Transition from stable column to partial collapse during the 79 cal CE P3 Plinian eruption of Mt. Pelée volcano (Lesser Antilles)

Guillaume Carazzo, Stephen Tait, Audrey Michaud-Dubuy, Allan Fries, Edouard Kaminski

To cite this version:

HAL Id: insu-02920453
https://hal-insu.archives-ouvertes.fr/insu-02920453
Submitted on 21 Jul 2022

HAL is a multi-disciplinary open access archive for the deposit and dissemination of scientific research documents, whether they are published or not. The documents may come from teaching and research institutions in France or abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est destinée au dépôt et à la diffusion de documents scientifiques de niveau recherche, publiés ou non, émanant des établissements d’enseignement et de recherche français ou étrangers, des laboratoires publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial 4.0 International License
Transition from stable column to partial collapse during the 79 cal CE P3

Plinian eruption of Mt Pelée volcano (Lesser Antilles)

Guillaume Carazzo¹,*, Stephen Tait¹, Audrey Michaud-Dubuy¹, Allan Fries²,³, Edouard Kaminski¹

¹Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France
²Laboratoire Magmas et Volcans, Université Clermont Auvergne-CNRS-IRD, OPGC, Clermont-Ferrand, France
³Now at: Université de Genève, Section of Earth and Environmental Sciences, Genève, Switzerland

*Corresponding author: Guillaume Carazzo, carazzo@ipgp.fr
ORCID Number: orcid.org/0000-0003-0395-2595
Highlights

- We determine the eruptive sequence of the P3 Plinian eruption of Mt Pelée volcano
- New radiocarbon dating measurements provide a refined age of 79 ± 21 cal CE
- We estimate key eruptive parameters of this VEI 5 eruption in the transitional regime
- Increasing eruption rate and decreasing gas content led to partial column collapse
- The transition occurred at conditions well predicted by our 1D theoretical model

Keywords

Mt Pelée volcano, Plinian eruption, tephra fallout, partial collapse, tephrostratigraphy, radiocarbon dating

Abstract

Explosive volcanic eruptions commonly form sustained Plinian columns that collapse at some stage producing dangerous pyroclastic density currents (PDC) on the ground. Numerical and laboratory models of volcanic plumes show that the conditions leading to total column collapse are strongly controlled by the amount of exsolved gas at the source and the mass eruption rate. However, column collapse is rarely total and the volcanic jet often separates in a dense collapsing part feeding PDC and a buoyant rising plume spreading volcanic gases and pyroclasts in the atmosphere. This transitional regime has been directly observed and/or inferred from the structure of the deposits for several past eruptions, but the number of cases for which the partial collapse regime is described in detail, including the 79 CE Vesuvius, and the 186 CE Taupo eruptions, remains too small to fully constrain physical models. Here, we present a detailed reconstruction of the time evolution of the P3 eruption at Mt Pelée volcano (Martinique, Lesser Antilles) that underwent partial column collapse in order to discuss the mechanisms controlling the eruption dynamics and improve the volcanological database on
transitional eruptions. The P3 eruptive succession consists of seven major phases that produced a total of 1 km3 dense rock equivalent (DRE) of deposits (i.e., VEI 5 event), starting with a thick pumice fall deposit (0.1 km3 DRE) overlain by alternating pyroclastic density current (PDC) (0.7 km3 DRE) and pumice fall deposits (0.2 km3 DRE). We use physical models together with field data on deposit dispersal, thickness, and grain-size distribution to reconstruct the dynamical evolution of the volcanic column. Our results show that the mass eruption rate (MER) increased from 1.2×10^8 to 1.7×10^8 kg s$^{-1}$ during the initial phase producing a 28 to 30 km-high Plinian plume. The MER later reached up to 2.5×10^8 kg s$^{-1}$ and the column entered the partial collapse regime characterized by the formation of a small (i.e., 12 to 17 km-high) ash plume and contemporaneous PDCs mainly channelized in three paleo-valleys. These estimates are used together with published data on magmatic water contents in glass inclusions to decipher the mechanisms leading to partial collapse. The P3 eruption column collapsed due to an increase in mass eruption rate and a decrease in gas content. A similar evolution was also inferred for the 1300 CE P1 and 280 CE P2 eruption deposits, revealing a systematic behavior in the recent Plinian eruptions of Mt Pelée volcano. The comparison of model predictions of column collapse and field data reveals a good agreement for the P1, P2, P3 and Taupo eruptions, but not for the 79 CE Vesuvius eruption where thermal disequilibrium between gas and pyroclasts most likely strongly affected the column dynamics.

1. Introduction

Plinian eruptions are amongst the most powerful and destructive volcanic events on Earth. These explosive eruptions generally form a sustained stable column that can rise up to 40 km in the atmosphere (e.g., the 1991 Pinatubo eruption) and spread out laterally as an umbrella cloud carrying pyroclasts at large distances from the volcano (Koyaguchi and Tokuno, 1993).
Abrupt or progressive changes in eruptive conditions at the base of a Plinian column can lead to a radically different behavior in which the column collapses as a turbulent fountain producing hazardous pyroclastic density currents (PDC) that may reach and destroy populated areas (Wilson et al., 2014). One important goal in physical volcanology is to identify the key processes affecting the column stability in order to improve hazard assessment.

Recent real-time observations of volcanic plumes and field-based studies on fallout tephra from past eruptions show that explosive eruptions commonly have a complex behavior where both a stable Plinian column and a collapsing fountain feeding PDC are contemporaneous (Carazzo et al., 2015 and references therein). This transitional regime of partial column collapse occurs for Plinian eruptions ranging in size from small to large (e.g., the 79 CE Vesuvius (Shea et al., 2011), 186 CE Taupo (Wilson and Walker, 1985), 1150 Quilotoa (Di Muro et al., 2008), 1912 Novarupta-Katmai (Fierstein and Hildreth, 1992), and 1963 Agung (Self and Rampino, 2012) eruptions). Detailed mapping and analysis of eruptive products emplaced during the transitional regime provide valuable data to better understand the mechanisms controlling the partitioning of a Plinian column, and can be used to robustly test numerical and analog models of explosive volcanic eruptions (Di Muro et al., 2004; Carazzo et al., 2015; Suzuki et al., 2016). However, the number of natural cases for which the partial collapse of an initially stable column is described in detail (i.e., in terms of time variation in mass eruption rate, gas content, grain-size distribution and exit velocity) remains too small to fully constrain theoretical models of volcanic plumes (Michaud-Dubuy et al., 2018). With an aim of increasing the inventory of well-constrained past eruptions, we have undertaken a long-term study of the Plinian eruptions of Mt Pelée volcano (Lesser Antilles) as they systematically produced sustained columns that ultimately collapsed (Traineau et al., 1989). Because the Mt Pelée eruptions share many characteristics including similar pre-eruptive magma storage conditions (Martel et al., 1998), they can be used to decipher the
mechanisms controlling the behavior of a Plinian plume. In previous studies, we reconstructed the dynamics of the 1300 CE P1 (Carazzo et al., 2012), and 280 CE P2 Plinian eruptions (Carazzo et al., 2019) focusing on the causes for column collapse. We now extend this work to study the P3 eruption deposits whose structure suggests the entrance into the partial collapse regime at some stage of the eruption (Traineau et al., 1989; Wright et al., 2016), making it an excellent candidate to improve the volcanological database on transitional eruptions.

The P3 eruption is described in the literature (Roobol and Smith, 1976; Westercamp and Traineau, 1983; Traineau et al., 1989; Wright et al., 2016) but the exact sequence of events and the eruptive parameters are currently poorly known. Here, we use data from a new comprehensive field study together with physical models to reconstruct the detailed time evolution of this eruption and to discuss the mechanisms responsible for the transition from stable column to partial collapse. We identify the eruptive conditions leading to this transitional regime and compare the results to previous work on P3, and on younger Plinian eruptions in Martinique (P1 and P2). We then compare our estimated eruptive parameters for the column at collapse with theoretical predictions from a model of volcanic plumes.

