entire domain before reaction becomes

163 important.

e 2.3. Effective kinetics of diffusing pulses

165 In order to quantify the effective kinetics of diffusing pulses, we study the

16 evolution of the total mass of reactant. In dimensionless terms, the effective
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167 reaction rate as a function of time is given by
ro(t) = —M(t). (17)

s We analyze the evolution of the effective reaction rate r; as a function of time

1o and as a function r); of the mass itself,

rar(m) = —M[T(m)], (18)
w  where T(m) is the time at which the total mass M[t = T(im)] is equal to m.
i1 Under well-mixed conditions, the effective kinetics governing the total mass
2 always coincide with the local kinetics, irrespective of the latter. In the pulse
73 scenario and for nonlinear kinetics, however, the mixing state, as encoded in
s the concentration profile, changes the nature of the effective reaction rate. As
s we will see, this is reflected in a qualitatively different behavior of ras(m) when
ws compared to the local kinetics r(c) seen as a function of concentration.
177 Note that, formally, 7' is the inverse of M, that is, M[T'(m)] = m and
ws  T[M(t)] = t. This inverse exists for our problem because the mass as a function
o of time is monotonic for degradation kinetics, meaning that a value of mass
10 corresponds to exactly one value of time and vice-versa. If this were not the case,
1 multiple rates would be associated with a given value of mass, and the effective
12 kinetics would exhibit hysteresis. We do not address this type of scenario in the

183 present work.

1ws 3. Numerical simulations

185 Before proceeding with the theoretical discussion, we illustrate some key
186 aspects of the dynamics using numerical simulations. To this end, we numeri-
7 cally integrated Eq. (13) with a square pulse initial condition, as described in
188 Section 2.2, using Matlab’s pdepe method.

189 Figure 2 illustrates the evolution of the concentration profile for all com-
w0 binations of values of Da € {1073,1,10%} and a € {0.01,0.05,0.26}. These

11 parameter combinations are representative of the different qualitative dynamics
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Figure 2: Temporal evolution of the concentration profile for a square-pulse initial condition,
for varying Damkdohler number Da and maximum batch rate o. Five evenly-spaced times
between t = 0 and t = o are represented by color-coded profiles. The value of « is shown as

a dashed red line.

12 which may be observed. For high Da and high « (top right panel), reaction
103 dominates over diffusion and the shape of the initial profile remains relatively
14 unchanged until the onset of the linear regime. In fact, this is expected for
105 sufficiently high Da, whatever the value of . Indeed, in the limit of high Da,
106 diffusion becomes slow compared to reaction, so that each region of the pulse
17 becomes essentially independent, and the pulse behaves as a set of independent
108 batches. Hence, for sufficiently high Da and a square pulse initial condition, the
19 pulse remains homogeneous for the duration of the saturated regime and the ef-
20 fective kinetics tend towards the batch kinetics. For low Da and high o (bottom
21 right), diffusion dominates and the profile approaches a Gaussian before relevant
22 reaction occurs. For decreasing o and increasing Da (left and center panels),
203 corresponding to an initial condition higher above the saturation threshold and
20 faster reaction, there is an enhanced interplay between diffusion and reaction,
25 and the evolution of the concentration profile becomes more complex.

206 Figure 3a compares the evolution of the total mass over time for diffusing

10
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27 pulses and well-mixed batch conditions. The interplay between diffusion and
208 nonlinear reaction in pulses leads to an enhancement of the effective reaction
20 rate when compared to the batch reaction. The well-mixed conditions are the
a0 least efficient, in the sense that the remaining mass is always higher at a given
an time. This is consistent with the above discussion regarding the convergence
212 to batch behavior at high Da. For low Da, when the effect of diffusion is most
a3 pronounced, the effective reaction rate initially increases with time to reach
a4 a maximum before decaying at larger times (Fig. 3b). These non-monotonic
a5 effective kinetics contrast with the well-mixed scenario, which mimics the local
z6  Kinetics (constant rate followed by exponential decay, see Eq. (16)).

217 Figure 3c compares the evolution of the effective reaction rate as a function
28 of total mass with the local kinetics. The initial value of the reaction rate,
219 corresponding to M = 1, is always the same as the initial batch reaction rate,
20 because the initial conditions are identical. Then, the reaction rate increases
21 up to a maximum value, before decreasing and reaching the linear regime when
2 the peak concentration drops below @. The maximum reaction rates increase
23 markedly with decreasing Da, and the local kinetics are recovered at high Da.
24 Note that the reaction rate is maximum when the mass of the pulse is distributed
25 such that all concentrations lie below «. Local concentrations then obey ¢ = —c,
26 which upon spatial integration leads to M = —M. This linear dependence
2r  corresponds to the upper envelope of rpr(m), as seen in Fig. 3c. In Appendix A,
»s  we present a series of additional numerical simulations and discuss the sensitivity
20 of the non-monotonic effective kinetics on Da and « (Fig. A.11).

230 The maximum reaction rate ry.x increases with decreasing Da and increasing
a1« (Fig. 4a). Therefore, the region of maximum reaction rate corresponds to a
2 regime where diffusion dominates over reaction and where the linear regime
23 dominates over the saturated regime for most of the dynamics (see Fig. 1). The
24 time tpax at which this maximum reaction rate occurs is largest for high Da and
25 low a, which corresponds to relatively low values of 7.y, see Fig. 4b. Note that
26« corresponds to the maximum reaction rate for well-mixed batch dynamics.

27 Thus, increasing « leads to an increase in ry,y, but also in the maximum batch

11
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Figure 3: Total mass and effective reaction rate for varying Damkohler number Da and o =
0.05 for a square initial condition. The well-mixed batch behavior is shown as dashed blue
lines. The dashed green line corresponds to linear kinetics. (a) Time-evolution of the total
mass. (b) Time-evolution of the effective reaction rate. Note that, due to the logarithmic
time axis, the maximum rate is shifted with respect to the apparent maximum slope in panel

(a). (c) Effective reaction rate as a function of total mass.
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Figure 4:  (a) Dependence of the maximum reaction rate rmax on Da and «. (b) Similar

results for the time tmax at which the rate is maximum, r¢(tmax) = Tmax-

239 To evaluate the reaction enhancement relative to the batch kinetics, we define

20 the instantaneous reaction rate enhancement as
M(t)

Mig(t)’

21 Because of the nature of Michaelis-Menten kinetics, the batch reaction rate

F(t) = (19)

22 Mp(t) is maximum at initial time and equal to o until the time t = o3 when

23 the concentration reaches the transition concentration K. In contrast, the max-

12
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s imum reaction rate of the pulse kinetics M(t) is always maximum at an in-
x5 termediate time tyax < op (Fig. 3). Hence the maximum reaction rate en-
us  hancement is Fiax = M (tmax)/a (Fig. 5). The maximum enhancement of the
a7 effective reaction is found in the limit of low Da and «. This corresponds to the
xus  case of diffusion processes dominating over reaction processes with a saturation
29 concentration far below the initial concentration. Conversely, the minimum en-
0 hancement of effective reaction by mixing is found in the opposite limit of high
1 Da, where reaction dominates the dynamics, and high @. In Appendix A,
2 we present an analysis of the late time surviving masses to quantify the global
»3  reaction enhancement as a function of Da and «. The behavior of the global
x4 reaction enhancement follows the same tendencies as the instantaneous reaction
s enhancement (Fig. 5) described above: it is maximum for low Da and low «

256 (Fig. A.12).

