4GR - Géosciences Rennes (Bâtiment 15 - Université de Rennes 1 - Campus de Beaulieu -263 Av du général Leclerc- CS 74205 - 35042 Rennes Cedex - France - France)
Abstract : Transport in fractured media plays an important role in a range of processes, from rock weathering and microbial processes to contaminant transport, and energy extraction and storage. Diffusive transfer between the fracture fluid and the rock matrix is often a key element in these applications. But the multiscale heterogeneity of fractures renders the field assessment of these processes extremely challenging. This study explores the use of dissolved gases as tracers of fracture‐matrix interactions, which can be measured continuously and highly accurately using mobile mass spectrometers. Since their diffusion coefficients vary significantly, multiple gases are used to probe different scales of fracture‐matrix exchanges. Tracer tests with helium, xenon and argon were performed in a fractured chalk aquifer and resulting tracer breakthrough curves are modelled. Results show that continuous dissolved gas tracing with multiple tracers provide key constrains on fracture matrix interactions and reveal unexpected scale effects in fracture‐matrix exchange rates.
https://hal-insu.archives-ouvertes.fr/insu-02921301
Contributor : Laurent Jonchère <>
Submitted on : Tuesday, September 29, 2020 - 11:03:51 AM Last modification on : Wednesday, January 20, 2021 - 11:52:53 AM Long-term archiving on: : Wednesday, December 30, 2020 - 6:10:37 PM
Richard Hoffmann, Pascal Goderniaux, P. Jamin, Eliot Chatton, Jérôme de la Bernardie, et al.. Continuous dissolved gas tracing of fracture‐matrix exchanges. Geophysical Research Letters, American Geophysical Union, 2020, 47 (17), pp.e2020GL088944. ⟨10.1029/2020GL088944⟩. ⟨insu-02921301⟩