2. Overview of the P3 eruption

The P3 deposits were first identified by Roobol and Smith (1976) as a thick pumice fallout unit on the western flank of Mt Pelée volcano standing above the 2406 and 2447 yr BP horizons of their stratigraphic sections. Westercamp and Traineau (1983) provided the first age, synthetic stratigraphic section and distribution map of the P3 deposits (Fig. 1a). The P3 Plinian eruption is currently dated at 2010 ± 140 yr BP based on the average of five 14C ages (Westercamp and Traineau, 1983; Traineau et al., 1989). According to these studies, the eruption began with the formation of a sustained Plinian column that covered the western
flank of the volcano with a meter of coarse lapilli, lithic-rich, pumice fallout deposit (phase P3\textsubscript{1}). This initial stage was immediately followed by the production of high-concentration PDC in the Grande Savane, Habitation Depaz and Falaise River paleo-valleys (Fig. 1a). The second eruptive phase identified by Westercamp and Traineau (1983) consisted of a sustained Plinian column that spread fine lapilli pumice to the south with a striking elongated axis of dispersion (phase P3\textsubscript{2}). The P3 eruption ended up with the formation of a pumice ash-rich bed (phase P3\textsubscript{3}) interbedded with high-concentration PDC deposits (Fig. 1a). Later, Traineau et al. (1989) excluded the second phase (P3\textsubscript{2}) whose distal deposits were found below tephra from an eruption older than P3\textsubscript{1}. Recent work by Michaud-Dubuy et al. (2019) confirmed that the deposits named P3\textsubscript{2} by Westercamp and Traineau (1983) are not interbedded between P3\textsubscript{1} and P3\textsubscript{3} but belong to a much older event, the 13.5 ka cal BP Bellefontaine Plinian eruption.

Wright et al. (2016) studied the distal products of a Plinian eruption dated between 1800 and 2200 yr BP (their subunit d), which corresponds to the P3 eruption identified by Westercamp and Traineau (1983). Their synthetic stratigraphic section includes a basal pumice-rich low-concentration PDC (named 'surge') deposit overlain by a pumice fallout deposit interbedded with high-concentration PDC (named 'flow') and low-concentration PDC (named 'ash hurricane') deposits. According to their distribution map of the deposits (Fig. 1b), the high-concentration PDC flowed in the Fond Canonville valley, Grande River, Bijou River, and Falaise River, whereas the low-concentration PDC that elutriated from the top of the current spread on hills at distances up to 20 km from the vent. Isopachs of the pumice fallout deposit exhibit a SSW elongation (Fig. 1b), in good agreement with the one inferred by Westercamp and Traineau (1983) (Fig. 1a). Wright et al. (2016) interpreted their complete stratigraphic succession as resulting from the partial and final collapse of an initially stable Plinian column.
The eruptive parameters of the P3 event are currently poorly constrained. Volume estimates for the fallout tephra of the P3 eruption yield a relatively small value of 0.19 km3 dense rock equivalent (DRE) (Traineau et al., 1989). The direction of tephra dispersal during the initial phase (P3$_1$) suggests that the column was affected by low altitude tropospheric winds, and thus was certainly more than 6 km (Traineau et al., 1989), but no more than 12 km in height (Wright et al., 2016). Such a large uncertainty on the maximum column height makes it difficult to estimate its mass eruption rate. Overall, these sparse and loosely constrained data cannot be used to understand the conditions leading to column collapse.

3. Methodology

3.1. Fieldwork

We identified the P3 eruption deposits at 102 locations in Martinique (Fig. 2). In most cases, these deposits are easily recognizable by their strong internal layering, the abundance of juvenile and accidental lithic fragments in the pumice fallout units, and the presence of the P1 and/or P2 deposits above them (Carazzo et al., 2012; 2019). The P3 outcrops are distributed all around the volcano except to the northwest where exposure is very limited due to dense tropical forest and difficult conditions of access. The thickness of each layer of P3 was measured at every site in order to construct isopach maps. We also excavated a standard 25 x 20 cm area of each fall layer and measured the major axes of the five largest lithic fragments found in order to produce isopleth maps.

3.2. Radiocarbon dating

We dated four charcoals sampled within the P3 deposits at sites 6 (unit A-G), 97 (unit A), 178 (unit A), and 180 (unit A-G), and a paleosol sampled beneath unit A at site 145 (see locations in Fig. 2 and unit descriptions in section 4.1) in order to refine the age of the P3 eruption.
Ages were determined using accelerator mass spectrometry at the LMC14 (Artemis, Laboratoire de Mesure du Carbone 14, CEA Saclay, France), and calibrated using the free software OxCal 4.3 (Bronk Ramsey, 2009) with the atmospheric IntCal13 calibration curve commonly used for the Northern hemisphere (Reimer, 2013). The radiocarbon ages obtained for our stratigraphically-constrained samples were combined with those of Westercamp and Traineau (1983) and validated using the \texttt{R_combine} function of \texttt{Oxcal} and χ^2 test prior to calibration (Ward and Wilson, 1978).

3.3. Grain-size analysis

We carried out grain-size analyses on twenty samples from ten locations representative of the seven different units (A to G) (see Table 1). The samples were dried for 24 h in an oven and sieved by hand down to 6ϕ. We separated the lithic fragments from the pumices by hand in the size range -6ϕ to -4ϕ, and used a binocular microscope to discard crystals and lithic fragments in the size range -4ϕ to -2ϕ. Volume calculations for isomass maps for each ϕ interval were then used to determine the grain-size distributions of single sub-layers. The total grain-size distribution was estimated from the total mass in sieve class ϕ, M_ϕ, by the volume integral (Kaminski and Jaupart, 1998)

\begin{equation}
M_\phi = \int_0^L h(l) \ C_\phi(l) \ A(l) \ dl,
\end{equation}

where $h(l)$ is the deposit thickness, $C_\phi(l)$ is the concentration of class ϕ at distance l from the vent, $A(l)dl$ is the area bounded by isopachs at distances l and $l+dl$, and L is the distance where h or C_ϕ drop to zero. We used linear interpolations for h and C_ϕ between the localities.

The cumulative frequency curves were determined assuming a power-law size distribution of the rock fragments (Turcotte, 1986; Kaminski and Jaupart, 1998), where the number of particles with a radius larger than r is given by:
with D the power-law exponent that commonly varies between 2.9 and 3.9 for Plinian eruptions (Girault et al., 2014). Because fragmentation is a size-invariant process, the exponent D can be estimated accurately using any sufficiently large range of sizes. Thus, the lack of fine particles lost out at sea does not affect our estimations of D.

3.4. Eruptive parameters

The volume of tephra fallout produced during an explosive eruption can be inferred using several methods based on the thinning trend of the deposit with distance from the source. Here, we used the exponential, power-law and Weibull fits (Pyle, 1989; Bonadonna and Houghton, 2005; Bonadonna and Costa, 2012) computed using the AshCalc software (Daggit et al., 2014). Bearing in mind that only proximal and furthermore incompletely preserved deposits are available in Martinique, the calculated volumes of fall deposits should be taken as minimum estimates. The volume of dilute PDC deposits was calculated using the observed relationship between the volume and area covered by dilute PDC (Dade and Huppert, 1998; Calder et al., 1999), as in Carazzo et al. (2012, 2019) for the P1 and P2 eruptions. The volume of dense PDC was calculated using the product of the average thickness and area covered by the dense PDC. This method is bound to provide minimum estimates since only proximal and furthermore incompletely preserved deposits are available in Martinique.