5
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Figure 5: Dependence of the maximum reaction enhancement 7max on Da and «.

13
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»7 4. Theory

258 We will now develop a theoretical description in order to better understand
9 and quantify the numerical results discussed in the previous section. Since the
%0 dynamics for the mass are trivially identical to the batch problem whenever
1 there is no saturated regime, we assume in what follows that the initial concen-
»%2  tration maximum is larger than «. To develop the theory, we first introduce two
»%3  key quantities governing the dynamics of the diffusion—reaction system, relat-
s ing to the dynamics of the spatial boundary between the linear and saturated
x5 Kinetic regimes. We then develop a weak-coupling approximation to predict the

26 evolution of total mass under reaction and diffusion.

w7 4.1. Transition between saturated and linear regimes

268 For times t < o, at which the peak concentration is above the saturation
»0  threshold a, the spatial domain may be divided into regions in which either the
a0 linear or the saturated reaction dynamics are taking place. In this framework,
on the first key quantity is the position of the interface between these domains. If
o the concentration profile is symmetric at the initial time, it will remain so at
a3 all times. If, further; over the half-space of positive z the initial concentration
ae  profile ¢(z,t = 0) decreases monotonically (i.e., ¢ < 0 for z > 0), the profile
a5 will remain monotonically decreasing at all times. Hence, the saturated region
o occurs around @ = 0, and is separated from the linear region by an interface
o at positions £&(t), where £(¢) is the positive solution to c[¢(t),t] = . We may
s thus separate the concentration field into two terms corresponding respectively

a9 t0 these two regions: c(x,t) = co(x,t) + cs(x,t), with
cs(z,t) = c(z, ) HIE(t) — |«]], ce(w,t) = ez, ) H|z| — £(t)], (20)

20 where s stands for saturated and ¢ for linear kinetics. The total mass is given

281 by

M(t) = / dw c(z,t) = My(t) + My(t), (21)

—0o0

14
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2 where the masses in each regime are given by the integrals of the corresponding
263 concentrations.

284 The second key quantity is the total diffusive flux across the interface be-
25 tween the regions (i.e., between reaction regimes). The net diffusive flux into
286 the linear regime, considering the contributions at both +£(¢), is given by

ity = 12tz emsie, (22)

27 For t > o, when the full profile is in the linear reaction regime, we set £(t) =
w8 f(t) = 0. Then, ¢(x,t) = co(x,t), and therefore M (t) = M ().

289 Mass transfer between regimes is governed by the direct effect of the diffusive
20 flux across the interface, as well as by the displacement over time of the interface
201 position due to both reaction and diffusion. By the Leibniz integral rule for

20 differentiation under the integral sign, we have

M,(t) = / dx dyc(x,t) 4+ 20E(1), - My(t) = / dx dye(z,t) — 20E(1).  (23)
lz]<&(t) lz[>&(t)

23 The first term for each mass is due to the dynamical change of concentration,

20 whereas the second is directly due to the time-dependence of the interface po-

25 sition. As shown in Appendix B, this leads to

Mi(t) = Ms(0) — R(t) — F(t) — B(t), (24a)
My (t) = My(0)e™" + G(t) + H(2), (24b)
206  where
R(t) =2« | du&(u), (25a)
/
F(t)= [ duf(u) (25b)
/

27 are the saturated-regime mass losses due respectively to reaction and diffusive

2 flux at the boundaries,

B(t) = —2a / dué(u) = 20[£(0) — £(1)] (25¢)
0

15
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200 is the saturated mass loss due directly to the changing position of the interface,

30 and
G(t) = / due W f(u), (25d)
H(t) = —2a [ due” "¢ (u) (25¢)
/

sm  correspond to the amount of mass which was transferred to the linear regime at
2 some time u < t by diffusion and directly by change of the interface position,
303 respectively, and then survived (exponential) decay until time ¢.

304 In order to simplify the analytical treatment, it is convenient to consider
ss a Gaussian initial condition. The role of the initial condition on the effective
s reaction kinetics will be discussed shortly. In dimensionless units, we consider

s7  an initial profile with unit mass and variance,
c(z,0) = exp (—2*/2) /N2 (26)

s Note that the corresponding initial masses are
M, (0) = est [£(0)/v2] My(0) = erfe [£0)/V2],  (27)

a0 where erf and erfc are the error function and the complementary error function,

s respectively. The initial position of the interface is given by

€(0) = /— In (2ra?). (28)

an The numerically-computed time evolution of the total mass and effective
sz reaction rate for the Gaussian initial condition are shown in Fig. 6. For small Da,
sz when diffusion dominates, the behavior is the same as for the square-pulse initial
su  condition because diffusion quickly deforms the initial profile into a Gaussian
a5 shape, before appreciable reaction takes place In the limit of small Da, reaction
sis  approaches the linear regime for masses arbitrarily close to the initial mass. For
siz high Da, however, the initial condition controls the kinetics, because diffusion

a8 cannot deform it substantially before the linear regime is reached. In this case,
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a0 reaction is much more efficient than for the batch scenario, since a relevant
w0 portion of the mass starts in the linear regime, whereas the well-mixed batch
s is fully saturated. This effect is more pronounced for low «, since, as discussed
s above, it corresponds to a longer duration of the saturated regime.

3 In what follows, we will develop approximations to quantitatively analyze
24 the dynamical behavior of the diffusion-reaction system under the unit Gaussian
»s  initial condition. It should be kept in mind that the high-Da limit exhibits a be-
36 havior which differs from the square-pulse initial condition, which, as discussed

27 above, is identical with a well-mixed batch in this limit.
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Figure 6: Total mass and reaction rate, computed numerically for the Gaussian initial con-
dition. The maximum batch rate is & = 0.05. The equivalent batch dynamics are shown as
dashed blue lines. (a) Time evolution of total mass. (b) Time evolution of the reaction rate.
(c) Reaction rate as a function of total mass; the unit-slope dashed green line corresponds to

linear kinetics.

