E. P. Barrett, L. G. Joyner, and P. P. Halenda, The Determination of Pore Volume and Area 367 Distributions in Porous Substances. I. Computations from Nitrogen Isotherms, Journal, p.368, 1951.

, , vol.73, pp.373-380

F. Behar, M. D. Lewan, F. Lorant, and M. Vandenbroucke, Comparison of artificial maturation of 370 lignite in hydrous and nonhydrous conditions, International Journal of Coal Geology, vol.34, p.212, 2003.

A. Cavelan, M. Boussafir, O. Rozenbaum, and F. Laggoun-défarge, Organic petrography and 405 pore structure characterization of low-mature and gas-mature marine organic-rich mudstones: 406 Insights into porosity controls in gas shale systems, Marine and Petroleum Geology, vol.103, p.350, 2019.

G. R. Chalmers, R. M. Bustin, and I. M. Power, Characterization of gas shale pore systems by 409 porosimetry, pycnometry, surface area, and field emission scanning electron 410 microscopy/transmission electron microscopy image analyses: Examples from the Barnett, p.411, 2012.

H. Woodford, M. , and D. Units, AAPG Bulletin, vol.96, pp.1099-1119

,

G. R. Chalmers and R. M. Bustin, Lower Cretaceous gas shales in northeastern British Columbia, 414 Part I: geological controls on methane sorption capacity, Bulletin of Canadian Petroleum 415 Geology, vol.56, pp.1-21, 2008.

J. Chen and X. Xiao, Evolution of nanoporosity in organic-rich shales during thermal maturation, 2014.

, Fuel, vol.129, pp.173-181

C. R. Clarkson, N. Solano, R. M. Bustin, A. M. Bustin, G. R. Chalmers et al., Pore structure characterization of North American 420 shale gas reservoirs using USANS/SANS, gas adsorption, and mercury intrusion, Fuel, vol.103, pp.421-606, 2013.

M. E. Curtis, B. J. Cardott, C. H. Sondergeld, and C. S. Rai, , p.423, 2012.

, Woodford Shale with increasing thermal maturity, International Journal of Coal Geology, vol.103, pp.26-31

A. Desprairies, M. Bachaoui, A. Ramdani, and N. Tribovillard, Clay diagenesis in organic-rich 426 cycles from the Kimmeridge Clay Formation of Yorshire (G.B.): implication for 427 palaeoclimatic interpretations, Organic Matter Accumulation, p.428, 1995.

H. Berlin, , pp.63-91

V. H. Distefano, J. Mcfarlane, L. M. Anovitz, A. G. Stack, A. D. Gordon et al., Extraction of organic compounds 431 from representative shales and the effect on porosity, Journal of Natural Gas Science and 432 Engineering, vol.35, pp.646-660, 2016.

J. Espitalie, G. Deroo, and F. Marquis, Rock-Eval pyrolysis and its applications, vol.40, pp.563-579, 1985.

J. Espitalie, G. Deroo, and F. Marquis, Rock-Eval pyrolysis and ots application. 2. Revue De 436 L, vol.40, pp.755-784, 1985.

A. Furmann, M. Mastalerz, D. Bish, A. Schimmelmann, and P. K. Pedersen, Porosity and pore 438 size distribution in mudrocks from the Belle Fourche and Second White Specks Formations in, 2016.

C. Alberta, Bulletin, vol.100, pp.1265-1288

R. W. Gallois, The Kimmeridge Clay: the most intensively studied formation in Britain, Open 441 University Geological Journal, vol.25, 2004.

H. Guo, R. He, W. Jia, P. Peng, Y. Lei et al., Pore 443 characteristics of lacustrine shale within the oil window in the Upper Triassic Yanchang 444 Formation, southeastern Ordos Basin, China. Marine and Petroleum Geology, vol.91, pp.279-296, 2018.

H. Guo, W. Jia, P. Peng, J. Zeng, and R. He, Evolution of organic matter and nanometer-scale 447 pores in an artificially matured shale undergoing two distinct types of pyrolysis: A study of 448 the Yanchang Shale with Type II kerogen, Organic Geochemistry, vol.105, pp.56-66, 2017.

,

H. Han, P. Pang, Z. Li, P. Shi, C. Guo et al., Controls of organic 451 and inorganic compositions on pore structure of lacustrine shales of Chang, p.452, 2019.

, Triassic Yanchang Formation in the Ordos Basin, China. Marine and Petroleum Geology 100, vol.453, pp.270-284

Y. Han, B. Horsfield, R. Wirth, N. Mahlstedt, and S. Bernard, Oil retention and porosity 455 evolution in organic-rich shales, Bulletin, vol.101, pp.807-827, 2017.

J. P. Herbin, J. L. Fernandez-martinez, J. R. Geyssant, A. E. Albani, J. F. Deconinck et al., , p.457

J. P. Colbeaux and J. P. Vidier, Sequence stratigraphy of source rocks applied to the study 458 of the Kim meridgian/Tithonian in the north-west European shelf, Marine and Petroleum Geology, vol.12, pp.177-194, 1995.