The maximum column heights associated with the fall deposits were estimated from the distribution of lithic fragments on our isopleth maps using the method of Carey and Sigurdsson (1986). Error bars were calculated using the three values of maximum height inferred from the 8, 16, and 32-mm isopleths (see Fig. 17 in Carey and Sigurdsson, 1986). The alternative method of Bonadonna and Costa (2013) based on variations of grain size with the distance from the source was also used to confirm the robustness of the estimates.
The mass discharge rate feeding the eruption during phases of stable column was inferred from a given column height by using the empirical relationship from Mastin et al. (2009) and the predictions of the model of Girault et al. (2016), which explicitly includes the effect of total grain-size distribution on the plume dynamics. Calculations were made for tropical atmospheric conditions and for a crystal-bearing rhyolitic magma (andesitic bulk composition) with an initial temperature of 1,150 K (Martel and Poussineau, 2007) and a dense rock density of 2,400 kg m$^{-3}$ (Traineau et al., 1989). The mass discharge rates for the collapsing phases were calculated using the model of Bursik and Woods (1996), which treats pyroclastic density currents as supercritical dilute suspensions entraining air as they propagate. Doyle et al. (2010) showed that this assumption is valid for tall, fine-grained column collapses, for which the flow slowly transfers its mass to the dense basal flow. The model of Bursik and Woods (1996) is thus relevant for collapsing phases characterized by the formation of dilute PDC deposits, and was used here.

4. The P3 eruptive succession

4.1. Stratigraphy

Fig. 3a shows a composite stratigraphic section of the P3 deposits, divided into seven major phases based on diagnostic stratigraphic and lithofacies associations, which we describe in more detail below.

4.1.1. Unit A

The stratigraphic succession begins with a layer of clast-supported, coarse white pumice lapilli (Fig. 4a-d). Unit A contains juvenile and accidental lithic fragments in a total amount that typically increases from \approx20 wt.% at base to \approx25 wt.% at top (Fig. 3c). At most sites,
median pumice size remains relatively constant, whereas both the maximum lithic size and
the sorting increase from base to top (Fig. 3b-c).

In the downwind direction (to the southwest), unit A has a maximum thickness of 180 cm at 4.5 km from the crater (Fig. 4c). In the crosswind direction, unit A is 130 cm thick at 4.6 km, and steadily thins to 50 cm within 6.1 km of the crater (Fig. 4d). The relatively widespread nature of this deposit, its uniformly decreasing thickness with distance from the source, its clast-supported framework, and its pumice and juvenile lithic fragments characteristics identify unit A as a fall deposit.

4.1.2. Unit B

Unit B consists of light brown fine ash material in which pumice, lithic fragments and crystals are dispersed in a matrix of dense, angular, glass fragments (Fig. 4b, c, e). Most clasts range in size from fine to coarse ash but a few large pumices are present (Fig. 3b). The total amount of lithic fragments in unit B commonly reaches ≈28 wt.%. Where unit B is present, the contact with the underlying layer is sharp, which suggests that there was no time break between deposition of the two units.

Unit B varies irregularly in thickness with distance from the source, and ranges from 18 to 35 cm at 3.8 km from the eruptive center (Fig. 4), but is absent beyond 7 km from the vent. Where thick, unit B contains a few lenses of coarse lapilli, angular to sub-rounded pumices. At some sites in valleys, pumice lapilli and blocks are rounded and account for a large proportion in the matrix of white fine ash. The relatively limited dispersal of this unit, its irregular thickness, matrix-supported framework and grain types (juvenile and accidental lithic fragments), as well as the nature of the lower contact, indicate that unit B is a low-concentration pyroclastic density current deposit (Branney and Kokelaar, 2002).
4.1.3. Unit C

Unit C is a relatively thin blanket of clast-supported, white pumice lapilli (Fig. 4b, c, e) containing juvenile and accidental lithic fragments in a total amount that reaches ≈ 25 wt.% in most studied outcrops (Fig. 3c). At most field sites, unit C is easily distinguishable from unit A, the former being distinctly richer in lithic fragments and coarse lapilli pumice. The maximum lithic size in unit C is, however, always lower than the maximum lithic size at the top of unit A (Fig. 3c).

Unit C was dispersed in approximately the same direction as unit A, and is the thickest ≈ 3.7 km southwest of the volcano in the downwind direction, where it reaches 22 cm. This layer steadily thins with distance from the vent, and is still 10 cm thick at 6.2 km in the crosswind direction. At most sites, the upper part of unit C was eroded by the pyroclastic density current that overrode it and deposited unit D (see below). The relatively widespread nature of unit C, its uniformly decreasing thickness with distance from the source, its clast-supported framework, and its pumice and juvenile lithic fragments characteristics identify it as a fall deposit.

4.1.4. Unit D

Unit D is a relatively thin layer of fine ash and small rounded pumice lapilli dispersed in a matrix of dense, angular, glass fragments (Fig. 4a, c, f). At distal sites, this layer is thin, stratified and unconsolidated. The total amount of lithic fragments in unit D commonly reaches ≈ 20 wt.% (Fig. 3c). Where unit D is present, the contact with the underlying layer is sharp and exhibits some erosion of unit C.

Unit D varies irregularly in thickness with distance from the vent, and ranges from 5 to 17 cm at 3.8 km from the volcano (Fig. 4). This layer is, however, absent beyond 7 km from the vent. These irregular thicknesses, the relatively limited dispersal of this deposit, the clast...
and matrix types, and the nature of the lower contact indicate that unit D is a low-
concentration pyroclastic density current deposit.

4.1.5. Unit E

Unit E is a layer of clast-supported, white pumice lapilli (Fig. 4b, c, e) containing juvenile and
accidental lithic fragments in a total amount that typically reaches ≈ 18 wt.% (Fig. 3c). At
most sites, both the median grain-size and the maximum lithic size are lower than those
measured in unit C (Fig. 3c).

Material was dispersed in approximately the same direction as units A and C to the
southwest of the volcano. The maximum thickness is 13 cm at 3.7 km, and steadily thins to 9
cm within 4.8 km from the vent in the downwind direction. The full thickness of unit E is
however poorly preserved due to significant erosion by the overlying pyroclastic density
current that overrode it and deposited unit F (see below). The relatively widespread nature of
this deposit, its uniformly decreasing thickness with distance from the source, its clast-
supported framework, and its pumice and juvenile lithic fragments characteristics identify unit
E as a fall deposit.

4.1.6. Unit F

Unit F is a matrix-supported layer of fine to coarse ash containing rounded pumice lapilli and
lithic fragments (Fig. 4b, f), the latter of which typically reaches ≈ 15 wt.% (Fig. 3c). Where
unit F is present, the contact with the underlying layer is sharp and exhibits some erosion of
unit E.

Unit F varies irregularly in thickness with distance from the vent depending on the
topography, ranges from 6 to 75 cm at 3.8 km from the volcano, and is absent 7 km from the
vent (Fig. 4). The relatively limited dispersal of this unit, its irregular thickness, matrix-
supported framework and grain types (juvenile and accidental lithic fragments), as well as the nature of the lower contact, indicate that unit F is a low-concentration pyroclastic density current deposit.

4.1.7. Unit G

Unit G is the uppermost layer in the P3 sequence and consists of a blanket of fine to coarse white pumice lapilli (Fig. 4a, b, f). This unit contains juvenile and accidental lithic fragments in a total amount that reaches ≈ 20 wt.% at most studied outcrops (Fig. 3c) with a maximum lithic size similar to that of unit C (Fig. 3c).

In the downwind direction (to the southwest), unit G has a maximum thickness of 80 cm at 1.4 km from the crater, and steadily thins to 20 cm within 4.8 km of the vent. In the crosswind direction, unit G is 30 cm thick at 5 km, and 15 cm at 6.4 km from the vent. The relatively widespread nature of this deposit, its uniformly decreasing thickness with distance from the source, its clast-supported framework, and its pumice and juvenile lithic fragment characteristics identify unit G as a fall deposit.