2 4.2. Weak-coupling approzimation

) As formalized in Egs. (24) and (25), determining the dynamics of the to-
s tal mass of reactant M (t) reduces to computing the temporal evolution of the
s position of the regime interface £(t) between the linear and saturated regimes,
s along with the diffusive flux f(¢) thereat. To solve this problem, it is sufficient
33 to develop an approximation for the concentration distribution in the saturated
s regime cg(x,t), because the reaction dynamics in the linear regime are indepen-
35 dent of the concentration profile.

336 In the saturated regime, the local reaction rate r(c) is constant and equal to
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s, and the corresponding reactive transport equation is

&2cq
2Da

—a. (29)

81565 =

s Defining, for |z| < £(t), cp = ¢s + at, ¢p solves the conservative equation

650,3
2Da’

6,5 Cp = (30)

s Solving this equation is not trivial in general, since it depends on the boundary
s condition at the interface x = +£(¢) with the linear regime. Neglecting the effect
s of the boundary condition on the shape of the saturated part of the profile, we

sz obtain, for |z| < &(t), the solution

cp(z,t) =~ 7277(DD:+1€) 6_%, (31)

us and
cs(w,t) = [epla;t) — ot HIE(t) — [x]. (32)
344 Thus, assuming that the linear regime does not significantly influence the

us  shape of the profile in the saturated regime leads to a weak-coupling approx-
us imation for the dynamics of diffusion and reaction: the concentration in the
s saturated regime is the result of superimposing a linear concentration decay
us  —at corresponding to the constant rate r(¢) = « on the conservative diffusion

uo  problem. This leads, for the interface behavior, to

Da +1 Da
£(t) = \/ Da In [Qmﬂ(l Tt)2(Da+t) ]’ (33a)
o= ag(t)];ai;, (33Db)

s valid for ¢ < o, the duration of the saturated regime. For t > o, we set
s &(t) = f(t) =0 as discussed before.

352 As mentioned above, we consider configurations for which the saturated
33 regime is present initially, which means that the maximum initial concentration
s is above a. For the Gaussian initial condition, this means a < V2r. Time

35 0 then corresponds to the time when the peak of the concentration profile, at

18
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s ¢ =0, reaches a. It follows that o solves {(o) = 0, which gives

Da

2 ~
(14+0)*(Da+o) ~ 5ot

(34)

37 This is a cubic equation for o with a single positive root. An analytical solution
s exists, but it is not particularly useful or insightful, and the root can easily be
0 found numerically.

360 Under the weak coupling approximation, the saturated-regime mass has the

1 analytical solution

Da f(t)] — 2ate(t). (35)

M, = erf
s(H) = er Da+t /2

w2 While we are not aware of a general closed-form solution for the mass in the lin-
3 ear regime, the latter can easily be obtained by numerically computing the inte-
3¢ grals in Eq. (24b). The total mass is then the sum of the two regime masses, and
sss  the effective kinetics rp; can be computed from Eq. (18). In the diffusion- and
6 reaction-dominated limits, analytical solutions can be obtained; these regimes

7 are discussed in detail in Appendix C.

s 4.3. Effective kinetics

369 We compare the results for the total mass and the temporal effective kinet-
s ics r4(t) under the weak coupling approximation against numerical simulations
sn in Fig. 7. Overall, the approximation provides very good predictions. Unsur-
s prisingly, Da ~ 1 together with low values of a leads to the most discrepancy
sz between simulations and semi-analytical solutions, since it corresponds to a
s long saturated regime with reaction and diffusion acting on similar timescales.
a5 Nonetheless, the weakly-coupled formulation provides a reasonable approxima-
s tion even in this regime, capturing the main features of the dynamics of the
s total mass. A more detailed analysis of the performance of this approximation
s in terms of the interface dynamics is provided in Appendix D.

379 We now use the weak-coupling approximation to gain insight into the en-

s hancement and non-monotonic behavior of the effective kinetics. The latter can
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s be understood by examining the derivative drys/dm. In particular, the condi-
2 tion for non-monotonic effective kinetics is dras(m = 1)/dm < 0, because the
33 linear regime is always reached for small masses m, so that drys(m)/dm =1 > 0.
s« Using the chain rule in Eq. (18) for the effective mass kinetics, we obtain for

s the change in reaction rate with total mass

d M[T
dm ra(m)
s As shown in Appendix E, the first and second times derivatives of the total

7 Iass are given by

M(t) = —Mq(t) — 20£(t), (37a)

M(t) = My(t) — f(1). (37b)
s The interpretation of the first result is straightforward: The total rate of loss of
0 mass is the sum of the reactive mass loss rates in each regime, with the linear
s regime being characterized by a rate proportional to mass, and the saturated
s regime consuming concentration at a constant rate a within a region of length
s 2§. The remaining terms involved in the change of the mass in each regime
33 correspond to transfer between regimes and therefore do not affect the total
.s  mass. The result for the temporal change M in the rate M of mass consumption
35 1s more subtle, because it is affected by transfer processes. The rate in the linear
s regime changes according to the negative of the change of mass therein due to
sz the linear character of the reaction. In the saturated regime, the reaction rate
s changes as 20[6 due to change in size of the saturated region; thus, the rate of
1 change of mass, which is the negative of the reaction rate, changes as —2a€. In
wo turn, the mass in the linear regime changes as —2a€ due to movement of the
w1 boundary, compensating the change in saturated-regime rate. Finally, the mass
w2 in the linear regime also increases according to the diffusive flux f(¢). The net
w: rate change resulting from these processes is given by M,(t) — f(t).

