J. Aubert, J. Aurnou, and J. Wicht, The magnetic structure of convection-driven numerical dynamos, 2008.
URL : https://hal.archives-ouvertes.fr/hal-00365069

, Geophys. J. Int, vol.172, pp.945-956

J. Aubert, S. Labrosse, and C. Poitou, Modelling the palaeo-evolution of the geodynamo, Geophys. J, 2009.
URL : https://hal.archives-ouvertes.fr/insu-01308294

. Int, , vol.179, pp.1414-1428

J. Badro, J. Siebert, and F. Nimmo, An early geodynamo driven by exsolution of mantle components 533 from earth's core, Nature, vol.536, issue.7616, pp.326-328, 2016.

A. J. Biggin, M. J. De-wit, C. G. Langereis, T. E. Zegers, S. Voute et al., Palaeo-535 magnetism of Archaean rocks of the Onverwacht Group, 2011.

, Evidence for a stable and potentially reversing geomagnetic field at ca. 3.5 Ga, Earth Planet. Sci. Lett, vol.537, pp.314-328

A. J. Biggin, E. J. Piispa, L. J. Pesonen, R. Holme, G. A. Paterson et al., , 2015.

, Palaeomagnetic field intensity variations suggest mesoproterozoic inner-core nucleation, Nature, vol.526, issue.7572, pp.245-248

A. J. Biggin, G. H. Strik, and C. G. Langereis, Evidence for a very-long-term trend in geomagnetic 542 secular variation, Nature Geosci, vol.1, issue.6, pp.395-398, 2008.

J. Bloxham, Sensitivity of the geomagnetic axial dipole to thermal core-mantle interactions, Nature, vol.544, issue.6782, pp.63-65, 2000.

S. Braginsky and P. Roberts, Equations governing convection in Earth's core and the geodynamo. Geo-546 phys, Astrophys. Fluid Dyn, vol.79, issue.1-4, pp.1-97, 1995.

U. Christensen and J. Aubert, Scaling properties of convection-driven dynamos in rotating spherical shells 548 and application to planetary magnetic fields, Geophys. J. Int, vol.166, pp.97-114, 2006.

U. R. Christensen, J. Aubert, and G. Hulot, Conditions for earth-like geodynamo models, 2010.
URL : https://hal.archives-ouvertes.fr/hal-00540375

, Sci. Lett, vol.296, issue.3, pp.487-496

U. R. Christensen, V. Holzwarth, and A. Reiners, Energy flux determines magnetic field strength of 552 planets and stars, Nature, vol.457, issue.7226, pp.167-169, 2009.

P. A. Davidson, Scaling laws for planetary dynamos, Geophys. J. Int, vol.195, pp.67-74, 2013.

C. Davies, Cooling history of earth's core with high thermal conductivity, Phys. Earth Planet. Int, vol.555, pp.65-79, 2015.

N. De-koker, G. Steinle-neumann, and V. Vlcek, Electrical resistivity and thermal conductivity of liquid 557, 2012.

, Fe alloys at high P and T, and heat flux in Earth's core, Proc. Nati. Acad. Sci. USA, vol.109, issue.11, pp.4070-4073

C. Denis, K. Rybicki, A. Schreider, S. Tomecka-sucho?, and P. Varga, Length of the day and evolution 559 of the earth's core in the geological past, Astronomische Nachrichten, vol.332, issue.1, pp.24-35, 2011.

E. Dormy, P. Cardin, and D. Jault, MHD flow in a slightly differentially rotating spherical shell, with 561 conducting inner core, in a dipolar magnetic field, Earth Plan. Sci. Let, vol.160, pp.15-30, 1998.

P. Driscoll, Simulating 2 ga of geodynamo history, Geophys. Res. Lett, vol.43, pp.5680-5687, 2016.

P. Driscoll and D. Bercovici, On the thermal and magnetic histories of earth and venus: Influences of 564 melting, radioactivity, and conductivity, Physics of the Earth and Planetary Interiors, vol.236, pp.36-51, 2014.

P. Driscoll and D. Evans, Frequency of proterozoic geomagnetic superchrons, Earth Planet. Sci. Lett, vol.437, pp.9-14, 2016.