4.2. Age of the P3 eruption

Radiocarbon dates and calibrated ages are reported in Supplementary material Table S1. Two samples provide the exact same radiocarbon age of 1,870 ± 30 yr BP (sites 145 and 178 on the western flank). A third sample taken near location 178 gives a radiocarbon age of 1,915 ± 30 yr BP (site 97). The oldest age is found near the town of Le Carbet where the charcoal sampled within the pumice fallout deposit provides an age of 2,030 ± 30 yr BP. On the eastern flank of the volcano, the charcoal sampled at location 6 has an age of 1,795 ± 30 yr BP. These five new radiocarbon ages are in good agreement with a compilation of twelve 14C ages determined in previous studies (Walker, 1973; Roobol and Smith, 1976; Traineau, 1982;
Westercamp and Traineau, 1983) ranging from 1,800 to 2,150 yr BP (Supplementary material Table S1). Combining these seventeen values using the R_combine function of OxCal (Bronk Ramsey, 2009) provides an age of 1,926 ± 11 yr BP for the P3 eruption. We note that the χ^2 test fails here most likely due to the large number of individual measurements. However, a reasonable correction on the error bar of each dating by a factor of 2 is enough to successfully pass the χ^2 test, reinforcing the confidence that all these otherwise stratigraphically-constrained samples belong to the same eruption. Our new refined radiocarbon age for the P3 eruption stands in the lower error bars of the 2,010 ± 140 yr BP proposed by Traineau et al. (1989). Correcting our new estimate with the IntCal13 calibration curve (Reimer, 2013) available in OxCal gives a mean calendar age of 79 ± 21 cal CE (i.e., 31-37 cal CE at 1.7% probability and 51-125 cal CE at 93.7% probability).

4.3. Grain-size distribution of selected samples

Twenty samples from the P3 units were analyzed (Table 1) in order to discuss the evolution of the grain-size distribution during the entire P3 eruption at a single outcrop (Fig. 3), and to determine the total grain-size distribution for the lapilli fraction of unit A deposits (see section 4.6). The objective is twofold: to confirm the fall or flow nature of the P3 units, and to estimate the amount of gas trapped in pumice fragments at the beginning of the eruption (see section 6.3). A detailed analysis of the pumice textures is beyond the scope of this paper and can be found in Martel and Poussineau (2007).

The fourteen samples from unit A display the typical fallout characteristics with median diameter ranging from 0.7φ to -3.3φ, and sorting ranging from 1.4 to 2.7. These values are relatively close to those obtained by Bardintzeff et al. (1989) who measured median diameter and sorting ranging from -0.3φ to -3φ, and 1.7 to 2.8, respectively. Most of the samples collected on land belong to proximal deposits since the medial and distal deposits
were lost at sea. The grain-size distribution of individual samples is systematically bimodal (Fig. 3b) and the amount of ash particles (< 2 mm) always increases from base (≈9 wt.%) to top (≈36 wt.%). The top of unit A is thus always more poorly sorted than the base, but the median grain-size remains approximately constant throughout the unit (Fig. 3c).

The six samples from units B to G collected at outcrop 163 show that units C, E, and G have typical fallout characteristics similar to unit A. The median diameter for these units ranges between -0.1φ and -3φ, and they have moderate sorting values from 2.5 to 2.7 (Fig. 3c). The amount of ash-sized particles is similar to or larger than in unit A, ranging from ≈28 wt.% to ≈55 wt.%.

Units B, D, and F have flow features with median diameter ranging from 1.7φ and 0.4φ, and moderate sorting ranging from 2.2 to 2.6 (Fig. 3c). The amount of ash-sized particles is larger than in the fall deposits, ranging from ≈62 wt.% to ≈85 wt.%.

4.4. Isopach maps

Fig. 5 shows a stratigraphic correlation of P3 outcrops along three different dispersal axes (i.e., north to south, northwest to southeast, and northeast to southwest, see Fig. 2 for localization). The complete sequence can be found up to 5 km from the vent (sites 13, 163, 101, 78 in Fig. 5). Thickness measurements at each location are reported on isopach maps for the cumulative pumice fallout phases A+C+E+G (Fig. 6a), the pumice fallout phase A (Fig. 6b), the cumulative pyroclastic density current phases B+D+F (Fig. 6c), and the cumulative pumice fallout phases C+E+G (Fig. 6d). These maps are later used to calculate the total grain-size distribution of unit A (see section 4.6), and the volume of deposits (see section 5.1).

The cumulative isopach map of the pumice fallout phases A+C+E+G shows ellipsoidal contour patterns indicating fallout dispersion towards the southwest (Fig. 6a). We find a similar direction of dispersion for the pumice fallout phase A, and the cumulative pumice fallout phases C+E+G (Fig. 6b, d). This direction of dispersion is in relatively good
agreement with the results of Traineau et al. (1989) and Wright et al. (2016) (Fig. 1), and is characteristic of the wind profiles in the Lesser Antilles during the wet season (Michaud-Dubuy et al., 2019). In the upwind direction to the northeast and in the crosswind direction to the southeast, the entire P3 succession is reduced to a single layer of clast-supported, white, angular, fine pumice lapilli containing abundant juvenile and accidental lithic fragments, making it difficult to distinguish the pumice fallout units A, C, E, and G. At locations near the vent, unit A is however clearly visible under the cumulative pumice fallout of units C+E+G (Fig. 4d), which allows to build an individual isopach map for the pumice fallout phase A (Fig. 6b). We note that the northwestern arms of our isopach maps are not well constrained due to a lack of outcrops (in our study as in previous ones) in a region extremely difficult to access due to the presence of dense tropical forest on steep hills.

Units B, D, and F are widespread on the southwest flank of Mt Pelée volcano and the low-concentration PDC deposits almost reached the sea there (Fig. 6c). The high-concentration PDC deposits are channelized in paleo-valleys and now form large plateaux in the Grande Savane, Habitation Depaz and Ajoupa Bouillon areas (see locations in Fig. 1a), an observation consistent with the results of Westercamp and Traineau (1983) and Traineau et al. (1989). However, contrary to Wright et al. (2016), we found no evidence of high-concentration PDC deposits in the Bijou River, Grande River, and Fond Canonville areas (see locations in Fig. 1b).

4.5. Isopleth maps of air fall deposits

Fig. 7 shows the isopleth maps built from the measurements of the major axes of the five largest fragments found at the base and top of unit A, and at the base of unit C. The isopleth map of the base of unit A is well constrained thanks to the good preservation of the deposit (Fig. 7a). However, isopleth contours for the top of unit A and the base of unit C are
constrained by only a few points from localities where the two units are separated by the
presence of unit B and/or by clear variation in grain-size characteristics (Fig. 7b, c). Isopleth
maps for units E and G could not be constructed due to the poor preservation of these
deposits. However, in both cases, we were able to draw a single isopleth curve (i.e., the 15
mm-isopleth for unit E and 25 mm-isopleth for unit G) that is not reported in Fig. 7. The main
direction of dispersion to the southwest (Fig. 7) is consistent with the one inferred from our
isopach maps (Fig. 6). Isopleth contours of the top of unit A are clearly more extended in the
crosswind direction than those of the base of units A and C.