404 The result for M (t) leads, according Eq. (18), to
rar(m) = Me[T(m)] + 2a€[T (m))], (38)
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ws and, using the result for M (t), we find

drar(m) _ My[T(m)] — f[T(m)]
dm My[T(m)] + 20€[T(m)]

(39)

ws The initial condition, corresponding to unit mass m = 1 and time T'(m = 1) = 0,
w7 is characterized by

dras(m) _ _M(0) — £(0)

dm | 7 My(0) +2a€(0)° (40)

ws  Thus, if M,(0) > f(0), the initial change is the reaction rate is nonnegative,
w0 and the maximum reaction rate occurs for m = 1 (¢t = 0). For M,(0) < f(0),
a0 the effective kinetics are non-monotonic and the maximum reaction rate occurs
a1 at some intermediate value m, = M(t.) = f(t.), corresponding to some time
a2 0<t. <o.

a13 We will now identify three qualitative Damkdhler number regimes of reaction
aia enhancement. These are characterized by two transition Damkdhler numbers,
a5 Day and Dag, such that the three regimes correspond to Da < Daj, Da; < Da <
as Dag, and Da > Day. We counsider first the upper transition number Day. Using
ar Egs. (27), (28), and (33b) for the initial masses, interface position, and boundary
as  flux under the weak-coupling approximation, the condition M,(0) < f(0) for

s drpyr/dm to switch signs at some intermediate mass m,. becomes Da < Dag,

Day — ay/—In(2ma?) . (41)
erfc[y/— In(27a?) /2]

21 We note that this criterion is well approximated by the small- and large-a

20 Where

2 expansions

—In(v2ra?), a<k1
Dag ~ (42)

1—7\/27"12, 1—V2ra2 <1

w23 with the crossover between these two a-dependencies occurring for a ~ 0.2.
a2 For a given o« and Da > Dag, the effective kinetics are monotonic and the
#2s maximum rate occurs at m = 1. It is given by ras (1) = M;(0) + 2a£(0) (from

25 Eq. (38)). Using Eqgs. (27) and (28), we obtain for the maximum enhancement,
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427 Tmax — Tmax/aa

Fmax = @ erfc [\/W} +2y/—In(27ra?). (43)

s Note the independence on Da. This expression is well approximated by the low-

w29 and high-a expansions

1—In(27a?) a<1

P VO : (44)
V21 |14+ (1 —V2ma?)|, 1-V2ra2 <1

w0 with the crossover occurring for a =~ 0.1.

3 Next, we consider the limit of small Da for a given «. For sufficiently
w2 small Da, we have Da < Dag, so that the effective kinetics are non-monotonic.
s Diffusion-dominated dynamics occur for Da < 7a?, see Eq. (Appendix C.23)
s in  Appendix C.2. In this regime, we have M,(t) ~ 1 for t < o. Us-
s ing Egs. (Appendix C.20) and (Appendix C.22) for the boundary position
s and flux under diffusion-dominated dynamics, we obtain t. =~ op, see also
= Eq. (Appendix C.21). We conclude that rm.x &~ My(o) = 1. This means
ss  that, in agreement with the trend observed in Fig. 6¢, in the limit of small Da
10 at fixed o the maximum reaction rate is approximately unity and occurs after
w0 diffusion has placed roughly all the mass in the linear regime, with little loss

s due to reaction. Thus, in this limit, the maximum reaction enhancement is
Tmax = 1/, (45)

w2 independent of Da to leading order. Since this regime occurs for Da < 7ma?, we
a3 set

Da; = 1a?/10, (46)

ss  so that the regime is characterized by Da < Da;.

ws For a given «, the dependence of the maximum effective reaction rate on Da
ws  thus follows three regimes: (i) a plateau of maximum enhancement for low Da
w7 below a first transition Damkdohler Day; (ii) a decrease of the maximum reac-

ws  tion rate up to a second transition Damkdhler Dag; and (iii) a second plateau
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wo at large Damkohler. The weak coupling approximation accurately captures the
s0  non-monotonic behavior of the effective kinetics (Fig. 8a) and their enhance-
s ment relative to the batch kinetics (Fig. 8b). The weak coupling approximation
2 allows for deriving analytical expressions for the two plateaus and the associated
»s3 transition Damkohler numbers, and for accurate and efficient numerical compu-

4 tation of the complex intermediate-Da behavior. We summarize these findings

w5 In Fig. 9.
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=
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Figure 7: Temporal evolution of the effective reaction rate for a Gaussian initial condition,
computed from simulations (black) and based on the weak-coupling approximation (dashed

red).

w5 5. Accelerated consumption of nutrient pulses by bacteria

as7 To illustrate the phenomena described above, we compute effective reaction
s rates for nutrient pulses consumed by bacteria under Michaelis—Menten kinetics
o and investigate the influence of pulse size on the maximum reaction rate. We
wo consider Michaelis—Menten parameters representative of nutrient consumption

w1 by E. coli [44], see Eq. (1) and Table 1.
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Figure 8: Performance of the weak-coupling approximation in describing the effective reaction
kinetics as a function of total mass, for a Gaussian initial condition. The weakly-coupled model
predictions are shown as solid lines and the results of numerical simulations as squares. (a)
Effective reaction rate as a function of mass for maximum batch rate « = 0.05 and varying
Damkohler number Da. (b) Maximum reaction rate as a function of Damkéhler number Da
for different «; the dashed lines show the analytical predictions for the high- and low-Da

plateaus, occurring respectively for Da < Daj and Da > Das.

We consider a pulse of nutrient in a solution of homogeneous bacterial con-
centration B. We assume here that the bacterial concentration does not evolve
in time, which requires the division rate to be much slower than the nutrient
consumption rate. The nutrient is introduced as a pulse of width sg in the di-
rection z and uniform in the y and z directions. In the x direction, the spatial
domain is assumed much wider than the pulse at all times, and in the y—z plane
the latter 1s assumed to occupy the full available area S. While we focus here
on the one-dimensional problem, the derivations above could easily be extended
to localized pulses in three-dimensional systems by expressing Eq. (13) in radial
coordinates. The nutrient pulse thus diffuses in the x direction and follows the
reactive transport equation (13), where the maximum consumption rate y is a

function of the concentration B of bacteria,
w= peB, (47)

with p. the rate of consumption of the nutrient by a single bacterium. For a

given initial (dimensional) mass M of nutrient, the initial nutrient concentra-
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Figure 9: Regimes of effective kinetics in the a—Da space for a Gaussian initial pulse. The
dotted line shows the first transition Damkohler number Daj, which marks the upper limit of
the maximum-enhancement regime. The dashed line shows the second transition Damkdhler
number Dag, which determines the onset of the second (lowest) reaction enhancement plateau
associated with monotonic effective kinetics. Analytical solutions for 7,44 in the end-member

regimes below Da; and above Dag are indicated.

ws  tion is ¢ = M /(s05). Therefore, « is given by
a = soKS/Mj, (48)

s covering a broad range of values depending on pulse size.