D. Evans, Proterozoic low orbital obliquity and axial-dipolar geomagnetic field from evaporite palae-568 olatitudes, Nature, vol.444, issue.7115, pp.51-55, 2006.

D. Evans, Reconstructing pre-pangean supercontinents, Geological Society of America Bulletin, vol.125, pp.1735-1751, 2013.

H. Gomi, K. Ohta, K. Hirose, S. Labrosse, R. Caracas et al., The high 572 conductivity of iron and thermal evolution of the earth's core, Phys. Earth Planet. Int, vol.224, pp.88-103, 2013.

C. J. Hale, Paleomagnetic data suggest link between the Archean-Proterozoic boundary and inner-core 574 nucleation, Nature, vol.329, issue.6136, pp.233-237, 1987.

M. Heimpel and M. Evans, Testing the geomagnetic dipole and reversing dynamo models over earth's 576 cooling history, Phys. Earth Planet. Int, vol.224, pp.124-131, 2013.

K. Hori, J. Wicht, and W. Dietrich, Ancient dynamos of terrestrial planets more sensitive to core-mantle 578 boundary heat flows, Planet. Space Sci, vol.98, pp.30-40, 2014.

D. Kent and M. Smethurst, Shallow bias of paleomagnetic inclinations in the paleozoic and precambrian, Earth and Planet. Sci. Lett, vol.160, issue.3, pp.391-402, 1998.

Z. Konôpková, R. S. Mcwilliams, N. Gómez-pérez, and A. F. Goncharov, Direct measurement of thermal 582 conductivity in solid iron at planetary core conditions, Nature, vol.534, issue.7605, pp.99-101, 2016.

S. Labrosse, Thermal and magnetic evolution of the Earth's core, Phys. Earth Planet. Int, vol.140, pp.127-143, 2003.

S. Labrosse, Thermal evolution of the core with a high thermal conductivity, Phys. Earth Planet. Int, vol.585, pp.36-55, 2015.
URL : https://hal.archives-ouvertes.fr/hal-01589713

M. Landeau, Two aspects of fluid dynamics in planetary cores, 2013.
URL : https://hal.archives-ouvertes.fr/tel-01472508

M. Landeau and J. Aubert, Equatorially asymmetric convection inducing a hemispherical magnetic field 589 in rotating spheres and implications for the past martian dynamo, Phys. Earth Planet. Int, vol.185, issue.3-4, pp.61-73, 2011.

T. Lay, J. Hernlund, and B. A. Buffett, Core-mantle boundary heat flow, Nature Geosci, vol.1, issue.1, pp.25-32, 2008.

L. Bars, M. Wieczorek, M. Karatekin, Ö. Cébron, D. Laneuville et al., An impact-driven dynamo for 594 the early moon, Nature, vol.479, issue.7372, pp.215-218, 2011.

J. R. Lister, Expressions for the dissipation driven by convection in the Earth's core. Phys. Earth 596 Planet, Int, vol.140, issue.1-3, pp.145-158, 2003.

M. Macouin, J. Valet, and J. Besse, Long-term evolution of the geomagnetic dipole moment. Phys. Earth 598 Planet, Int, vol.147, issue.2-3, pp.239-246, 2004.

P. Marti, N. Schaeffer, R. Hollerbach, D. Cébron, C. Nore et al., , p.600

S. Takehiro and Y. Sasaki, Full sphere hydrodynamic and dynamo benchmarks, Geophys. J. Int, vol.601, issue.1, pp.119-134, 2014.
URL : https://hal.archives-ouvertes.fr/hal-02365490

M. Mcelhinny, Geocentric axial dipole hypothesis: a least squares perspective. Timescales of the 603 paleomagnetic field, pp.1-12, 2004.

K. Ohta, Y. Kuwayama, K. Hirose, K. Shimizu, and Y. Ohishi, Experimental determination of the 605 electrical resistivity of iron at earth's core conditions, Nature, vol.534, issue.7605, pp.95-98, 2016.

N. Olsen, H. Lühr, C. Finlay, T. Sabaka, I. Michaelis et al., The chaos-4 607 geomagnetic field model, Geophys. J. Int, vol.197, issue.2, pp.815-827, 2014.

