, Geochemistry of Non-Traditional Stable Isotopes

W. America, , pp.409-427

C. Archer and V. D. , Mass discrimination correction in multiple-collector plasma source mass 353 spectrometry: an example using Cu and Zn isotopes, J. Anal. At. Spectrom, vol.19, pp.656-665, 2004.

J. A. Barrat, B. Zanda, F. Moynier, C. Bollinger, C. Liorzou et al., Geochemistry of CI 355 chondrites: Major and trace elements, and Cu and Zn Isotopes, Geochim. Cosmochim. Acta, vol.83, pp.356-79, 2012.

D. Ben-othman, J. M. Luck, J. L. Bodinier, N. T. Arndt, and F. Albarede, Cu-Zn isotopic variations 358 in the Earth's mantle (abstract), Geochim. Cosmochim. Acta, vol.70, pp.46-46, 2006.

M. Bigalke, S. Weyer, and W. Wilcke, Stable Copper Isotopes: A Novel Tool to Trace Copper 360 Behavior in Hydromorphic Soils, Soil Sci. Soc. Am. J, vol.74, pp.60-73, 2010.

M. Bigalke, S. Weyer, and W. Wilcke, Stable Cu isotope fractionation in soils during oxic 362 weathering and podzolization, Geochim. Cosmochim. Acta, vol.75, pp.3119-3134, 2011.

M. C. Bishop, F. Moynier, C. Weinstein, J. G. Fraboulet, K. Wang et al., The Cu isotopic 364 composition of iron meteorites, Meteorit. Planet. Sci, vol.47, pp.268-276, 2012.

D. Braxton and R. Mathur, Exploration Applications of Copper Isotopes in the Supergene 366 Environment: A Case Study of the Bayugo Porphyry Copper-Gold Deposit, 2011.

, Econ. Geol, vol.106, pp.1447-1463

C. Burkhardt, T. Kleine, F. Oberli, A. Pack, B. Bourdon et al., Molybdenum isotope 369 anomalies in meteorites: constraints on solar nebula evolution and origin of the Earth, 2011.

, Planet. Sci. Lett, vol.312, pp.390-400

C. Burkhardt, T. Kleine, N. Dauphas, and R. Wieler, Nucleosynthetic tungsten isotope anomalies in 372 acid leachates of the Murchison chondrite: implications for hafnium-tungsten chronometery, 2012.

, Astrophys. J. Lett, vol.753, p.6

T. J. Campbell and M. Humayun, Siderophile element abundances in the Ni-rich ataxites Gebel 377, 2012.

D. Kamil and T. , Lunar Planet. Sci. Conf. 43, abstract #2833

J. H. Chen, D. A. Papanastassiou, and G. J. Wasserburg, Ruthenium endemic isotope effects in 379 chondrites and differentiated meteorites, Geochim. Cosmochim. Acta, vol.74, pp.3851-3862, 2010.

N. Dauphas, B. Marty, and L. Reisberg, Molybdenum evidence for inherited planetary scale 381 isotope heterogeneity of the protosolar nebula, Astrophys. J, vol.565, pp.640-644, 2002.

M. Fischer-gödde, C. Burkhardt, T. S. Kruijer, and T. Kleine, Ru isotope heterogeneity in the solar 383 protoplanetary disk, Geochim. Cosmochim. Acta, vol.168, pp.151-171, 2015.

J. I. Goldstein, E. R. Scott, and N. L. Chabot, Iron meteorites: Crystallization, thermal history, 385 parent bodies, and origin, Chemie der Erde -Geochemistry, vol.69, pp.293-325, 2009.

G. F. Herzog, Cosmic-ray exposure ages of meteorites, p.387, 2007.

G. Treatise-on, , pp.1-36

G. F. Herzog, F. Moynier, F. Albarede, and A. A. Berezhnoy, Isotopic and elemental abundances of 389 copper and zinc in lunar samples, Zagami, Pele's hairs, and a terrestrial basalt, 2009.

