. Pope, The involvement of cometary impactors, 2004.

W. D. Addison, G. R. Brumpton, D. A. Vallini, N. J. Mcnaughton, D. W. Davis et al.,

P. W. Fralick and A. L. Hammond, Discovery of distal ejecta from the 1850 Ma Sudbury impact event, Geology, vol.33, pp.193-196, 2005.

, accretion during Palaeoproterozoic oblique convergence, Canadian Journal of Earth Sciences, pp.765-793

C. Göpel, J. Birck, A. Galy, J. Barrat, and B. Zanda, Mn-Cr systematics in primitive meteorites: insights from mineral separation and partial dissolution, Geochimica et Cosmochimica Acta, vol.156, pp.1-24, 2015.

B. P. Glass and B. M. Simonson, Distal Impact Ejecta Layers: Spherules and More, 2012.

, Elements, issue.8, pp.43-48

R. A. Grieve, D. E. Ames, J. V. Morgan, A. , and N. , The evolution of the, 2010.
URL : https://hal.archives-ouvertes.fr/hal-02128150

, Onaping Formation at the Sudbury impact structure, Meteoritics & Planetary Science, pp.759-782

J. L. Hannah, H. J. Stein, A. Zimmerman, G. Yang, V. A. Melezhik et al., Re-Os geochronology of shungite. A 2.05 Ga fossil oil field in Karelia (abstract): Geochimica et Cosmochimica Acta, p.351, 2008.

G. Heiken and K. Wohletz, Volcanic Ash, p.246, 1985.

M. S. Huber, A. E. ?rne, I. Mcdonald, L. Hecht, V. A. Melezhik et al., Impact spherules from Karelia, Russia. Possible ejecta from the 2.02 Ga Vredefort impact event: Geology, vol.42, pp.375-378, 2014.

M. S. Huber, I. Mcdonald, and C. Koeberl, Petrography and geochemistry of ejecta from the Sudbury impact event, Meteoritics & Planetary Science, v, vol.49, pp.1749-1768, 2014.

S. L. Kamo, W. U. Reimold, T. E. Krogh, and W. P. Colliston, A 2.023 Ga age for the Vredefort impact event and a first report of shock metamorphosed zircons in pseudotachylitic breccias and Granophyre, Earth and Planetary Science Letters, vol.144, pp.369-387, 1996.

C. Koeberl, Impact Processes on the Early Earth, Elements, issue.2, pp.211-216, 2006.

C. Koeberl, The record of impact processes on the early Earth: A review of the first 2.5 billion years, pp.283-286, 2006.

F. T. Kyte, A. Shukolyukov, A. R. Hildebrand, G. W. Lugmair, and J. Hanova, Chromium-isotopes in Late Eocene impact spherules indicate a likely asteroid belt provenance. Earth and Planetary Science Letters, vol.302, pp.279-286, 2011.

G. W. Lugmair and A. Shukolyukov, Early solar system timescales according to 53Mn-53Cr systematics, Geochimica et Cosmochimica Acta, vol.62, pp.2863-2886, 1998.

J. W. Morgan, R. J. Walker, M. F. Horan, E. S. Beary, and A. J. Naldrett, Pt-186 Os and 187 Re-187 Os systematics of the Sudbury Igneous Complex, Geochimica et Cosmochimica Acta, vol.66, pp.273-290, 0190.

F. Moynier, C. Koeberl, G. Quitté, and P. Telouk, A tungsten isotope approach to search for meteoritic components in terrestrial impact rocks, Earth and Planetary Science Letters, vol.286, pp.35-40, 2009.

J. E. Mungall, D. E. Ames, and J. J. Hanley, Geochemical evidence from the Sudbury structure for crustal redistribution by large bolide impacts, Nature, vol.429, pp.546-548, 2004.

D. Nakashima, T. Ushikubo, D. J. Joswiak, D. E. Brownlee, G. Matrajt et al.,

M. E. Zolensky and N. T. Kita, Oxygen isotopes in crystalline silicates of comet Wild 2: a comparison of oxygen isotope systematics between Wild 2 particles and chondritic materials, Earth Planetary Science Letter, vol.357, pp.355-365, 2012.

J. A. Petrus, D. E. Ames, and B. S. Kamber, On the track of the elusive Sudbury impact: geochemical evidence for a chondrite or comet bolide, vol.27, pp.9-20, 2015.

K. O. Pope, S. W. Kieffer, and D. E. Ames, Empirical and theoretical comparisons of the Chicxulub and Sudbury impact structures, Meteoritics and Planetary Sciences, pp.97-116, 2004.

I. S. Puchtel, N. T. Arndt, A. W. Hofmann, K. M. Haase, A. Kröner et al., Petrology of mafic lavas within the Onega plateau, central Karelia: evidence for 2.0 Ga plume-related continental crustal growth in the Baltic Shield, Contributions to Mineralogy and Petrology, vol.130, pp.134-153, 1998.

P. K. Pufahl, E. E. Hiatt, C. R. Stanley, J. R. Morrow, G. J. Nelson et al., Physical and chemical evidence of the 1850 Ma Sudbury impact event in the Baraga Group, Geology, vol.35, pp.827-830, 2007.

G. Quitté, E. Robin, S. Levasseur, F. Capmas, R. Rocchia et al., Osmium, tungsten, and chromium isotopes in sediments and in Ni-rich spinel at the K-T boundary: signature of a chondritic impactor, Meteoritics & Planetary Science, pp.1567-1580, 2007.

R. L. Rudnick and S. Gao, Composition of the Continental Crust. Treatise on Geochemistry, p.659, 2003.

W. R. Shields, Absolute isotopic abundance ratios and atomic weight of a reference sample of chromium, Journal of the National Bureau of standards, pp.193-197, 1966.

A. Shukolyukov and G. W. Lugmair, Isotopic Evidence for the Cretaceous-Tertiary Impactor and Its Type, Science, vol.282, pp.927-930, 1998.

A. Trinquier, J. Birck, and C. J. Allègre, The nature of the KT impactor. A 54Cr reappraisal, Earth Planetary Science Letters, pp.780-788, 2006.
URL : https://hal.archives-ouvertes.fr/hal-00272225

A. Trinquier, J. Birck, A. , and C. J. , Widespread 54 Cr heterogeneity in the inner solar system, The Astrophysical Journal, vol.655, p.1179, 2007.

A. Trinquier, J. Birck, A. , and C. J. , High-precision analysis of chromium isotopes in terrestrial and meteorite samples by thermal ionization mass spectrometry, Journal of Analytical Atomic Spectrometry, issue.23, pp.1565-1574, 2008.

E. P. Turtle, E. Pierazzo, G. S. Collins, G. R. Osinski, H. J. Melosh et al., Impact structures: What does crater diameter mean?, 2005.