P. Olson, A simple physical model for the terrestrial dynamo, J. Geophys. Res, vol.86, issue.NB11, pp.875-882, 1981.

P. Olson and J. Aurnou, A polar vortex in the Earth's core, Nature, vol.402, pp.170-173, 1999.

P. Olson, U. Christensen, and G. A. Glatzmaier, Numerical modelling of the geodynamo: mechanisms of 611 field generation and equilibration, J. Geophys. Res, vol.104, issue.B5, pp.10383-10404, 1999.

P. Olson and U. R. Christensen, Dipole moment scaling for convection-driven planetary dynamos, Earth 613 Plan. Sci. Let, vol.250, issue.3-4, pp.561-571, 2006.

P. Olson, R. Deguen, M. L. Rudolph, and S. Zhong, Core evolution driven by mantle global circulation, 2015.
URL : https://hal.archives-ouvertes.fr/hal-02334193

, Phys. Earth Planet. Int, vol.243, pp.44-55

J. O'rourke and D. Stevenson, Powering earth's dynamo with magnesium precipitation from the core, Nature, vol.617, issue.7586, pp.387-389, 2016.

M. Pozzo, C. Davies, D. Gubbins, and D. Alfè, Transport properties for liquid silicon-oxygen-iron mix-619 tures at earth's core conditions, Phys. Rev. B, vol.87, issue.1, p.14110, 2013.

P. Roberts, Future of geodynamo theory, Geophysical & Astrophysical Fluid Dynamics, vol.44, issue.1-4, pp.3-31, 1988.

P. Selkin and L. Tauxe, Long-term variations in palaeointensity, Phil. Trans. R. Soc. Lond. A, vol.358, pp.1065-1088, 1768.

A. Smirnov, J. Tarduno, and D. Evans, Evolving core conditions ca. 2 billion years ago detected by 624 paleosecular variation, Phys. Earth Planet. Int, vol.187, issue.3, pp.225-231, 2011.

A. Smirnov, J. A. Tarduno, E. Kulakov, S. Mcenroe, and R. Bono, Paleointensity, core thermal con-626 ductivity and the unknown age of the inner core, Geophys. J. Int, vol.205, issue.2, 2016.

B. Sreenivasan and C. A. Jones, Structure and dynamics of the polar vortex in the earth's core. Geophys, 2005.

, Res. Lett, vol.32, issue.20

D. J. Stevenson, T. Spohn, and G. Schubert, Magnetism and thermal evolution of the terrestrial planets, 1983.

, Icarus, vol.54, issue.3, pp.466-489

J. Tarduno, R. Cottrell, W. Davis, F. Nimmo, and R. Bono, A hadean to paleoarchean geodynamo 632 recorded by single zircon crystals, Science, vol.349, issue.6247, pp.521-524, 2015.

J. A. Tarduno, R. D. Cottrell, M. K. Watkeys, A. Hofmann, P. V. Doubrovine et al., , p.634

D. Sibeck, D. G. Neukirch, L. P. Usui, and Y. , Geodynamo, solar wind, and magnetopause 3.4 to 3.45 635 billion years ago, Science, vol.327, issue.5970, pp.1238-1240, 2010.

L. Tauxe, Long-term trends in paleointensity: the contribution of dsdp/odp submarine basaltic glass 637 collections, Phys. Earth Planet. Int, vol.156, issue.3, pp.223-241, 2006.

J. P. Valet, J. Besse, A. Kumar, S. Vadakke-chanat, E. et al., The intensity of the geomagnetic field 639 from 2.4 ga old indian dykes, Geophys. Geochem. Geosystems, vol.15, pp.2426-2437, 2014.

T. Veikkolainen and L. Pesonen, Palaeosecular variation, field reversals and the stability of the geodynamo 641 in the precambrian, Geophys. J. Int, vol.199, issue.3, pp.1515-1526, 2014.

H. Wang, D. V. Kent, and P. Rochette, Weaker axially dipolar time-averaged paleomagnetic field based on 643 multidomain-corrected paleointensities from galapagos lavas, Proc. Nat. Acad. Sci, vol.112, issue.49, pp.15036-15041, 2015.

G. Williams, Geological constraints on the precambrian history of earth's rotation and the moon's 645 orbit, Rev. Geophys, vol.38, issue.1, pp.37-59, 2000.