, Cosmochim. Acta, vol.73, pp.5884-5904

S. Huang and M. Humayun, Osmium isotope anomalies in group IVB irons: cosmogenic or 392 nucleosynthetic contributions (abstract), Lunar Planet Sci. 39, #1168, 2008.

M. Humayun and R. N. Clayton, Potassium isotope cosmochemistry: Genetic implications of 394 volatile element depletion, Geochim. Cosmochim. Acta, vol.59, pp.2131-2148, 1995.

M. Humayun and P. Cassen, Processes determining the volatile abundances of the meteorites and 396 terrestrial planets, Origin of the Earth and Moon, vol.397, pp.3-23, 2000.

M. Humayun and C. Koeberl, Potassium isotopic composition of Australian tektites, 2004.

, granites from the Lachlan Fold, vol.39, pp.38-49

K. Lodders, Solar system abundances and condensation temperatures of the elements, Astrophys. J, vol.429, pp.1220-1247, 2003.

J. M. Luck, D. Ben-othman, J. A. Barrat, and F. Albarede, Coupled 63 Cu and 16 O excesses in 431 chondrites, Geochim. Cosmochim. Acta, vol.67, pp.143-151, 2003.

J. M. Luck, D. B. Othman, and F. Albarède, Zn and Cu isotopic variations in chondrites and iron 433 meteorites: Early solar nebula reservoirs and parent-body processes, Geochim. Cosmochim. Acta, vol.434, issue.69, pp.5351-5363, 2005.

K. R. Ludwig, Isoplot 3.00: a Geochronological Toolkit for Microsoft Excel, 2003.

, Geochronology Center Special Publication, vol.4, p.70

G. W. Lugmair and A. Shukolyukov, Early solar system timescales according to 53 Mn-53 Cr 438 systematics, Geochim. Cosmochim. Acta, vol.62, pp.2863-2886, 1998.

C. N. Marechal, P. Telouk, and F. Albarede, Precise analysis of copper and zinc isotopic 440 compositions by plasma-source mass spectrometry, Chem. Geol, vol.156, pp.251-273, 1999.

A. Markowski, G. Quitte, A. N. Halliday, and T. Kleine, Tungsten isotopic compositions of iron 442 meteorites: Chronological constraints vs. cosmogenic effects, Earth Planet. Sci. Lett, vol.242, pp.1-15, 2006.

A. Markowski, I. Leya, G. Quitte, K. Ammon, A. N. Halliday et al., Correlated helium-3 444 and tungsten isotopes in iron meteorites: Quantitative cosmogenic corrections and planetesimal 445 formation times, Earth Planet. Sci. Lett, vol.250, pp.104-115, 2006.

J. Masarik, Contribution of neutron-capture reactions to observed tungsten isotopic ratios, 1997.

, Planet. Sci. Lett, vol.152, pp.181-185

B. Mayer, N. Wittig, M. Humayun, and I. Leya, Palladium isotopic evidence for nucleosynthetic 449 and cosmogenic isotope anomalies in IVB iron meteorites, Astrophys. Jour, vol.108, issue.8, 2015.

F. Moynier, F. Albarede, and G. F. Herzog, Isotopic composition of zinc, copper, and iron in lunar 451 samples, Proc. Natl. Acad. Sci. U.S.A, vol.70, pp.10810-10814, 2006.

F. Moynier, C. Koeberl, P. Beck, F. Jourdan, and P. Telouk, , 2010.

, Geochim. Cosmochim. Acta, vol.74, pp.799-807

S. F. Mughabghab, The thermal neutron capture cross sections resonance integrals and G-factors, 2003.

, International Atomic Energy Agency, pp.1-31

L. P. Qin, N. Dauphas, M. Wadhwa, J. Masarik, and P. E. Janney, Rapid accretion and differentiation 462 of iron meteorite parent bodies inferred from 182 Hf-182 W chronometry and thermal modeling, 2008.

, Earth Planet. Sci. Lett, vol.273, pp.94-104

K. L. Rasmussen, D. J. Malvin, V. F. Buchwald, and J. T. Wasson, Compositional trends and cooling 465 rates of grop-IVB iron meteorites, Geochim. Cosmochim. Acta, vol.48, pp.805-813, 1984.