H. Hu, T. Zhang, J. D. Wiggins-camacho, G. S. Ellis, M. D. Lewan et al., Experimental 462 investigation of changes in methane adsorption of bitumen-free Woodford Shale with thermal 463 maturation induced by hydrous pyrolysis, Marine and Petroleum Geology, vol.59, pp.114-128, 2015.

D. M. Jarvie, R. J. Hill, T. E. Ruble, and R. M. Pollastro, Unconventional shale-gas systems: The 465, 2007.

, Mississippian Barnett Shale of north-central Texas as one model for thermogenic shale-gas 466 assessment, Bulletin, vol.91, pp.475-499

T. Juliao, I. Suárez-ruiz, R. Marquez, and B. Ruiz, The role of solid bitumen in the development 468 of porosity in shale oil reservoir rocks of the Upper Cretaceous in Colombia, International 469 Journal of Coal Geology, pp.126-144, 2015.

B. J. Katz and I. Arango, Organic porosity: A geochemist's view of the current state of 471 understanding, Organic Geochemistry, vol.123, pp.1-16, 2018.

L. T. Ko, R. G. Loucks, T. Zhang, S. C. Ruppel, and D. Shao, Pore and pore network evolution of 474 Upper Cretaceous Boquillas (Eagle Ford-equivalent) mudrocks: Results from gold tube 475 pyrolysis experiments, AAPG Bulletin, vol.100, pp.1693-1722, 2016.

L. T. Ko, S. C. Ruppel, R. G. Loucks, P. C. Hackley, T. Zhang et al., Pore-types and pore-477 network evolution in Upper Devonian-Lower Mississippian Woodford and Mississippian 478 Barnett mudstones: Insights from laboratory thermal maturation and organic petrology, 479 International Journal of Coal Geology, vol.190, pp.3-28, 2018.

U. Kuila, D. K. Mccarty, A. Derkowski, T. B. Fischer, T. Topór et al., Nano-scale 481 texture and porosity of organic matter and clay minerals in organic-rich mudrocks, Fuel, vol.135, pp.482-359, 2014.

E. Lafargue, F. Marquis, and D. Pillot, Rock-Eval 6 Applications in Hydrocarbon Exploration, p.484, 1998.
URL : https://hal.archives-ouvertes.fr/hal-02079005

, Production, and Soil Contamination Studies, vol.53, pp.421-485

P. Landais, Assessment of coal potential evolution by experimental simulation of natural 487 coalification, Organic Geochemistry, vol.17, issue.91, pp.90014-489, 1991.

P. Landais, R. Michels, and M. Elie, Are time and temperature the only constraints to the 490 simulation of organic matter maturation, Organic Geochemistry, vol.22, pp.617-630, 1994.

, , pp.90128-90135

R. G. Loucks, R. M. Reed, S. C. Ruppel, and U. Hammes, Spectrum of pore types and networks in 493 mudrocks and a descriptive classification for matrix-related mudrock pores, Bulletin, vol.96, pp.494-1071, 2012.

R. G. Loucks, R. M. Reed, S. C. Ruppel, and D. M. Jarvie, Morphology, Genesis, and Distribution 496 of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale, Journal 497 of Sedimentary Research, vol.79, pp.848-861, 2009.

A. S. Mackenzie, R. L. Patience, J. R. Maxwell, M. Vandenbroucke, and B. Durand, France-I. Changes in the 500 configurations of acyclic isoprenoid alkanes, steranes and triterpanes, Geochimica et, p.501, 1980.

, Cosmochimica Acta, vol.44, pp.1709-1721

M. Mastalerz, A. Schimmelmann, A. Drobniak, and Y. Chen, , p.503, 2013.

, Mississippian New Albany Shale across a maturation gradient: Insights from organic 504 petrology, gas adsorption, and mercury intrusion, AAPG Bulletin, vol.97, pp.1621-1643

,

R. Michels, P. Landais, M. Elie, L. Gerard, and L. Mansuy, Evaluation of factors influencing the 507 thermal maturation of organic matter during confined pyrolysis experiments, ABSTRACTS 508 OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, vol.204, p.76, 1992.

R. Michels, P. Landais, B. E. Torkelson, and R. P. Philp, Effects of effluents and water pressure on 510 oil generation during confined pyrolysis and high-pressure hydrous pyrolysis, Geochimica et, p.511, 1995.

, Cosmochimica Acta, vol.59, pp.65-73

K. L. Milliken, M. Rudnicki, D. N. Awwiller, and T. Zhang, Organic matter-hosted pore system, 513 Marcellus Formation (Devonian), vol.97, pp.177-200, 2013.

C. J. Modica and S. G. Lapierre, Estimation of kerogen porosity in source rocks as a function of 516 thermal transformation: Example from the Mowry Shale in the Powder River Basin of 517 Wyoming, Bulletin, vol.96, pp.87-108, 2012.

L. Pan, X. Xiao, H. Tian, Q. Zhou, J. Chen et al., A preliminary study on the 519 characterization and controlling factors of porosity and pore structure of the Permian shales in 520 Lower Yangtze region, Eastern China, International Journal of Coal Geology, vol.146, pp.68-78, 2015.