4.6. Total grain-size distribution (Unit A)

We calculated the total grain-size distribution (TGSD) of unit A using the method of
Kaminski and Jaupart (1998) (see section 3.3 for calculation details). The interbedded nature
and important erosion of the subsequent units made the reconstruction of the TGSD for units
B to G impossible. The TGSD of unit A is bimodal with a primary fine mode at 2φ and a
secondary coarse mode at -2φ (Supplementary material Figure S1). The median diameter and
sorting for the TGSD of unit A are -0.2φ and 2.3, respectively. The amounts of ash (< 2φ)
and fine ash particles (< 63 µm) reach 59 wt.% and less than 1 wt.%, respectively. The latter
value should be taken with caution because most of the fine ash particles settled at sea and
cannot be taken into account in our grain-size analyses. From these results, we infer that the
power law coefficient D that fully characterizes the TGSD at the beginning of the P3 eruption
(i.e., unit A) is $D = 3.3 \pm 0.1$ (Supplementary material Figure S1). The time evolution of the
value of D after the phase A remains unknown, but this lack of information will not affect our
calculations of the stable plume / collapsing fountain transition that occurred at the end of
phase A (see section 6.3).
5. Eruptive dynamics

5.1. Erupted volumes

The estimates of volume of tephra fall from phase A using the three integration techniques introduced in section 3 give 0.282 km3 with the exponential method, 0.316 km3 with the power law, and 0.306 km3 with the Weibull function (Fig. 8a). Integration of the exponential, power-law, and Weibull fits for the cumulative pumice fallout C+E+G yields volumes of 0.334, 0.317, and 0.355 km3, respectively (Fig. 8b). Because the latter estimates are based on three proximal isopach contours only they remain relatively poorly constrained (Fig. 6d). We thus calculated the volume of the cumulative pumice fallout A+C+E+G in order to achieve a better estimate of the total volume of tephra fall. Integrating the exponential, power-law, and Weibull fits yields 0.735, 0.692, and 0.712 km3, respectively (Fig. 8c). We thus retain a minimum volume of 0.30 ± 0.01 km3 for unit A, and 0.41 ± 0.02 km3 for the cumulative pumice fall units C+E+G, and 0.71 ± 0.02 km3 for the total volume of tephra fall. Based on fallout deposit and magma densities of 1,000 and 2,400 kg m$^{-3}$, respectively (Traineau et al., 1989), we infer the cumulative DRE volume of fall units to be 0.3 km3.

The volume of PDC deposits is calculated using the area covered by the dense and dilute PDC deposits. The deposits corresponding to the dilute PDC of phases B, D, and F cover 42, 20, and 36 km2, respectively (Fig. 6c), which yield bulk volumes of 0.025 km3 for unit B, 0.010 km3 for unit D, and 0.016 km3 for unit G (Calder et al., 1999). The cumulative dense PDC deposits of the phases B, D, and F cover 7 km2 in Grande Savane, 9.5 km2 in Habitation Depaz, and 18 km2 in Ajoupa Bouillon (see locations in Fig. 1a), with an average thickness of 15, 30, and 2 m, respectively (Traineau, 1982). This yields a minimum volume of 0.67 ± 0.02 km3 DRE for the dense PDC deposits, and gives a total volume of (dense + dilute) PDC deposits of 0.72 ± 0.02 km3 DRE.
The final estimate of the total volume of the P3 eruption (units A+B+C+D+E+F+G) is thus 1.02 ± 0.06 km3 DRE, and the total mass of tephra emitted is estimated to be $2.4 \pm 0.1 \times 10^{12}$ kg. The P3 eruption thus stands as a VEI 5 event (Newhall and Self, 1984) with a magnitude of 5.4 (Pyle, 2000).

5.2. Column heights and exit velocities (airfall units)

The estimates of maximum height using our isopleth maps (Fig. 7) with the model of Carey and Sigurdsson (1986) give 28.3 ± 3.3 km for the base of unit A, 29.7 ± 1.9 km for the top of unit A, and 16.9 ± 0.4 km for the base of unit C. Following the approach of Bonadonna and Costa (2013), a Weibull fit gives a maximum height of 28.1 ± 1 km for the base of unit A, 30.0 ± 0.5 km for the top of unit A, and 17.2 ± 0.5 km for the base of unit C (Supplementary material Figure S2). The lack of information about the distribution of lithic sizes in unit E and G prevents us from providing a robust estimate for the maximum height. Based on a single isopleth curve in each case, we calculate maximum column heights of 12 ± 4 km for unit E and 13 ± 4 km for unit G using the model of Carey and Sigurdsson (1986).

We also use data on the decrease of lithic sizes with distance from the vent in Supplementary material Figure S2 to estimate the minimum exit velocity of the volcanic plume at the vent. Extrapolating the Weibull fits down to $A^{1/2} = 0.01$ km to find the maximum lithic size at the vent, we infer minimum exit velocities of 210 ± 10 m s$^{-1}$ for the base of unit A, 220 ± 10 m s$^{-1}$ for the top of unit A, and 220 ± 10 m s$^{-1}$ for the base of unit C.

5.3. Mass eruption rates and duration

We use our new estimates of maximum column height to calculate the mass eruption rate (MER) feeding the plume during the P3 eruption. The model of Girault et al. (2016) used with their complex wind profile, which is close to the average wind profiles in the Lesser Antilles,
yields maximum MERs of 10^8 kg s$^{-1}$ for the beginning of phase A, 1.5×10^8 kg s$^{-1}$ for the end of phase A, 3×10^7 kg s$^{-1}$ for phase C, 1.4×10^7 kg s$^{-1}$ for phase E, and 1.7×10^7 kg s$^{-1}$ for phase G. The empirical formula of Mastin et al. (2009) built on observations of 28 Plinian eruptions yields maximum MERs of 1.4×10^8 kg s$^{-1}$ for the beginning of phase A, 1.9×10^8 kg s$^{-1}$ for the end of phase A, 1.8×10^7 kg s$^{-1}$ for phase C, 4.2×10^6 kg s$^{-1}$ for phase E, and 5.9×10^6 kg s$^{-1}$ for phase G. Based on these two series of estimates, we retain peak MERs of $1.2 \pm 0.2 \times 10^8$ kg s$^{-1}$ for the beginning of phase A, $1.7 \pm 0.2 \times 10^8$ kg s$^{-1}$ for the end of phase A, $2.4 \pm 0.6 \times 10^7$ kg s$^{-1}$ for phase C, $9.1 \pm 4.9 \times 10^6$ kg s$^{-1}$ for phase E, and $1.2 \pm 0.5 \times 10^7$ kg s$^{-1}$ for phase G. Combined with masses of fallout deposits (section 5.1), these MER provide minimum durations of ~45 min for phase A, ~1h45 for phase C, ~3h for phase E, and ~2h45 for phase G.

The MER during the collapsing phases B, D, and F is more difficult to assess. The model of Bursik and Woods (1996) yields a mass eruption rate of $\sim 2.3 \pm 0.8 \times 10^8$ kg s$^{-1}$ for the three phases B, D, and F. We note that this value does not take into account topographic slopes but Doyle et al. (2010) showed that the runout distance of such a flow mostly depends on the initial collapse height, which is imposed by the MER rather than by ground slopes. Combined with masses of PDC deposits (section 5.1), this MER provides minimum durations of ~50 min for phase B, ~25 min for phase D, and ~50 min for phase F.

6. Discussion

Our revisit of the P3 deposits shows that the eruption started with the formation of a stable column that spread pyroclasts to the southwest of the volcano (phase A). This initial phase was immediately followed by a partial collapse of the column producing alternating tephra fallout (phases C, E, G) and pyroclastic density currents (phases B, D, E). We now compare our results to previous work on the P3 eruption, and on the younger P1 and P2 eruptions of
Mt Pelée volcano. We then focus our discussion on the causes of partial column collapse during the P3 eruption by using a physical model of volcanic plumes.