478 Figure 10a shows the Damkohler number associated with a given pulse width
a0 8o and bacterial concentration B, expressed as a fraction of the maximum bac-
w0 terial concentration Byax [45]. Since the Damkdhler number is proportional to
w83, see BEq. (12), it varies broadly with pulse size and bacterial concentration.
w2 Expressing sg in terms of «, the system’s trajectory in the Da—a plane when

w3 varying sg is therefore characterized by the relation

Mg
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s We show these trajectories for different bacterial concentrations in Fig. 10b.
w5 When varying the initial pulse size of a pulse of given mass, all the different
ws  regimes discussed in the previous sections are explored, from low Da and « for
w7 small pulses, which corresponds to the maximum enhancement relative to the
ws  batch, to large Da and «, which corresponds to the reaction-dominated regime,
s where the global and local kinetics are identical. For large sg, and therefore
w  low cg, most of the mass is initially in the linear regime. In this situation, the
w1 effective reaction rate is therefore maximum. Similar reaction rates are however
w2 reached in the opposite situation of sharp and highly concentrated pulses due
w3 to the effects discussed above. The system thus exhibits two optima at low
ss and high sg. The lowest effective reaction rate is reached for intermediate pulse
aws sizes (blue area in Fig. 10b), where a large portion of the mass remains in the
ws  saturated regime for a long time.

a07 For this simple, yet very common, scenario of a nutrient pulse consumed by
ws bacteria, these results illustrate some of the non-trivial consequences of our find-
w0 ings. For different pulse sizes, a broad range of the Da—a space is explored where
s the different regimes uncovered in our analysis occur. Our results could there-
sun  fore provide a guide for understanding natural systems or designing bacterial
soe  cultures under non-uniform nutrient conditions. In practice, these phenomena
s should be expected to be coupled to other important processes such as bacterial
soe  growth, chemotaxis, or biofilm development, which further increase the system’s

ss  complexity.
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Table 1: Parameters used to investigate the effective kinetics of nutrient pulses under consump-

tion by bacteria, relating to E. coli [44]. Values are representative of glucose consumption.

Parameter Value Unit
D 107° m?.s7!
50 10751071 m
M 1076 kg
e 5.10720 | kg.cell t.s7!
Briax 101° cell.m—3
S 1072 m?
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Figure 10: (a) Damkéhler number Da as a function of pulse size sg for different bacterial
concentrations. (b) Trajectories in the Da—a plane corresponding to varying the pulse size so
from 10 pm to 10 cm for a given nutrient mass. Solid lines correspond to different bacterial

concentrations B, superimposed on the corresponding maximum effective reaction rate rmax.
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s6 6. Conclusions

507 We have investigated the kinetics of solute pulses locally subject to a Michaelis—
ss  Menten reaction, which occur in many natural and industrial systems. We have
s0 analyzed the effective (i.e., global) kinetics of such pulse reactors by represent-
s ing the rate of mass change as a function of mass. While for linear local kinetics
su  the global effective kinetics are also linear, under nonlinear kinetics the global
sz behavior differs from the local kinetics. In the present problem, the nonlinearity
si3  arises from the transition from linear to constant local reaction rate due to sat-
su uration. Spatial heterogeneity in the concentration profile causes the transition
s to occur at different times for different spatial locations. This fact underlies the
sis  difference between local and global kinetics.

517 The coupling of diffusion and nonlinear kinetics can lead to non-monotonic
sis  effective kinetics, characterized by an initial enhancement of the effective reac-
519 tion rate up to a maximum, followed by a linear decay of the reaction rate. This
s0 enhancement is mediated by diffusion, which transfers mass from regions where
s the kinetics are saturated to others where it is is linear, i.e., where the reaction
s rate is locally proportional to concentration. This mechanism can significantly
53 accelerate the effective kinetics of pulse reactors relative to a batch reactor of
s the same size as the initial pulse, in which reactants are spatially homogeneous.
s The precise kinetics depend on the initial condition, as illustrated by comparing
26 the square initial pulse (Fig. 3) to the Gaussian initial pulse (Fig. 6) but the en-
s27 hancement of effective kinetics through the coupling of diffusion and reaction is
ss expected to be a general result. For any non-uniform initial condition, diffusion
s0  always accelerates the transfer of mass from the saturated regime to the linear
s  Kinetics regime, leading to faster average kinetics than in batch conditions.

531 We have numerically explored the different regimes that emerge from this
s nonlinear reactive transport problem, and shown that they can be adequately
s:3 understood and quantified using a weak-coupling approximation. This approxi-
s mation leads to analytical expressions that predict the transitions between differ-

55 ent regimes and quantify the enhancement of reaction rates in the end-member
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s scenarios. We have considered here a piecewise-linear approximation of the
ss7. . Michaelis-Menten kinetics to facilitate analytical derivations. Our methodology
s could be extended to more complex analytical solutions of full Michaelis-Menten
s%  kinetics [21, 20] for a more precise analysis of reaction enhancement close to the
se0  transition between first-order and zero-order kinetics. The mechanisms of reac-
sa tion enhancement discussed here for one-dimensional diffusion are qualitatively
se2  similar as those occurring in three dimensions as discussed in Appendix G and
ss3  analytical solutions in spherical coordinates can be derived following the same
sae  approach. Since the diffusion-reaction equation is the same of the diffusion-
ss reaction equation studied here, the mechanisms described here are also relevant
sss  for conventional dispersion processes. The effect of more complex mixing pat-
s terns induced by shear and stretching [46] could be investigated using a similar
sis approach by considering stretching enhanced diffusion captured by lamella mix-
a9 ing models [47].

550 We have illustrated the consequences of these findings by investigating the
ssi dynamics of consumption of nutrient pulses by bacteria. Varying the bacterial
ss2 - concentration and pulse size allows for exploring the different regimes of non-
53 linear effective kinetics. For a given mass of nutrient, the consumption kinetics
ssa  are characterized by two maxima, respectively for localized, highly concentrated
555 pulses and for ‘wide, dilute pulses. A minimum consumption rate is obtained
ss6  for intermediate pulse sizes and concentrations. These findings provide new
ss7 - clues to understand natural bio-reactive systems and potentially optimize en-
sss gineered bacterial cultures, either to maximize or minimize consumption rates
ss0  under non-uniform nutrient landscapes. Furthermore, these results provide a
so  new framework to understand and model the effective kinetics of Michaelis—
st Menten reactions in non-homogeneous concentration fields. While these kinetics
s are well known in batch reactors, we have uncovered a rich array of behaviors
53 that arise from the coupling of concentration gradients and nonlinear kinetics.
sss  These results are relevant to a broad range of reactive systems characterized by

s saturating kinetics and non-uniform concentration landscapes.
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no  Appendix A. Sensitivity of the effective kinetics on Da and «

m In this appendix, we provide additional numerical results illustrating how the
n2  effective kinetics depend on Da and . The non-monotonic nature of the effective
73 kinetics is enhanced for decreasing Da and increasing o (Fig. A.11). For low
ne  Da (Fig. A.11a), the maximum reaction rate initially increases markedly with
75 decreasing mass before converging to linear decay. For high Da (Fig. A.11c), the
ne effective kinetics approach the local kinetics. For increasing a at fixed Da, the
77 maximum reaction rate increases and occurs for higher masses (Fig. A.11d-f).