K. E. Peters, C. C. Walters, J. M. Moldowan, and K. E. Peters, Biomarkers and isotopes in the 523 environment and human history, 2. ed., reprinted with corrections, digitally printed version 524, The biomarker guide, 2007.

J. H. Powell, Jurassic sedimentation in the Cleveland Basin: a review, Proceedings of the 526 Yorkshire Geological Society, vol.58, pp.21-72, 2010.

M. Radke, Application of aromatic compounds as maturity indicators in source rocks and crude 529 oils, Marine and Petroleum Geology, vol.5, issue.88, pp.90003-90010, 1988.

M. Radke, D. H. Welte, and H. Willsch, Maturity parameters based on aromatic hydrocarbons: 532 Influence of the organic matter type, Organic Geochemistry, vol.10, pp.51-63, 1986.

, , pp.90008-90010

L. Ramanampisoa and J. R. Disnar, Primary control of paleoproduction on organic matter 535 preservation and accumulation in the Kimmeridge rocks of Yorkshire (UK), pp.1153-1167, 1994.

L. R. Ramanampisoa and M. Radke, Extractable aromatic hydrocarbons in a short-term organic 538 cycle of the Kimmeridge Clay formation, Organic Geochemistry, vol.23, issue.95, pp.80002-80011, 1995.

P. F. Rawson and L. A. Riley, Latest Jurassic -Early Cretaceous Events and the, Late Cimmerian, vol.542, 1982.

. Unconformity, North Sea Area, vol.66, pp.2628-2648

M. Schmitt, C. P. Fernandes, J. A. Da-cunha-neto, F. G. Wolf, and V. S. Santos, 544 Characterization of pore systems in seal rocks using Nitrogen Gas Adsorption combined with 545 Mercury Injection Capillary Pressure techniques, Marine and Petroleum Geology, vol.39, pp.138-546, 2013.

W. R. Seifert and J. M. Moldowan, Paleoreconstruction by biological markers, Geochimica et, p.548, 1981.

, Cosmochimica Acta, vol.45, pp.783-794

K. S. Sing, Reporting physisorption data for gas/solid systems with special reference to the 550 determination of surface area and porosity (Recommendations 1984). Pure and applied 551 chemistry, vol.57, pp.603-619, 1985.

L. Song, K. Martin, T. R. Carr, and P. K. Ghahfarokhi, Porosity and storage capacity of Middle 553 Devonian shale: A function of thermal maturity, total organic carbon, and clay content, Fuel, vol.554, pp.1036-1044, 2019.

W. Tissot and D. H. , Petroleum formation and occurence, 2. rev. and enl, p.556, 1984.

H. Berlin,

X. Wang, Z. Jiang, S. Jiang, J. Chang, X. Li et al., Pore Evolution and 558 Formation Mechanism of Organic-Rich Shales in the Whole Process of Hydrocarbon 559 Generation: Study of Artificial and Natural Shale Samples, Energy Fuels, vol.34, pp.332-347, 2020.

Y. Wang, L. Liu, Q. Hu, L. Hao, X. Wang et al., Nanoscale Pore Network Evolution, vol.562, 2020.

, Xiamaling Marine Shale during Organic Matter Maturation by Hydrous Pyrolysis, Energy 563 Fuels, vol.34, pp.1548-1563

Y. Wang, L. Liu, S. Zheng, Z. Luo, Y. Sheng et al., Full-scale pore structure and its 565 controlling factors of the Wufeng-Longmaxi shale, southern Sichuan Basin, China: 566 Implications for pore evolution of highly overmature marine shale, Journal of Natural Gas 567 Science and Engineering, vol.67, pp.134-146, 2019.

D. A. Wood, Relationships between thermal maturity indices calculated using Arrhenius 569 equation and Lopatin method: implications for petroleum exploration, Assoc. Pet. Geol. Bull, vol.570, pp.115-134, 1988.

S. Wu, Z. Yang, X. Zhai, . Cui, . Jingwei et al., An experimental study 572 of organic matter, minerals and porosity evolution in shales within high-temperature and high-573 pressure constraints, Marine and Petroleum Geology, vol.102, pp.377-390, 2019.

T. Zhang, G. S. Ellis, S. C. Ruppel, K. L. Milliken, M. D. Lewan et al., Effect of organic 576 matter properties, clay mineral type and thermal maturity on gas adsorption in organic-rich 577 shale systems. Presented at the Unconventional Resources Technology Conference, Society of 578 Exploration Geophysicists, pp.1996-2001, 2013.

?. Mdbt, methyldibenzothiophene ratio = 4-MDBT/1-MDBT (Radke, 1988.

. ?-r-mdbt, , 1988.

?. Dpr, , 1988.

. ?-r-dpr, , 1988.

?. Mpi-1-;-radke, methylphenanthrene index = 1.5 * (2-MP + 3MP) / (Ph + 1-MP + 9-MP), vol.589, 1986.

. Boreham, For Ro ? 1.4%, Rc, ? R MPI-1 (%): for Ro ? 1.4%, Ro = 0.7*MPI-1 + 0, vol.22, 1988.