6.1 Comparison with previous studies of P3 eruption

Our new stratigraphic data regarding the P3 succession largely differs from those of previous studies (Westercamp and Traineau, 1983; Traineau et al., 1989; Wright et al., 2016). The P3\textsubscript{1} phase identified by Westercamp and Traineau (1983) corresponds to our eruptive unit A, and their P3\textsubscript{3} phase most likely corresponds to our entire sequence from unit B to unit G. The distal products identified by Wright et al. (2016) were attributed to the P3 eruption based on a single radiocarbon age determined from a charcoal sampled at the top of their stratigraphic section (see their figure 6). We revisited their outcrop locations 2 and 3 along a main road, and found that their stratigraphic section lies beneath the 13.5 ka cal BP Bellefontaine Plinian eruption (Michaud-Dubuy et al., 2019). To further reinforce our observation, we sampled a paleosol at the base of their stratigraphic section and obtained a radiocarbon age of 17,750 ± 100 yr BP, which indicates that the distal deposits studied by Wright et al. (2016) are much older than the P3 eruption.

The total volume of the P3 eruption (units A+B+C+D+E+F+G) is calculated to be 1.02 ± 0.06 km3 DRE, which is one order of magnitude larger than the 0.19 km3 DRE previously estimated (Traineau et al., 1989). We attribute this important discrepancy to the large volume of PDC deposits that were not taken into account in Traineau et al. (1989), and to the improvement of the reconstruction techniques used here to calculate the total volume of a pumice fall deposit (Bonadonna and Costa, 2013). The maximum column height is estimated to be ~ 30 km at the end of phase A, which is much higher than the previous estimates (> 6 km by Traineau et al., 1989 and < 12 km by Wright et al., 2016). Again we attribute this important difference to the better quality of our isopleth maps and to the
improvement of the reconstruction techniques used to estimate the maximum height from the distribution of lithic fragments in the field.

6.2 Comparison with younger Plinian eruptions in Martinique (P1 and P2)

The three latest Plinian eruptions at Mt Pelée volcano (P1, P2 and P3) have similar depositional successions that can be interpreted to result from the partial collapse of an initially stable Plinian column (Traineau et al., 1989; Carazzo et al., 2012, 2019; Wright et al., 2016). The total DRE volume estimated for P3 (~1 km3) is larger than those of the P1 (~0.2 km3) and P2 (~0.8 km3) eruptions. The maximum column height during the phase of sustained Plinian column is also larger for P3 (28-30 km) than for the P1 (19-22 km) and P2 (22-26 km) eruptions. Consequently, the mass eruption rate is estimated to be larger for P3 (1.4 x 108 kg s$^{-1}$) than for P1 (3.6 x 107 kg s$^{-1}$) and P2 (1.1 x 108 kg s$^{-1}$). The minimum eruption durations are 11h for P3, 7h for P2, and 5h for P1. The total grain-size distribution is however relatively similar for the three events, with power law exponent D of 3.3, 3.4-3.5, and 3.2-3.3 for P3, P2, and P1, respectively. Our estimates of exsolved gas contents for P3 (2-2.9 wt.% - see section 6.3 for calculations details) are larger than those of P1 (1.6-2.1 wt.%) and P2 (1.7-2.1 wt.%). The minimum exit velocities inferred from the distribution of lithic fragments for P3 (210-220 m s$^{-1}$) are also larger than those of P1 (150-165 m s$^{-1}$) and P2 (180-200 m s$^{-1}$), a result consistent with our estimates of free gas contents. Table 2 summarizes the eruptive parameters retrieved for the last three Plinian eruptions at Mt Pelée volcano. P3 stands as a large Plinian eruption more powerful and voluminous (VEI 5, M 5.4) than the P1 (VEI 4, M 4.6) and P2 (VEI 4, M 5.2) eruptions. However, because these three eruptions have much in common, in particular similar pre-eruptive conditions (Martel et al., 1998; Martel and Poussineau, 2007), they can be used to test the performance of theoretical models in predicting the conditions for column collapse.
6.3 The stable plume / pyroclastic fountain transition during a sustained Plinian eruption

The P3 eruption underwent partial column collapse after an initial phase of stable Plinian plume. Wilson et al. (1980) showed that the mass eruption rate and the amount of free gas in the volcanic mixture at the vent both strongly control the transition between the stable Plinian plume and the collapsing fountain regimes. Our estimates of the MER show a progressive increase over time from ~1.2 x 10^8 kg s^{-1} (base of unit A) to ~2.5 x 10^8 kg s^{-1} (unit B+C) (Fig. 9), an evolution consistent with the increase in maximum lithic sizes throughout unit A (Fig. 3c). Other powerful eruptions underwent a similar evolution leading to column collapse, such as the 79 CE Vesuvius (Shea et al., 2011), and the 186 CE Taupo (Walker, 1980) eruptions.

The time evolution of total gas content feeding the column at the vent is more difficult to assess. Petro-geochemical measurements provide quantitative estimates of pre-eruptive magma storage conditions, including temperature (875-900°C), pressure (~200 ± 50 MPa), and water content (~5.8 ± 0.5 wt.%) (Martel et al., 1998; Martel and Poussineau, 2007). Here, we use the magmatic water content measured in glass inclusions available in the literature as a total volatile content in the melt (n_0). Correcting this value from the presence of crystals and lithic fragments (Table 3), we find that the initial gas content (x_0) in the magma decreased from 4.1 to 2.9 wt.% during the eruption (Table 3). As in Kaminski and Jaupart (1998) and Carazzo et al. (2012; 2019), we calculate the mass fraction of exsolved gas in the mixture at fragmentation level (x_f) for a threshold vesicularity of 70 %, which assumes closed-system conditions consistent with degassing models built on U-series measurements in the P3 eruption products (Villemant et al., 1996). We find that x_f decreases from 2.9 to 2.1 wt.% during the eruption (Fig. 9). To strengthen these estimates, we calculate the theoretical exit velocities at the vent assuming that the volcanic mixture decompresses freely into the atmosphere (Woods and Bower, 1995). For this, we infer the effective amount of free gas in
the volcanic mixture at the base of the column that is modulated by gas entrapment by pumices as a function of their size distribution (Kaminski and Jaupart, 1998). We use the power law exponent $D = 3.3$ (for unit A) estimated in section 4.6, and a typical open porosity of 60-70\% (Michaud-Dubuy et al., 2018) to calculate an amount of free gas of 2.4-2.7 wt.% for phase A. These estimates provide exit velocities after decompression in the range 215-230 m s$^{-1}$ (Table 3) that are consistent with those estimated from the distribution of the lithic fragments collected at the base and top of unit A (see section 5.2). This relatively good agreement at least for phase A reinforces the confidence that our estimates of x_f provide reasonable values of free gas content during the P3 eruption.

Fig. 10 compares the estimated values of MER and exsolved gas content in the column at collapse with the theoretical 1D predictions for tropical conditions (Michaud-Dubuy et al., 2018). The conditions at the beginning of the P3 eruption formed a stable plume as predicted by the model. During phase A, the combined effect of a slightly increasing MER and a decreasing gas content led the eruption to conditions close to the plume/fountain transition. The eruption reached a peak in MER during the concomitant phases B and C, which most likely induced the partial column collapse. During the partial column collapse stage of the eruption (units B to G), the MER did not change significantly but the gas content slowly decreased until the end of the eruption. The fairly good agreement between our field data and the theoretical model can be taken as an indirect confirmation of the proposed evolution of the total gas content feeding the column, even if a direct confirmation is not possible. Furthermore, our results suggest that the stable column underwent partial collapse soon after the beginning of the eruption (i.e., within less than a hour), an evolution that was also inferred from the analysis of the P1 and P2 Plinian eruption deposits (Carazzo et al., 2012; 2019). In these three eruptions, the transition occurred at conditions well predicted by our theoretical model of volcanic plumes (Fig. 10).
Comparing these results with other historical eruptions requires gathering well-constrained values of exsolved gas contents, mass eruption rates and power-law exponent D of the TGSD (Michaud-Dubuy et al., 2018). There are however only a few examples of such well-documented events, and we choose here to compare our results to the 186 CE Taupo (VEI 7) and 79 CE Vesuvius (VEI 5) eruptions. Fig. 10 shows that the model successfully predicts the transition for the Taupo eruption but fails to explain the transition for the Vesuvius eruption. Furthermore, one can note that the collapsing phase of the 79 CE Vesuvius eruption is characterized by the same amount of gas and MER at the source as the stable phase (end of phase A) of the P3 eruption. The only difference between the two cases is the total grain-size distribution. Indeed, as discussed in Michaud-Dubuy et al. (2018), the 79 CE Vesuvius eruption is characterized by a specific total grain-size distribution ($D = 3.0$) where pyroclasts are in average not large enough to be lost by sedimentation but not small enough to be in thermal equilibrium with the gas. The hypothesis of thermal equilibrium between the gas and pyroclasts that is used in our 1D model of volcanic plumes, valid for the fine grain-size distribution of the beginning of the P3 eruption ($D = 3.3$), may therefore not hold anymore for this eruption and may explain the peculiar collapse conditions.