718 At late times, once the peak concentration drops below «a, both the pulse

no and batch kinetics are linear. The transition to linear kinetics happens at time
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Figure A.11: Reaction rate as a function of total mass. Batch kinetics are shown as dashed
lines for each value of the maximum batch rate a. Linear kinetics are indicated by dashed
green lines with unit slope. The top row shows the behavior for different values of a at
three fixed Damkohler number Da values. Conversely, the bottom row shows the behavior for
varying Da at three fixed a values, with the corresponding batch kinetics represented by a

dashed blue line.

mo o for the diffusive problem and op for the batch problem. When all the mass
71 is in the linear regime, mass and reaction rates decay exponentially at unit rate
7 regardless of the mixing state, see Egs. (15) and (16). Thus, 7#(¢) is constant at

73 times larger than both op and o and given by the ratio of surviving masses,

A=7(t) = ]\JLJT(&))’ t > max{op,oc}. (Appendix A.1)

=2 Aso is always smaller than o, the value of A can be obtained by evaluating the
=5 mass ratio for any time ¢ > op. Taking ¢t = op and using Eqgs. (10) and (15),
2 we find

M(o)

A= Te_("B_”), (Appendix A.2)

=2z and 7 = 1 — X is thus a measure of the overall enhancement of the effective
28 reaction rate. The larger 7, the more efficient the diffusing-pulse reactor is

720 when compared to the batch reactor, with n = 1 (A = 0) being the largest
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possible value. A value of n = 0 (A = 1) means that mixing has no effect
on the overall reaction efficiency. Negative values of 77 would mean that the
incompletely-mixed system is less efficient than the batch, but these do not
occur for Michaelis-Menten reactions.

We show the dependence of the overall reaction enhancement n on Da and
« in Fig. A.12. When « is low, both the diffusion and batch problems start
from highly-saturated conditions. These conditions correspond to less-efficient
overall reaction when compared to linear kinetics, since the effective kinetics are
constant rather than linearly increasing with total mass. In the batch problem,
exiting the saturated regime requires mass to be consumed until the uniform
concentration drops below «, which means reaction proceeds under saturated
conditions for a long time. On the other hand, when Da is low, diffusion can
quickly deform the concentration profile so that a significant portion of mass
reacts under linear conditions, leading to substantially increased overall reac-
tion efficiency. Increasing a corresponds to less-saturated initial conditions; the
duration of the saturated regime is reduced, and the difference between the two
scenarios decreases. As Da increases, diffusion becomes less important until the

linear regime is reached, so that pulse and batch reactors behave similarly.
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Figure A.12: Overall reaction enhancement 7 relative to the equivalent batch system. (a)
Overall reaction enhancement as a function of Da for different a. (b) Overall reaction en-

hancement as a function of maximum batch rate a for different Damkohler numbers Da.
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ns  Appendix B. Analytical solution for concentration in terms of bound-

749 ary dynamics

750 In this appendix, we provide details on the derivation of the concentration
7 dynamics under diffusive transport, in terms of the boundary position £(¢) and
72 the mass flux f(¢). The nondimensional dynamical equations for the saturated

73 and linear regimes may be written as

2
Bhes(a,t) = 8%2571()‘2” — aHIE() — )], (Appendix B.1a)
02cq(z,t) .
Orce(z,t) = ~5Da " co(z, t), (Appendix B.1b)
74 with the boundary conditions
cs[HE(t), t] = co[£E(L), 1] = (Appendix B.2a)

Oxcs(z, t)|z:ﬂ(t) = 6$0g(:v,t)|z:i5(t) =FDaf(t) (Appendix B.2b)

75 and a given initial condition ¢(x,0).

756 We write h(k,t) = [ dx exp(—ikz)h(z,t) for the Fourier transform of a

7 function h with respect to position, in terms of the Fourier variable k. Note

s that
és(kit) = / dx exp(—ikz)cs(z,t), (Appendix B.3a)
|z|<E(t)
ci(k,t) = / dx exp(—ikxz)ce(z,t), (Appendix B.3b)
|=|>£(t)

0 and, according to the Leibniz rule for differentiation under the integral sign,

dz exp(—ikz)dycs(x,t) = Oréq(k, t) — 20€(t) cos[kE(L)],
[ <E(t)

(Appendix B.4a)

dx exp(—ikz)dyco(z,t) = dyéo(k, t) + 20 (t) cos[kE(t)).
|z|>£(t)
(Appendix B.4b)
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760 Using these results, along with integration by parts for the spatial second

w1 derivatives,

Ocs(k,t) = —]&;si]gz’t) — g(k,t) — 2ak™sin[kE(t)], (Appendix B.5a)
2
Ore(k,t) = — <1 + 2kDa> Co(k,t) + g(k,t), (Appendix B.5b)
72 Wwhere '
§(k,t) = F(t) cos[ke(t)] — 0"”’”57[:5(’5)]. (Appendix B.6)

73 Thus, in Fourier space, we obtain linear ordinary differential equations with the
s boundary dynamics playing the role of a time-dependent forcing. The standard

s form of the solutions is

2

és(k,t) = ¢s(k,0) — /tdu exp [—Qk]:)a(t — u)]
0

X [g(k,u) + 20k 7! sin[kE(u)] 4 20E(t) cos[kf(u)]} ,
(Appendix B.7a)

t kz
Co(k,t) = ¢(k,0) duexp |— 14+ — | (t—u)
0 0 +O/ p[ ( + 2Da> }
X [g(k,u) — 2aé(t) cos[kg(u)]] . (Appendix B.7b)

w6 In order to obtain the total masses in each regime, it suffices to set k = 0, since
161 M o(t) = €60(0,¢), see Eq. (Appendix B.3). This leads directly to Eq. (24) in

8 the main text.

w0 Appendix C. Analytical solutions for asymptotic regimes

70 In this appendix, we identify and describe reaction- and diffusion-dominated
m  dynamical regimes. We obtain closed-form analytical solutions for the behavior

72 of the total mass under the weak coupling approximation introduced in section 4.
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m  Appendiz C.1. Reaction-dominated dynamics

74 If we neglect the effect of diffusion on the shape of the concentration profile,
s we have cq(x,t) = cgr(z,t) for |z| < &(¢), where

z2
e 2
cr(z,t) = c¢(z,0) — at = — — at. Appendix C.1
n(at) = c(z,0) = (Appendix C.1)