M. Regelous, T. Elliott, and C. D. Coath, Nickel isotope heterogeneity in the early Solar System, 2008.

, Earth Planet. Sci. Lett, vol.272, pp.330-338

K. Righter, K. M. Pando, L. Danielson, and C. T. Lee, and W) between metal and silicate melt as a function of 470 temperature and silicate melt composition, Earth Planet. Sci. Lett, vol.291, pp.1-9, 2010.

P. Savage, F. Moynier, H. Chen, J. Siebert, J. Badro et al., Copper isotope 472 evidence for large-scale sulphide fractionation during Earth's differentiation. Geochem, 2015.

. Lett, , vol.1, pp.53-64

A. Schersten, T. Elliott, C. Hawkesworth, S. Russell, and J. Masarik, Hf-W evidence for rapid 475 differentiation of iron meteorite parent bodies, Earth Planet. Sci. Lett, pp.530-542, 2006.

R. Schoenberg, B. S. Kamber, K. D. Collerson, and O. Eugster, New W-isotope evidence for rapid 477 terrestrial accretion and very early core formation, Geochim. Cosmochim. Acta, vol.66, pp.3151-3160, 2002.

E. R. Scott, Iron meteorites with low Ga and Ge concentrations-composition, structure and 481 genetic relationships, Geochim. Cosmochim. Acta, vol.42, pp.1243-1251, 1978.

A. Trinquier, J. L. Birck, and C. J. Allegre, Widespread 54 Cr heterogeneity in the inner solar system, 2007.

, Astrophys. J, vol.655, pp.1179-1185

C. Vockenhuber, F. Oberli, M. Bichler, I. Ahmad, G. Quitte et al., , p.485

W. Kutschera, P. Steier, R. J. Gehrke, and R. G. Helmer, New half-life measurement of 182 Hf: 486 Improved chronometer for the early solar system, Phys. Rev. Lett, vol.93, p.4, 2004.

H. Voshage and H. Feldmann, Investigations on cosmic-ray-produced nuclides in iron meteorites, p.3, 1979.

, Exposure ages, meteoroid sizes and sample depths determined by mass spectrometric analyses of 489 potassium and rare gases, Earth Planet. Sci. Lett, vol.45, pp.293-308

H. Voshage, Investigations of cosmic-ray-produced nuclides in iron meteorites, 6. The Signer-Nier 491 model and the history of the cosmic radiation, Earth Planet. Sci. Lett, vol.71, pp.181-194, 1984.

R. J. Walker, W. F. Mcdonough, J. Honesto, N. L. Chabot, T. J. Mccoy et al., , 2008.

, Modeling fractional crystallization of group IVB iron meteorites, Geochim. Cosmochim. Acta, vol.72, pp.2198-2216

R. J. Walker, Evidence for homogeneous distribution of osmium in the protosolar nebula, 2012.

, Planet. Sci. Lett, pp.36-44

C. Weinstein, F. Moynier, K. Wang, R. Paniello, J. Foriel et al., Isotopic 498 fractionation of Cu in plants, Chem. Geol, vol.286, pp.266-271, 2011.

J. T. Williams and M. Humayun, Origin of the IVB irons in a hit-and-run collision (abstract), 2013.

, Planet Sci, vol.44, p.2784

N. Wittig, M. Humayun, A. D. Brandon, S. Huang, and I. Leya, Coupled W-Os-Pt isotope 502 systematics in IVB iron meteorites: In situ neutron dosimetry for W isotope chronology, 2013.

, 152-161. the IVB iron meteorites and their parent body, Geochim. Cosmochim. Acta, vol.361, pp.4493-4506

Q. Z. Yin, S. B. Jacobsen, K. Yamashita, J. Blichert-toft, P. Telouk et al., A short 507 timescale for terrestrial planet formation from Hf-W chronometry of meteorites, Nature, vol.418, pp.949-508, 2002.