7. Conclusion

We have presented a new comprehensive field study of the P3 eruption, and a detailed reconstruction of the mechanisms controlling the eruptive dynamics. New radiocarbon measurements, averaged with those previously available, provide a refined age of 79 ± 21 cal CE for this event. The eruption started with the formation of a 28 to 30 km-high stable column (phase A), which partially collapsed due to the combined effect of increasing MER and decreasing gas content (phase B). In the partial collapse regime, the eruptive mixture formed a 12 to 17 km-high marginally stable column (phases C, E, and G) punctuated with
the production of PDC fed by the partially collapsing column (phases B, D, and F). Our calculations show that P3 was a large Plinian eruption (VEI 5, $M = 5.4$) evolving close to the plume/fountain transition. The total volume of tephra reached $1 \text{ km}^3 \text{ DRE}$, and the mass eruption rate was of the order of 10^8 kg s^{-1} during a period of at least 11h.

The P3 eruption is more powerful than the last two Plinian eruptions in Martinique but the three eruptions underwent similar evolution towards a marginally stable volcanic column. This recurrent phenomenon provides a great opportunity to look carefully at the parameters affecting column stability, to constrain theoretical models of volcanic plumes, and thus improve volcanic disaster forecasting. Petrological and geochemical measurements on the P3 eruptive products may help to further investigate the complexity of magma degassing, crystallization and fragmentation in the volcanic conduit (Gurioli et al., 2005; Martel and Poussineau, 2007; Shea et al., 2012; 2014), and thus refine the estimated values of exsolved gas content at the vent. The global consistency between our theoretical predictions and field observations of column collapse for a number of Plinian eruptions confirms that current theoretical 1D models of volcanic plumes predict correctly the conditions of collapse when the total grain-size distribution is dominated by fine fragments (i.e., obeys a power law distribution with an exponent strictly larger than 3). Our results can thus be used to assess the dominant hazard during a Plinian scale event, which may pass from pumice fall to PDC as eruptive conditions vary.

Mt Pelée volcano is currently quiescent but the reconstruction of its eruptive history over the past 5,000 years shows that a Plinian eruption is a major potential scenario in the future. Such an event with the magnitude of the P3 eruption would disrupt the lives of more than 376,000 people living in Martinique and possibly impact other volcanic islands depending on the wind speed and direction.
Acknowledgements

We warmly thank the staff of the Mt Pelée volcanological observatory (OVSM) for field and administrative assistance, J.-P. Dumoulin, L. Beck, E. Delque-Kolic and C. Moreau (LMC14, CNRS UMS2572) who performed the 14C dating, G. Delavel-Anger and T. Crouzal for their help in the field, and A. Jegouzo for enthusiastic discussions about the P3 eruption. This work was partially funded by the Institut National des Sciences de l’Univers – Centre National de la Recherche Scientifique programme CT3-ALEA, INSU-CNRS Artemis 2016 and 2017 for 14C dating, and CASAVA (ANR contract ANR-09-ANR-RISK-002) and RAVEX (ANR contract ANR-16-CE03-0002). This study contributes to the IdEx project "Université de Paris" (ANR-18-IDEX-0001).

References

Table captions

Table 1: Sampling of the P3 deposits for grain-size analysis.

<table>
<thead>
<tr>
<th>Sample</th>
<th>Site</th>
<th>Unit</th>
<th>Subunit</th>
<th>Altitude (m)</th>
<th>Distance from the vent (km)</th>
<th>Thickness (cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>163</td>
<td>A</td>
<td>(0-40 cm)</td>
<td>269</td>
<td>3.7</td>
<td>160</td>
</tr>
<tr>
<td>2</td>
<td>163</td>
<td>A</td>
<td>(40-60 cm)</td>
<td>269</td>
<td>3.7</td>
<td>160</td>
</tr>
<tr>
<td>3</td>
<td>163</td>
<td>A</td>
<td>(60-100 cm)</td>
<td>269</td>
<td>3.7</td>
<td>160</td>
</tr>
<tr>
<td>4</td>
<td>163</td>
<td>A</td>
<td>(100-140 cm)</td>
<td>269</td>
<td>3.7</td>
<td>160</td>
</tr>
<tr>
<td>5</td>
<td>163</td>
<td>A</td>
<td>(140-160 cm)</td>
<td>269</td>
<td>3.7</td>
<td>160</td>
</tr>
<tr>
<td>6</td>
<td>163</td>
<td>B</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>18</td>
</tr>
<tr>
<td>7</td>
<td>163</td>
<td>C</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>20</td>
</tr>
<tr>
<td>8</td>
<td>163</td>
<td>D</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>15</td>
</tr>
<tr>
<td>9</td>
<td>163</td>
<td>E</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>13</td>
</tr>
<tr>
<td>10</td>
<td>163</td>
<td>F</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>6</td>
</tr>
<tr>
<td>11</td>
<td>163</td>
<td>G</td>
<td>Bulk</td>
<td>269</td>
<td>3.7</td>
<td>37</td>
</tr>
<tr>
<td>12</td>
<td>88</td>
<td>A-G</td>
<td>Bulk</td>
<td>466</td>
<td>4.3</td>
<td>45</td>
</tr>
<tr>
<td>13</td>
<td>66b</td>
<td>A-G</td>
<td>Bulk</td>
<td>371</td>
<td>4.9</td>
<td>65</td>
</tr>
<tr>
<td>14</td>
<td>142</td>
<td>A-G</td>
<td>Bulk</td>
<td>234</td>
<td>5.8</td>
<td>60</td>
</tr>
<tr>
<td>15</td>
<td>194</td>
<td>A-G</td>
<td>Bulk</td>
<td>280</td>
<td>5.8</td>
<td>55</td>
</tr>
<tr>
<td>16</td>
<td>114</td>
<td>A-G</td>
<td>Bulk</td>
<td>195</td>
<td>6.3</td>
<td>105</td>
</tr>
<tr>
<td>17</td>
<td>137</td>
<td>A-G</td>
<td>Bulk</td>
<td>19</td>
<td>6.5</td>
<td>100</td>
</tr>
<tr>
<td>18</td>
<td>191</td>
<td>A-G</td>
<td>Bulk</td>
<td>35</td>
<td>6.5</td>
<td>46</td>
</tr>
<tr>
<td>19</td>
<td>144</td>
<td>A-G</td>
<td>Bulk</td>
<td>47</td>
<td>6.6</td>
<td>80</td>
</tr>
<tr>
<td>20</td>
<td>145</td>
<td>A-G</td>
<td>Bulk</td>
<td>540</td>
<td>11.9</td>
<td>25</td>
</tr>
<tr>
<td>Parameters</td>
<td>P3 (79 CE)</td>
<td>P2 (280 CE)</td>
<td>P1 (1300 CE)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------</td>
<td>--------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total DRE volume</td>
<td>1.02 km³</td>
<td>0.77 km³</td>
<td>0.16 km³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Erupted mass</td>
<td>2.4 x 10^{12} kg</td>
<td>1.7 x 10^{12} kg</td>
<td>4 x 10^{11} kg</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>VEI</td>
<td>5</td>
<td>4</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Magnitude</td>
<td>5.4</td>
<td>5.2</td>
<td>4.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum column height</td>
<td>30 km</td>
<td>26 km</td>
<td>22 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum PDC runout</td>
<td>7 – 10.3 km</td>
<td>7 – 11.5 km</td>
<td>4.5 – 8 km</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum MER (fall)</td>
<td>1.4 x 10^{8} kg s⁻¹</td>
<td>1.1 x 10^{8} kg s⁻¹</td>
<td>3.6 x 10^{7} kg s⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum MER (PDC)</td>
<td>2.5 x 10^{8} kg s⁻¹</td>
<td>3.1 x 10^{8} kg s⁻¹</td>
<td>9 x 10^{7} kg s⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Maximum intensity</td>
<td>11.4</td>
<td>11.5</td>
<td>11</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Duration</td>
<td>> 11 h</td>
<td>> 7 h</td>
<td>> 5 h</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>TGSD</td>
<td>D = 3.3</td>
<td>D = 3.4 - 3.5</td>
<td>D = 3.2 – 3.3</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Minimum exit velocity</td>
<td>210 - 220 m s⁻¹</td>
<td>180 – 200 m s⁻¹</td>
<td>150 – 165 m s⁻¹</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total gas content</td>
<td>2 - 2.9 wt.%</td>
<td>1.8 – 2.2 wt.%</td>
<td>1.6 – 2.1 wt.%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 2: Summary of the estimated eruptive parameters for the P3 eruption, and comparison with P1 and P2 (Carazzo et al., 2012; 2019).
<table>
<thead>
<tr>
<th>Phase</th>
<th>n_0</th>
<th>α</th>
<th>x_0</th>
<th>x_f</th>
<th>U_{free}</th>
<th>U_{min}</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(wt.%)</td>
<td>(wt.%)</td>
<td>(wt.%)</td>
<td>(m s$^{-1}$)</td>
<td>(m s$^{-1}$)</td>
<td></td>
</tr>
<tr>
<td>Early A</td>
<td>5.8</td>
<td>29</td>
<td>4.1</td>
<td>2.9</td>
<td>230</td>
<td>210</td>
</tr>
<tr>
<td>Late A</td>
<td>5.8</td>
<td>38</td>
<td>3.6</td>
<td>2.5</td>
<td>215</td>
<td>220</td>
</tr>
<tr>
<td>B-C</td>
<td>5.8</td>
<td>42</td>
<td>3.4</td>
<td>2.3</td>
<td>-</td>
<td>220</td>
</tr>
<tr>
<td>D-E</td>
<td>5.8</td>
<td>45</td>
<td>3.2</td>
<td>2.2</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>F-G</td>
<td>5.8</td>
<td>49</td>
<td>2.9</td>
<td>2.1</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