76 Comparing to Eq. (32) for the shape of the profile, we see that we must require

7 Da > o, so that diffusion effects may be neglected for the duration ¢ of the
ms  saturated regime.

79 The approximate interface position is given by £(t) & £g(t), where

Er(t) = V/—In[2ma2(1 +t)2]. (Appendix C.2)

70 We thus have a duration of the saturated regime o &~ o such that g(og) = 0,

7 so that
1—V2ma?
OR= ————.
V2ol

72 For the diffusive flux, we have f(t) ~ fr(t), with

(Appendix C.3)

1+t .
fr(t) = osz(t)ﬁ. (Appendix C.4)
73 For consistency, we must also require f(t) < 2a&(t), so that the diffusive flux
7 from the saturated to the linear regime is negligible compared to the saturated

75 mass loss by reaction. This leads to the reaction-dominated condition

Da>> , (Appendix C.5)
2ra?
s which also ensures Da > og.
787 For the saturated-regime mass, Eq. (35) becomes
M (t) =~ erf [fR(t)/\/i] — 2atéR(t). (Appendix C.6)

78 For the linear-regime mass, neglecting the diffusive contribution G(t) in Eq. (24b)

7 and using Eq. (27) for the initial mass, we have

Mo(t) ~ H(t) + erfe [gR(O)/\/i] et. (Appendix C.7)
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o Integrating Eq. (25¢) for H(t) by parts, we obtain

t

H(t) =~ 2 /du e~ Wen(u) + Er(0)e™t —Er(D) | (Appendix C.8)
0

1 We are not aware of an exact closed-form solution, but a useful approximation

2 can be developed. Note that

OR 1—V2ma?

/d (R gp (u) / au < [ ! ]
ue u) = U n .
/ 8 / Vara? (1—u)?

(Appendix C.9)
s If 1 —+v2ma? < 1, we have u < 1 due to the integral bounds. If, on the other

74 hand, vV2ra? < 1, we still have u < 1 for the dominant contributions due to

s the exponential cutoff. Thus, we expand the logarithm for small u and obtain

OR OR
/du e (TRTWER (u) & \/5(27ra2)1/4/due*“\/ﬂ (Appendix C.10)
0 0

2 3/4
~ % [erf (VoRr) —2e771, | a:} ,

(Appendix C.11)

76 SO that

H(op) & (2ra?)3/4 [erf(@) - \/?e_”R +2a€pr(0)e 7R,

(Appendix C.12)
77 It turns out this approximation works well for all values of a. A similar approach

798 yields
H(t) =~ 2 (iR(O)e_"R —¢R(t)

2 14t 2 3 1+t 3 1+t
Ltep(t) 9 1t 2\ _p(2 2Tt 2
AT [F(z’ 5 £R(t)> F<2,t+ 5 £r(t) )D

(Appendix C.13)

s where I'(a,z) = [ dtt*~'e" is the upper incomplete gamma function. This

<
©

s0 approximation is somewhat less accurate for intermediate o values (o ~ 0.1)
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sr  and intermediate times (t ~ or/2). We also find the limiting forms

(2ma)3/4, V2ra? < 1
H(o) ~ 12 . (Appendix C.14)
Z (1 - \/27ra2) L 1—vV2ra? < 1
802 For the mass at the transition to the fully linear regime, we obtain
0
My(o) = H(og) + erfe [51\%/(5)} e R, (Appendix C.15)

s with the limits

8

S

(2#&2)3/4, V2ra?2 <« 1

Mg((f) ~ .
V2ra?, 1-V2ma2 <1

(Appendix C.16)

ss This leads to a reaction enhancement

1- (871'3)1/4 Vae (78R erf (| /o)
erfc[m

~2eon [en(0) + "IN lsm oz 0 <1/

n= )
1—e795/a, 1/V2r<a<1
0, azl

(Appendix C.17)

ss  which has the limiting behaviors

14 —Y2E=l
1—(873%a?) e Vame2, V2ra? « 1
n& 1 — 2rem (V2D [1 — (V27 - 1) (1 - \/27roz2)] 1-V2ra2 < 1-
0, a>1

(Appendix C.18)

we  Appendiz C.2. Diffusion-dominated dynamics
807 We now neglect the effect of reaction on the saturated-regime concentration

ws profile, which corresponds, for |z| < £(t), to

Da 2

Cs (Z', t) ~ Cp (.’U, t) = m67 2(%aaz+t) . (Appendlx Clg)

43



Journal Pre-proof

a0 Taking into account that the lowest value of concentration in this regime is a,
s comparison to Eq. (32) shows the approximation holds for ¢ < 1. The position

s of the interface is now approximated by

Da+t Da .
ép(t) = \/ Do In [2%042(Da —|—t)} (Appendix C.20)

sz From this, we find o =~ op, where

1 —27a?

o2 (Appendix C.21)

op = Da
sz The condition to ensure the validity of this regime for all relevant times is thus
se  0p < 1. The diffusive flux is approximately given by

Iolt) = 52

(Appendix C.22)

a5 In this case, the condition 2a€(t) < f(t) that the reactive contribution to mass
a6 loss in the saturated regime be negligible compared to the diffusive contribution
sz for all times ¢ < o is thus Da+op < 1/2. This leads to the diffusion-dominated
ss  condition

Da < ma?, (Appendix C.23)

g0 which also ensures op < 1,
820 The condition op < 1 implies that the amount of reaction in the linear
a1 regime is negligible for ¢ < op. Thus, we find that G(t) ~ F(¢t) and H () ~ B(t).

s2  As expected for a diffusive profile, we obtain, for ¢t < op,

M, (t) =~ erf Fffg)} , (Appendix C.24a)
M,(t) = erfc FJ\D/(;)] , (Appendix C.24b)

#2380 that My(o) ~ 1 (no appreciable reaction). The corresponding reaction en-

s¢ hancement is

N~ . (Appendix C.25)
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s  Appendix D. Interface dynamics under the weak-coupling approxi-

826 mation

827 In this appendix, we assess the performance of the weak coupling approxi-
&8 mation in predicting the time evolution of the linear—saturated regime interface
w20 position £(t) and the diffusive mass flux f(¢) between regimes. A comparison of
a0 the evolution of the interface position according to Eq. (33a) to full numerical
ss1  simulations is shown in Fig. D.13. We show also the analytical solutions corre-
g2 sponding to the diffusive and reactive limits obtained in the previous appendix,
s3 Eqgs. (Appendix C.20) and (Appendix C.2), respectively. In the limit of high
s Da, for all a, the numerical and semi-analytical solutions show good quanti-
s tative agreement and are also well approximated by the reaction-dominated
s solution. For high a, for all Da, Eq. (33a) also provides accurate predictions.
s It interpolates between the diffusion- and reaction-dominated at low and high
ss  Da, respectively, but differs substantially from both at intermediate Da. As ex-
s pected, low a leads to a worse quantitative approximation, except at high Da, for
a0  which the reaction-dominated approximation provides a good description. Note
s how low o and low Da lead to more complex dynamics, with a non-monotonic
a2 evolution of the interface position. This occurs because the interface evolution
a3 results from the competition of diffusion and reaction, with diffusion leading to
saa  both a widening and a reduction in the maximum of the concentration profile.
as  Despite the worse quantitative agreement at low «, qualitative features such as
se  non-monotonicity are well captured under the weak coupling approximation.