Table 3: Gas contents and deduced exit velocities. n_0 is the total volatile content of the melt (Martel et al., 1998), α is the percentage of crystals in the melt plus lithics in the flow, x_0 is the mass fraction of gas in the magma assuming complete degassing, x_f is the mass fraction of exsolved gas in the gas+pyroclasts mixture at fragmentation for a threshold vesicularity of 70%, U_{free} is the supersonic velocity after decompression calculated using x_0, $D = 3.3$ and an open porosity of 60-70% (Michaud-Dubuy et al., 2018), and U_{min} is the eruptive velocity deduced from the distribution of the lithic fragments (section 5.2).
Figure captions

Fig. 1: Current maps for the P3 eruption. **a** Isopach map (in centimeters) from *Westercamp and Traineau (1983)*. (1) Dashed and (2) dotted lines correspond to isopachs for the pumice fallout deposit P3₁ and P3₂, respectively. (3) The light grey and (4) dark areas give the distribution of the low-concentration PDC (surge), and high-concentration PDC (flow) deposits P3₃, respectively. **b** Isopach map (in centimeters) from *Wright et al. (2016)*. (1) Dashed lines correspond to isopachs for a pumice fallout deposit. (2) The light and (3) dark grey areas give the distribution of a low-concentration PDC (surge) deposit, and a low-concentration PDC (ash hurricane) deposit, respectively. (4) The dark areas correspond to high-concentration PDC (flow) deposits.

Fig. 2: Overview of our field area in Martinique (inset). White circles and numbers refer to localities where P3 deposits are present. Black dots show outcrops where P3 deposits are absent (due to erosion) and/or too deeply buried under recent eruption deposits. The dotted lines give the stratigraphic correlation reported in *Fig. 5*.

Fig. 3: **a** Composite stratigraphic section showing typical unit thickness and grain-size characteristics of the P3 eruptive sequence. **b** Grain-size distribution selected samples representing the different eruptive units, including five stratigraphic heights in unit A, at location 163. **c** Variations of the median grain-size (blue circles), sorting (green circles), juvenile lithic content (grey squares), accidental lithic content (dark squares), total lithic content (white squares), and lithic size (red squares) along the stratigraphic height at location 163.
Fig. 4: Representative photographs of outcrops of the P3 deposits in Martinique at sites a 57, b 78, c 13, d 65, and e, f 163. See Fig. 2 for location and distance from the source. All scale bars are 20 cm long.

Fig. 5: Stratigraphic logs of representative sections of deposits of the P3 eruption. See Fig. 2 for outcrop locations.

Fig. 6: Isopach maps (in centimeters) for a the cumulative pumice fallout (units A+C+E+G), b the pumice fallout unit A, c the cumulative PDC deposits (units B+D+F) and d the cumulative pumice fallout (units C+E+G). Open circles indicate measured sample locations. Bold numbers in panel (c) indicate the thicknesses of high-concentration PDC deposits.

Fig. 7: Isopleth maps (in millimeters) for the lithic fragments sampled a at the base of unit A, b at the top of unit A, and c the base of unit C. Open circles indicate measured sample locations. Direction of dispersal axes is consistent with those inferred from the isopach maps.

Fig. 8: Deposit thinning profiles generated from the isopach maps for a unit A, b the cumulative pumice fallout C+E+G, and c the cumulative pumice fallout A+C+E+G represented by semi-log plots of square root of isopach areas (in kilometers) versus thickness (in meters). Thinning trends are approximated by exponential (purple dashed line), power-law (blue dotted line), and Weibull (red solid line) fits.

Fig. 9: Summary of the time evolution of the P3 eruptive parameters. a Cumulative erupted mass (in kg). b Maximum column height (in km). c Mass eruption rate (in kg s⁻¹). d Total exsolved gas content, x_f (in wt.%).
Fig. 10: Transition diagram depicting the P3 eruptive events and depositional units (diamonds), and comparison with the P1 (squares), P2 (triangles), Taupo (circles) and Vesuvius (inverted triangles) eruptions. Numbers associated with diamonds correspond to different phases of the P3 eruption: 1: beginning of phase A, 2: end of phase A, 3: simultaneous phases B and C, 4: simultaneous phases D and E, and 5: simultaneous phases F and G. Dashed line corresponds to the maximum mass eruption rate feeding the column before collapse as a function of the total gas content at the column base (using Michaud-Dubuy et al. (2018) model for tropical conditions and $D = 3.3$). Open, gray, and dark symbols correspond to geological data inferred for the stable column phase, partial column collapse phase, and total column collapse phase, respectively. Data for the P1, P2, Taupo and Vesuvius eruptions are compiled in Carazzo et al. (2012, 2019) and Michaud-Dubuy et al. (2018), respectively.
Total MER (kg s\(^{-1}\))

Total gas content (wt.%)

Collapsing fountains

Convecting plumes

Taupo Y2
Taupo Y5/6
Taupo Y7
Vesuvius 2
Vesuvius 3

P1A
P1B
P1D
P2A
P2B