847 Figure D.14 shows a similar comparison for the diffusive flux f(¢) at the in-
us  terface computed according to Eq. (33b). The diffusion- and reaction-dominated
a0 limits (Equations (Appendix C.22) and (Appendix C.4), respectively) are also
so  shown. In this case, low Da or high a both lead to good quantitative agreement.
1 When Da ~ 1 and « is low, the weak coupling solution predicts non-monotonic
g2 behavior, whereas numerical simulations show that the diffusive flux is more
ss3  closely described by the monotonically-decreasing diffusion-dominated predic-

esa  tion at early times. Nonetheless, the weak coupling approximation captures
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Figure D.13: Temporal evolution of the saturated—linear regime interface position. Analytical
solutions for £(t) in the diffusive and reactive limits are shown as solid black and red lines,
respectively. The weak-coupling-based semi-analytical approximation is shown as a dashed

blue line and the numerical simulations as a green line with square markers.

the transition time to fully linear kinetics well, whereas the diffusion-dominated
approximation does not. Note that, as shown in Fig. D.15, the mass predictions
at high Da are accurate, despite the quantitative deviations observed for f(t) at
low «. This is due to the fact that the magnitude of the diffusive flux is small

in this limit, and therefore has a negligible effect compared to reaction.

Appendix E. Temporal derivatives of total mass

In this appendix, we present details on the calculation of the first and sec-
ond derivatives of the total mass, Eq. (37). Taking the temporal derivative of

Eq. (24), using the definitions in Eq. (25), we obtain

Ms(t) = —2046(15) - f(t) + 2a§(t)a
My(t) = —My(0)e™t — G(t) — H(t) + f(t) — 2a€(2).

(Appendix E.la)

(Appendix E.1b)
Using Eq. (24b) for the linear-regime mass, the latter equation reads

Mo(t) = —=M(t) + f(t) — 20€(1), (Appendix E.2)
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which has a simple interpretation: The first term characterizes the linear-regime

reaction, the second refers to change in mass due to diffusive flux, and the third
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s7 quantifies the direct effect of boundary movement. Using Eq. (Appendix E.la),

s this equation leads to
My(t) + M (t) = —My(t) — 20£(t), (Appendix E.3)

s which, since M = M, + M, yields Eq. (37a) for the first time derivative of the
g0 total mass.

a7t Next, we differentiate Eq. (37a), yielding
M(t) = —M;(t) — 20(t). (Appendix E.4)

s Substituting Eq. (Appendix E.2) for M,(t) leads to Bq. (37b).

sz Appendix F. Simulations of reactive pulses with full Michaelis—Menten

874 kinetics

875 In order to evaluate the effect of the piecewise linear approximation for
es  the local reaction kinetics (equation (7)), we performed additional numerical
e7  simulations using the full Michaelis-Menten reaction kinetics (equation (6)).
srs The temporal evolution of the mass with full Michaelis-Menten kinetics is found
sro to be very close to the one simulated with the piecewise linear approximation
s0o (Fig. F.16.a). For low Da, the maximum reaction rate is slightly smaller than
s for the approximated kinetics and it occurs a bit earlier (Fig. F.16.b and F.16.c).
g2 The maximum reaction enhancement 7., is however very similar for the full

s and approximated kinetics for a large range of Da and « (Fig. F.17).

s Appendix G. Simulations of three-dimensional reactive pulses

885 In this Appendix, we investigate the sensitivity of our findings to dimension-
sss  ality. We thus consider a reactive pulse diffusing in three dimensions and solve

s numerically the reactive transport equation in spherical coordinates,

dc 1 0 [ ,0c .
9t~ 3Daop <p 8p) +r(c), (Appendix G.1)
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Figure F.16: Total mass and reaction rate computed numerically for the square initial con-
dition and full Michaelis—Menten kinetics (equation (6)) with o = 0.05 and Da ranging from
1073 to 103. The dashed lines represent the results of simulations with full Michaelis—Menten
kinetics and the grey lines correspond to the piecewise linear kinetics presented in the paper.
(a) Time evolution of total mass. (b) Time evolution of the reaction rate. (c) Reaction rate

as a function of total mass.
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Figure F:17: Dependence of the maximum reaction enhancement 7max on Da and o for
(a) piecewise linear reaction kinetics (equation (7)) and (b) full Michaelis-Menten reaction

kinetics (equation (6)).

ss  with p the radial distance from the initial pulse of mass My = Vhcg = 1. The
so  evolution of the mass and effective reaction rates is found to be similar for
o one-dimensional and three-dimensional pulses (Fig. G.18). In three-dimensions,
s the maximum reaction rate tends to be larger and to occur earlier (Fig. G.18.b
92 and G.18.c). This is due to the fact that diffusion is more efficient at diluting

g3 a pulse in three-dimensions than in one-dimension. This enhanced diffusive
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sa  flux accelerates the transfer of mass from the saturated to the linear regime
ss and thus tends to increase the effective reaction enhancement compared to one-
ws dimensional pulses, with similar trends as a function of Da and « (Fig. G.19)
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Figure G.18: Total mass and reaction rate computed numerically for three-dimensional
and one-dimensional reactive pulses, with a = 0.05 and Da ranging from 1073 to 103.
The dashed lines represent the results of simulations of three-dimensional pulses (equa-
tion (Appendix G.1)) and the grey lines correspond to the results of simulations for one-
dimensional pulses (equation (13)) presented in the paper. (a) Time evolution of total mass.

(b) Time evolution of the reaction rate. (c¢) Reaction rate as a function of total mass.
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Figure G.19: Dependence of the maximum reaction enhancement 7max on Da and «
for (a) one-dimensional pulses (equation (13)) and (b) three-dimensional pulses (equation
(Appendix G.1)).
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